JP3409661B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle

Info

Publication number
JP3409661B2
JP3409661B2 JP26350197A JP26350197A JP3409661B2 JP 3409661 B2 JP3409661 B2 JP 3409661B2 JP 26350197 A JP26350197 A JP 26350197A JP 26350197 A JP26350197 A JP 26350197A JP 3409661 B2 JP3409661 B2 JP 3409661B2
Authority
JP
Japan
Prior art keywords
power generation
generation amount
control device
power
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26350197A
Other languages
Japanese (ja)
Other versions
JPH11103503A (en
Inventor
雄太郎 金子
眞一郎 北田
俊雄 菊池
弘之 平野
英二 稲田
剛 麻生
隆一 井戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26350197A priority Critical patent/JP3409661B2/en
Publication of JPH11103503A publication Critical patent/JPH11103503A/en
Application granted granted Critical
Publication of JP3409661B2 publication Critical patent/JP3409661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車両
に搭載される発電機、エンジン、モーターおよびバッテ
リーを制御する制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling a generator, an engine, a motor and a battery mounted on a hybrid vehicle.

【0002】[0002]

【従来の技術】エンジンにより発電機を駆動して発電を
行い、走行用モーターとバッテリーに電力を供給するシ
リーズ・ハイブリッド車両が知られており、エンジン車
両の排気と燃費の問題を解決しながら、電気自動車の航
続距離を延長するものとして注目されている(例えば、
特開平6−245620号公報参照)。このシリーズ・
ハイブリッド車両の制御装置では、バッテリーの充電量
SOCが設定値以上のときは、バッテリーの充電電力を
モーターに供給して走行している。バッテリーの充電量
が設定値よりも低下したときは、エンジンにより発電機
を駆動し、発電機の発電電力をモーターに供給して駆動
するとともに、バッテリーに供給して充電を行ってい
る。そして、バッテリーの充電量が増加してふたたび設
定値を超えると、エンジンを停止して発電機による発電
を終了している。
2. Description of the Related Art A series hybrid vehicle is known in which an engine drives a generator to generate electric power to supply electric power to a traveling motor and a battery. While solving problems of exhaust gas and fuel consumption of an engine vehicle, Attention has been paid to extend the cruising range of electric vehicles (for example,
(See Japanese Patent Laid-Open No. 6-245620). This series
In the control device of the hybrid vehicle, when the charge amount SOC of the battery is equal to or greater than the set value, the electric power for charging the battery is supplied to the motor to drive the vehicle. When the amount of charge in the battery falls below the set value, the engine drives the generator to supply the generated power of the generator to the motor for driving, and also to supply the battery for charging. Then, when the charged amount of the battery increases and exceeds the set value again, the engine is stopped and the power generation by the generator is completed.

【0003】[0003]

【発明が解決しようとする課題】ところで、バッテリー
の寿命、車両全体の効率や動力性能などを向上させるた
めには、バッテリーの充放電収支を一定に保つことが望
ましいが、従来のハイブリッド車両の制御装置ではバッ
テリーの充放電収支についてはまったく考慮されていな
い。
By the way, in order to improve the life of the battery, the efficiency and power performance of the vehicle as a whole, it is desirable to keep the charge and discharge balance of the battery constant. The device does not consider the charge / discharge balance of the battery at all.

【0004】本発明の目的は、バッテリーの寿命、車両
全体の効率や動力性能、排気浄化性能を向上させること
にある。
An object of the present invention is to improve the battery life, the efficiency and power performance of the entire vehicle, and the exhaust gas purification performance.

【0005】[0005]

【課題を解決するための手段】(1) 請求項1の発明
は、エンジンにより発電機を駆動して発電を行い、走行
用モーターとバッテリーに電力を供給するハイブリッド
車両の制御装置に適用される。そして、バッテリーの残
存容量を検出する残存容量検出手段と、残存容量の変化
率を算出する変化率算出手段と、残存容量と変化率とに
基づいて発電機の発電量を決定する発電量決定手段と、
発電量にしたがってエンジンと発電機を駆動制御する駆
動制御手段とを備え、発電量決定手段によって、残存容
量の変化率が増加するときは発電量を減らし、残存容量
の変化率が減少するときは発電量を増やす。 (2) 請求項2のハイブリッド車両の制御装置は、変
化率算出手段によって、時間に対する前記残存容量の変
化率を算出するようにしたものである。 (3) 請求項3のハイブリッド車両の制御装置は、車
両の走行距離を検出する走行距離検出手段を備え、変化
率算出手段によって、走行距離に対する残存容量の変化
率を算出するようにしたものである。 (4) 請求項4のハイブリッド車両の制御装置は、発
電量決定手段によって、所定の最大発電量と最小発電量
の範囲内で発電量を決定するようにしたものである。 (5) 請求項5のハイブリッド車両の制御装置は、
速を検出する車速検出手段と、バッテリーの温度を検出
する温度検出手段と、モーターの入力電力を算出する入
力電力算出手段と、車速、バッテリー温度および入力電
力に基づいて、発電量決定手段により決定された発電量
を補正する発電量補正手段とを備える
(1) The invention of claim 1 is applied to a control device for a hybrid vehicle that drives a generator by an engine to generate electric power and supplies electric power to a traveling motor and a battery. . Then, the remaining capacity detecting means for detecting the remaining capacity of the battery, the change rate calculating means for calculating the change rate of the remaining capacity, and the power generation amount determining means for determining the power generation amount of the generator based on the remaining capacity and the change rate. When,
A drive control means for driving and controlling the engine and the generator according to the power generation amount is provided , and the remaining capacity is determined by the power generation amount determining means.
When the rate of change in the amount of electricity increases, reduce the amount of power generation
When the rate of change of is decreasing, increase the amount of power generation. (2) In the hybrid vehicle control device according to the second aspect, the change rate calculating unit calculates the change rate of the remaining capacity with respect to time. (3) A control device for a hybrid vehicle according to a third aspect of the present invention comprises a traveling distance detecting means for detecting a traveling distance of the vehicle, and the change rate calculating means calculates a change rate of the remaining capacity with respect to the traveling distance. is there. (4) In the hybrid vehicle control device according to the fourth aspect, the power generation amount determining means causes the predetermined maximum power generation amount and the minimum power generation amount.
The amount of power generation is determined within the range of . (5) The control device for a hybrid vehicle according to claim 5 is a vehicle
Vehicle speed detection means to detect speed and battery temperature
Temperature detection means and input to calculate the motor input power
Force power calculation means, vehicle speed, battery temperature and input power
Power generation amount determined by the power generation amount determination means based on force
And a power generation amount correcting means for correcting .

【0006】[0006]

【発明の効果】(1) 請求項1の発明によれば、バッ
テリーの残存容量を検出するとともに、残存容量の変化
率を算出し、残存容量と残存容量の変化率とに基づい
て、残存容量の変化率が増加するときは発電量を減ら
し、残存容量の変化率が減少するときは発電量を増やす
ように発電機の発電量を決定する。そして、この発電量
にしたがってエンジンと発電機を駆動制御する。これに
より、車両間のばらつき、バッテリーの経時劣化、車両
の走行状況などによりバッテリーの残存容量SOCが変
化しても、バッテリーの充放電収支の変動を抑制するこ
とができ、バッテリーの寿命が長くなる。また、バッテ
リーの残存容量が安定し、車両全体の効率や動力性能を
向上させることができる。さらに、エンジン駆動による
発電が安定し、排気浄化性能を向上させることができ
る。 (2) 請求項2の発明によれば、時間に対する残存容
量の変化率を算出し、残存容量と残存容量の時間変化率
とに基づいて発電機の発電量を決定し、この発電量にし
たがってエンジンと発電機を駆動制御するようにしたの
で、請求項1と同様な効果が得られる。 (3) 請求項3の発明によれば、走行距離に対する残
存容量の変化率を算出し、残存容量と残存容量の走行距
離変化率とに基づいて発電機の発電量を決定し、この発
電量にしたがってエンジンと発電機を駆動制御するよう
にしたので、請求項1と同様な効果が得られる。 (4) 請求項4の発明によれば、所定の最大発電量と
最小発電量の範囲内で発電量を決定するようにしたの
で、エンジン駆動による発電をより安定化させることが
でき、排気浄化性能をより向上させることができる。 (5) 請求項5の発明によれば、車速、バッテリー温
度および入力電力に基づいて、発電量決定手段により決
定された発電量を補正するようにしたので、環境条件と
走行条件に適した発電量を決定することができる。
(1) According to the invention of claim 1, the bag
Changes in remaining capacity while detecting remaining capacity of terry
Calculate the rate and based on the remaining capacity and the rate of change of remaining capacity
Decrease the amount of power generation when the rate of change in the remaining capacity increases.
Increase the amount of power generation when the rate of change in the remaining capacity decreases
Determines the amount of power generated by the generator. And this amount of power generation
Drive control of the engine and the generator according to. to this
More, variations between vehicles, battery deterioration over time, even if the battery capacity SOC of the like running condition change of the vehicle, it is possible to suppress variation in charge and discharge balance of the battery, battery life is prolonged. Further, the remaining capacity of the battery is stable, and the efficiency and power performance of the entire vehicle can be improved. Further, the power generation by the engine drive is stable, and the exhaust gas purification performance can be improved. (2) According to the invention of claim 2, the rate of change of the remaining capacity with respect to time is calculated, the power generation amount of the generator is determined based on the remaining capacity and the time rate of change of the remaining capacity, and according to this power generation amount. Since the engine and the generator are drive-controlled, the same effect as in claim 1 can be obtained. (3) According to the invention of claim 3, the rate of change of the remaining capacity with respect to the running distance is calculated, and the power generation amount of the generator is determined based on the remaining capacity and the running distance change rate of the remaining capacity. Since the engine and the generator are driven and controlled in accordance with the above, the same effect as in claim 1 can be obtained. (4) According to the invention of claim 4, a predetermined maximum power generation amount and
I decided to determine the power generation amount within the range of the minimum power generation amount.
It is possible to stabilize the power generation by the engine drive.
Therefore, the exhaust gas purification performance can be further improved. (5) According to the invention of claim 5, vehicle speed, battery temperature
Based on the input power and the input power
Since the amount of power generated is corrected,
It is possible to determine the amount of power generation suitable for the running conditions.

【0007】[0007]

【発明の実施の形態】図1は一実施の形態の構成を示す
図である。モーター1は車両の走行駆動源であり、例え
ば三相同期電動機や三相誘導電動機などが用いられる。
モーターコントローラー2はモーター1を駆動制御する
ための装置であり、インバーターと制御装置を備えてい
る。車両コントローラー3は、モーターコントローラー
2を含む各種車載機器を制御する装置である。モーター
コントローラー2は、車両コントローラー3からの制御
指令にしたがってバッテリー4の直流電力を交流電力に
変換し、モーター1に供給する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a configuration of an embodiment. The motor 1 is a traveling drive source of the vehicle, and for example, a three-phase synchronous motor or a three-phase induction motor is used.
The motor controller 2 is a device for driving and controlling the motor 1, and includes an inverter and a control device. The vehicle controller 3 is a device that controls various in-vehicle devices including the motor controller 2. The motor controller 2 converts the DC power of the battery 4 into AC power according to a control command from the vehicle controller 3, and supplies the AC power to the motor 1.

【0008】発電機5はエンジン7により駆動される。
発電機コントローラー6は発電機5を駆動制御するため
の装置であり、インバーターと制御装置を備えている。
発電機コントローラー6は、車両コントローラー3から
の制御指令にしたがって発電機5の発電電力を制御し、
モーターコントローラー2を介してモーター1へ電力を
供給するとともに、バッテリー4へ電力を供給して充電
を行う。
The generator 5 is driven by the engine 7.
The generator controller 6 is a device for driving and controlling the generator 5, and includes an inverter and a control device.
The generator controller 6 controls the generated power of the generator 5 according to the control command from the vehicle controller 3,
Electric power is supplied to the motor 1 via the motor controller 2 and electric power is supplied to the battery 4 for charging.

【0009】電池容量検出装置8は、バッテリー4の残
存容量SOCを検出する。残存容量SOCの検出方法に
は、バッテリーの開放電圧による検出方法や、満充電時
の充電量から放電量を減算する方法など、周知の検出方
法を用いることができる。容量変化率算出装置9は、バ
ッテリー4の残存容量SOCと時間または車両の走行距
離とに基づいて、バッテリー4の残存容量SOCの時間
変化率または走行距離変化率を演算する。これらの時間
変化率と走行距離変化率については後述する。走行距離
計10は車両の走行距離を検出し、車速計11は車両の
走行速度を検出する。また、温度計12はバッテリー4
の温度を検出し、モーター入力電力算出装置13はモー
ター1の入力電力を算出する。
The battery capacity detecting device 8 detects the remaining capacity SOC of the battery 4. As a method of detecting the remaining capacity SOC, a known detection method such as a method of detecting the open circuit voltage of the battery or a method of subtracting the amount of discharge from the amount of charge when fully charged can be used. The capacity change rate calculation device 9 calculates the time change rate or the travel distance change rate of the remaining capacity SOC of the battery 4 based on the remaining capacity SOC of the battery 4 and the time or the traveling distance of the vehicle. The time rate of change and the mileage rate of change will be described later. The odometer 10 detects the traveling distance of the vehicle, and the vehicle speed meter 11 detects the traveling speed of the vehicle. The thermometer 12 is the battery 4
The motor input power calculation device 13 calculates the input power of the motor 1 by detecting the temperature.

【0010】車両コントローラー3は、バッテリー4の
残存容量SOCと温度、残存容量SOCの時間変化率ま
たは走行距離変化率、車速、モーター1の入力電力など
の情報に基づいて、発電機5の発電量を決定し、エンジ
ン7と発電機5による発電を制御する。
The vehicle controller 3 uses the remaining capacity SOC and temperature of the battery 4, the rate of change of the remaining capacity SOC with time or the rate of change of mileage, the vehicle speed, the input power of the motor 1, and the like to generate the power of the generator 5. Then, the power generation by the engine 7 and the generator 5 is controlled.

【0011】図2は発電量決定処理を示すフローチャー
トである。このフローチャートにより、一実施の形態の
動作を説明する。車両コントローラー3は、発電要求に
応じてエンジン7により発電機5を駆動して発電を開始
する時に、この処理を実行する。ステップ1において、
前回の処理サイクルで決定された発電量をWdに設定す
る。続くステップ2で、電池容量検出装置8によりバッ
テリー4の残存容量SOCを検出する。ステップ3では
残存容量SOCが所定値a%以上かどうかを確認する。
ここで、所定値a%には、例えば最大発電量Wmaxを受
け入れ可能な充電量を設定する。所定値a%未満のとき
はステップ9へ進み、発電量を最大発電量Wmaxとす
る。
FIG. 2 is a flow chart showing the power generation amount determination processing. The operation of the embodiment will be described with reference to this flowchart. The vehicle controller 3 executes this process when the engine 7 drives the generator 5 to start power generation in response to a power generation request. In step 1,
The power generation amount determined in the previous processing cycle is set to Wd. In the following step 2, the remaining capacity SOC of the battery 4 is detected by the battery capacity detection device 8. In step 3, it is confirmed whether the state of charge SOC is a predetermined value a% or more.
Here, the predetermined value a% is set to, for example, a charge amount that can accept the maximum power generation amount Wmax. When it is less than the predetermined value a%, the process proceeds to step 9 and the power generation amount is set to the maximum power generation amount Wmax.

【0012】残存容量SOCが所定値a%以上のときは
ステップ4へ進み、容量変化率算出装置9により残存容
量SOCの時間変化率または走行距離変化率を算出す
る。この実施の形態では、残存容量SOCの時間変化率
と走行距離変化率とを発電量の演算に同時に用いること
はないので、どちらもΔSOCで表す。この発電量決定
処理のサイクルタイムをtとし、前回の処理サイクルで
検出された残存容量をSOCdとし、今回の処理サイク
ルで検出された残存容量をSOCで表すと、残存容量S
OCの時間変化率ΔSOCは次式により求められる。
When the state of charge SOC is equal to or greater than the predetermined value a%, the routine proceeds to step 4, where the change rate calculator 9 calculates the rate of change of the state of charge SOC or the change rate of the traveled distance. In this embodiment, the rate of change in SOC of the remaining capacity and the rate of change in running distance are not used simultaneously in the calculation of the amount of power generation, so both are represented by ΔSOC. When the cycle time of this power generation amount determination processing is t, the remaining capacity detected in the previous processing cycle is SOCd, and the remaining capacity detected in this processing cycle is represented by SOC, the remaining capacity S
The OC time change rate ΔSOC is obtained by the following equation.

【数1】ΔSOC=(SOC−SOCd)/t また、前回の処理サイクルから今回の処理サイクルまで
の間の走行距離をLとすると、残存容量SOCの走行距
離変化率ΔSOCは次式により求められる。
## EQU00001 ## .DELTA.SOC = (SOC-SOCd) / t Further, when the running distance from the previous processing cycle to the current processing cycle is L, the running distance change rate .DELTA.SOC of the remaining capacity SOC is obtained by the following equation. .

【数2】ΔSOC=(SOC−SOCd)/L(2) ΔSOC = (SOC-SOCd) / L

【0013】ステップ5において、次式により発電量演
算値Wを求める。
In step 5, the power generation amount calculation value W is obtained by the following equation.

【数3】 W=Wd+(Wc+b/SOC−c*ΔSOC) ここで、Wdは前回の処理サイクルにおいて決定された
発電量、Wcは変化発電量、bおよびcは車両ごと、お
よび処理サイクルごとに求められる定数である。例え
ば、Wd=10kW、Wc=3kW、b=0.5、c=
50、SOC=50%、ΔSOC=10%とすると、発
電量演算値Wは9kWとなる。
## EQU00003 ## W = Wd + (Wc + b / SOC-c * .DELTA.SOC) where Wd is the power generation amount determined in the previous processing cycle, Wc is the variable power generation amount, and b and c are for each vehicle and for each processing cycle. It is a required constant. For example, Wd = 10 kW, Wc = 3 kW, b = 0.5, c =
When 50, SOC = 50%, and ΔSOC = 10%, the power generation amount calculation value W becomes 9 kW.

【0014】数式3において、(b/SOC)はバッテ
リー4の残存容量SOCに応じて発電量を変化させる項
であり、残存容量SOCが少ないときは発電量を多め
に、残存容量SOCが多いときは発電量を少なめにす
る。また、(c*ΔSOC)は、残存容量SOCの時間
変化率または走行距離変化率ΔSOCに応じて発電量を
変化させる項である。残存容量SOCの時間変化率また
は走行距離変化率ΔSOCが増加するときは発電量を少
なめに、時間変化率または走行距離変化率ΔSOCが変
化しないときは発電量を変えず、時間変化率または走行
距離変化率ΔSOCが減少するときは発電量を多めにす
る。なお、発電開始時には発電量演算値Wに所定値を設
定する。
In Equation 3, (b / SOC) is a term for changing the amount of power generation according to the remaining capacity SOC of the battery 4. When the remaining capacity SOC is small, the amount of power generation is increased, and when the remaining capacity SOC is large. Reduces the amount of power generation. Further, (c * ΔSOC) is a term that changes the amount of power generation according to the rate of change in the remaining capacity SOC with time or the rate of change in travel distance ΔSOC. If the time change rate of the remaining capacity SOC or the mileage change rate ΔSOC increases, the power generation amount is decreased, and if the time change rate or the mileage change rate ΔSOC does not change, the power generation amount is not changed and the time change rate or the mileage is changed. When the rate of change ΔSOC decreases, the power generation amount is increased. At the start of power generation, a predetermined value is set as the power generation amount calculation value W.

【0015】ステップ6では、発電量演算値Wを予め決
定した最小発電量Wminおよび最大発電量Wmaxと比較す
る。発電量演算値Wが最小発電量Wmin以下のときはス
テップ7へ進み、発電量を最小発電量Wminとする。発
電量演算値Wが最小発電量Wminより大きく、最大発電
量Wmaxより小さいときはステップ8へ進み、発電量を
発電量演算値Wとする。発電量演算値Wが最大発電量W
max以上のときはステップ9へ進み、発電量を最大発電
量Wmaxとする。
In step 6, the calculated power generation amount W is compared with the predetermined minimum power generation amount Wmin and maximum power generation amount Wmax. When the power generation amount calculation value W is less than or equal to the minimum power generation amount Wmin, the process proceeds to step 7 and the power generation amount is set to the minimum power generation amount Wmin. When the power generation amount calculation value W is larger than the minimum power generation amount Wmin and smaller than the maximum power generation amount Wmax, the process proceeds to step 8 and the power generation amount is set to the power generation amount calculation value W. Power generation amount calculated value W is maximum power generation amount W
If it is greater than or equal to max, the process proceeds to step 9, and the power generation amount is set to the maximum power generation amount Wmax.

【0016】図3は一実施の形態の発電量決定結果を示
すタイムチャートであり、(a)は残存容量SOCを示
し、(b)は残存容量SOCの時間変化率または走行距
離変化率ΔSOCを示し、(c)は発電量決定値を示
す。図から明らかなように、発電量は、バッテリーの残
存容量SOCの時間変化率または走行距離変化率ΔSO
Cに応じて変化する。これにより、車両間のばらつき、
バッテリーの経時劣化、車両の走行状況などによりバッ
テリーの残存容量SOCが変化しても、バッテリーの充
放電収支の変動を抑制することができ、バッテリーの寿
命を延長し、車両全体の効率や動力性能、排気浄化性能
を向上させることができる。
FIG. 3 is a time chart showing the power generation amount determination result of one embodiment. (A) shows the remaining capacity SOC, and (b) shows the time change rate of the remaining capacity SOC or the mileage change rate ΔSOC. (C) shows the power generation amount determination value. As is clear from the figure, the power generation amount is the rate of change in the SOC of the battery over time or the rate of change in the travel distance ΔSO.
It changes according to C. As a result, variations between vehicles,
Even if the SOC of the battery changes due to the deterioration of the battery over time or the running condition of the vehicle, it is possible to suppress the fluctuation of the charge / discharge balance of the battery, extend the life of the battery, and improve the efficiency and power performance of the entire vehicle. The exhaust gas purification performance can be improved.

【0017】なお、上述した発電量決定処理により求め
た発電量を、車速とバッテリー温度と電動機の入力電力
(消費電力)とに応じて補正することによって、より環
境条件と走行状況に適した発電量とすることができる。
The power generation amount obtained by the above-described power generation amount determination process is corrected according to the vehicle speed, the battery temperature, and the input power (power consumption) of the electric motor, so that the power generation more suitable for the environmental condition and the traveling situation. It can be quantity.

【0018】以上の一実施の形態の構成において、エン
ジン7がエンジンを、発電機5が発電機を、モーター1
が走行用モーターを、バッテリー4がバッテリーを、電
池用量検出装置8が残存容量検出手段を、容量変化率算
出装置9が変化率算出手段を、車両コントローラー3が
発電量決定手段および発電量補正手段を、車両コントロ
ーラー3および発電機コントローラー6が駆動制御手段
を、走行距離計10が走行距離検出手段を、車速計11
が車速検出手段を、温度計12が温度検出手段を、モー
ター入力電力算出装置13が入力電力算出手段をそれぞ
れ構成する。
In the structure of the above embodiment, the engine 7 is the engine, the generator 5 is the generator, and the motor 1 is
Is a traveling motor, the battery 4 is a battery, the battery dose detection device 8 is a remaining capacity detection means, the capacity change rate calculation device 9 is a change rate calculation means, and the vehicle controller 3 is a power generation amount determination means and a power generation amount correction means. The vehicle controller 3 and the generator controller 6 serve as drive control means, the odometer 10 serves as mileage detection means, and the vehicle speed gauge 11
Is a vehicle speed detecting means, the thermometer 12 is a temperature detecting means, and the motor input power calculating device 13 is an input power calculating means.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施の形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment.

【図2】 一実施の形態の発電量演算処理を示すフロー
チャートである。
FIG. 2 is a flowchart showing a power generation amount calculation process according to an embodiment.

【図3】 一実施の形態の発電量演算結果を示す図であ
る。
FIG. 3 is a diagram showing a power generation amount calculation result according to an embodiment.

【符号の説明】[Explanation of symbols]

1 モーター 2 モーターコントローラー 3 車両コントローラー 4 バッテリー 5 発電機 6 発電機コントローラー 7 エンジン 8 電池容量検出装置 9 容量変化率算出装置 10 走行距離計 11 車速計 12 温度計 13 モーター入力電力算出装置 1 motor 2 motor controller 3 Vehicle controller 4 battery 5 generator 6 generator controller 7 engine 8 Battery capacity detector 9 Capacity change rate calculation device 10 odometer 11 speedometer 12 Thermometer 13 Motor input power calculator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 29/06 F02D 29/06 D (72)発明者 平野 弘之 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 稲田 英二 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 麻生 剛 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 井戸口 隆一 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平8−289407(JP,A) 特開 平8−47109(JP,A) 特開 平8−47107(JP,A) 特開 平5−153703(JP,A) 特開 平10−150701(JP,A) 特開 平10−215503(JP,A) 特開 平11−69507(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60L 11/12 B60K 6/04 B60L 3/00 F02D 29/06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F02D 29/06 F02D 29/06 D (72) Inventor Hiroyuki Hirano 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. ( 72) Inventor Eiji Inada 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Takeshi Aso 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Iwaguchi Ryuichi 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (56) References JP-A-8-289407 (JP, A) JP-A-8-47109 (JP, A) JP-A-8-47107 ( JP, A) JP 5-153703 (JP, A) JP 10-150701 (JP, A) JP 10-215503 (JP, A) JP 11-69507 (JP, A) (58 )investigated Field (Int.Cl. 7, DB name) B60L 11/12 B60K 6/04 B60L 3/00 F02D 29/06

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エンジンにより発電機を駆動して発電を
行い、走行用モーターとバッテリーに電力を供給するハ
イブリッド車両の制御装置において、 前記バッテリーの残存容量を検出する残存容量検出手段
と、 前記残存容量の変化率を算出する変化率算出手段と、 前記残存容量と前記変化率とに基づいて前記発電機の発
電量を決定する発電量決定手段と、 前記発電量にしたがって前記エンジンと前記発電機を駆
動制御する駆動制御手段とを備え 前記発電量決定手段は、前記残存容量の変化率が増加す
るときは発電量を減らし、前記残存容量の変化率が減少
するときは発電量を増やす ことを特徴とするハイブリッ
ド車両の制御装置。
1. A hybrid vehicle control device for driving a generator by an engine to generate electric power to supply electric power to a traveling motor and a battery, and a residual capacity detecting means for detecting a residual capacity of the battery; A rate-of-change calculating unit that calculates a rate of change in capacity, a power-generation amount determining unit that determines a power generation amount of the generator based on the remaining capacity and the change rate, the engine and the generator according to the power generation amount. the a drive control means for controlling driving, the power generation amount determining means, the rate of change of the remaining capacity to increase
The amount of power generated is reduced, the rate of change in the remaining capacity is reduced.
A hybrid vehicle control device that increases the amount of power generation when
【請求項2】 請求項1に記載のハイブリッド車両の制
御装置において、 前記変化率算出手段は、時間に対する前記残存容量の変
化率を算出することを特徴とするハイブリッド車両の制
御装置。
2. The control device for a hybrid vehicle according to claim 1, wherein the change rate calculating means calculates a change rate of the remaining capacity with respect to time.
【請求項3】 請求項1に記載のハイブリッド車両の制
御装置において、 車両の走行距離を検出する走行距離検出手段を備え、 前記変化率算出手段は、前記走行距離に対する前記残存
容量の変化率を算出することを特徴とするハイブリッド
車両の制御装置。
3. The hybrid vehicle control device according to claim 1, further comprising a mileage detection unit that detects a mileage of the vehicle, wherein the change rate calculation unit calculates a change rate of the remaining capacity with respect to the mileage. A control device for a hybrid vehicle, which is characterized by calculating.
【請求項4】 請求項1〜3のいずれかの項に記載のハ
イブリッド車両の制御装置において、 前記発電量決定手段は、所定の最大発電量と最小発電量
の範囲内で発電量を決定することを特徴とするハイブリ
ッド車両の制御装置。
4. The control device for a hybrid vehicle according to claim 1, wherein the power generation amount determining means has a predetermined maximum power generation amount and minimum power generation amount.
A control device for a hybrid vehicle, characterized in that the amount of power generation is determined within the range .
【請求項5】 請求項1〜4のいずれかの項に記載のハ
イブリッド車両の制御装置において、車速を検出する車速検出手段と、 前記バッテリーの温度を検出する温度検出手段と、 前記モーターの入力電力を算出する入力電力算出手段
と、 前記車速、前記バッテリー温度および前記入力電力に基
づいて、前記発電量決 定手段により決定された発電量を
補正する発電量補正手段とを備える ことを特徴とするハ
イブリッド車両の制御装置。
5. The control device for a hybrid vehicle according to claim 1 , wherein a vehicle speed detecting means for detecting a vehicle speed, a temperature detecting means for detecting a temperature of the battery, and an input of the motor. Input power calculation means for calculating power
Based on the vehicle speed, the battery temperature, and the input power.
And Zui, a power generation amount determined by said power generation amount decision means
A control device for a hybrid vehicle, comprising: a power generation amount correcting means for correcting .
JP26350197A 1997-09-29 1997-09-29 Control device for hybrid vehicle Expired - Fee Related JP3409661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26350197A JP3409661B2 (en) 1997-09-29 1997-09-29 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26350197A JP3409661B2 (en) 1997-09-29 1997-09-29 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JPH11103503A JPH11103503A (en) 1999-04-13
JP3409661B2 true JP3409661B2 (en) 2003-05-26

Family

ID=17390412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26350197A Expired - Fee Related JP3409661B2 (en) 1997-09-29 1997-09-29 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3409661B2 (en)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850037B2 (en) 1997-11-03 2005-02-01 Midtronics, Inc. In-vehicle battery monitor
US8198900B2 (en) 1996-07-29 2012-06-12 Midtronics, Inc. Automotive battery charging system tester
US6566883B1 (en) 1999-11-01 2003-05-20 Midtronics, Inc. Electronic battery tester
US7003410B2 (en) * 1996-07-29 2006-02-21 Midtronics, Inc. Electronic battery tester with relative test output
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US7706991B2 (en) 1996-07-29 2010-04-27 Midtronics, Inc. Alternator tester
US7705602B2 (en) 1997-11-03 2010-04-27 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US7774151B2 (en) 1997-11-03 2010-08-10 Midtronics, Inc. Wireless battery monitor
US7688074B2 (en) 1997-11-03 2010-03-30 Midtronics, Inc. Energy management system for automotive vehicle
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
WO2000062049A1 (en) 1999-04-08 2000-10-19 Midtronics, Inc. Electronic battery tester
JP3912475B2 (en) 2000-02-24 2007-05-09 三菱ふそうトラック・バス株式会社 Power generation control device for hybrid electric vehicle
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US7446536B2 (en) 2000-03-27 2008-11-04 Midtronics, Inc. Scan tool for electronic battery tester
US7398176B2 (en) 2000-03-27 2008-07-08 Midtronics, Inc. Battery testers with secondary functionality
JP3721947B2 (en) * 2000-05-30 2005-11-30 日産自動車株式会社 Control device for fuel cell system
AU2003220264A1 (en) * 2002-03-14 2003-09-29 Midtronics, Inc. Electronic battery tester with battery failure temperature determination
JP3587254B2 (en) 2002-07-08 2004-11-10 トヨタ自動車株式会社 Vehicle control device
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US8164343B2 (en) 2003-09-05 2012-04-24 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US7977914B2 (en) 2003-10-08 2011-07-12 Midtronics, Inc. Battery maintenance tool with probe light
US7777612B2 (en) 2004-04-13 2010-08-17 Midtronics, Inc. Theft prevention device for automotive vehicle service centers
US7772850B2 (en) 2004-07-12 2010-08-10 Midtronics, Inc. Wireless battery tester with information encryption means
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US8344685B2 (en) 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
US8436619B2 (en) 2004-08-20 2013-05-07 Midtronics, Inc. Integrated tag reader and environment sensor
US8442877B2 (en) 2004-08-20 2013-05-14 Midtronics, Inc. Simplification of inventory management
US7710119B2 (en) 2004-12-09 2010-05-04 Midtronics, Inc. Battery tester that calculates its own reference values
US7791348B2 (en) 2007-02-27 2010-09-07 Midtronics, Inc. Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value
US7808375B2 (en) 2007-04-16 2010-10-05 Midtronics, Inc. Battery run down indicator
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
GB2463829B (en) 2007-07-17 2012-11-21 Midtronics Inc Battery tester for electric vehicle
US8203345B2 (en) 2007-12-06 2012-06-19 Midtronics, Inc. Storage battery and battery tester
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
WO2011109343A2 (en) 2010-03-03 2011-09-09 Midtronics, Inc. Monitor for front terminal batteries
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US20110300416A1 (en) 2010-06-03 2011-12-08 Bertness Kevin I Battery pack maintenance for electric vehicle
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
JP2012017676A (en) * 2010-07-07 2012-01-26 Caterpillar Sarl Control system in hybrid construction machine
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
WO2013070850A2 (en) 2011-11-10 2013-05-16 Midtronics, Inc. Battery pack tester
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
DE102012216998A1 (en) * 2012-09-21 2014-03-27 Zf Friedrichshafen Ag Method for operating hybrid drive train of vehicle, involves charging of electric energy accumulator in predetermined operating state of vehicle, in which output is uncoupled from hybrid drive train, based on given charging curve
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
EP2897229A1 (en) 2014-01-16 2015-07-22 Midtronics, Inc. Battery clamp with endoskeleton design
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
WO2016123075A1 (en) 2015-01-26 2016-08-04 Midtronics, Inc. Alternator tester
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11973202B2 (en) 2019-12-31 2024-04-30 Midtronics, Inc. Intelligent module interface for battery maintenance device
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973657B2 (en) * 1991-11-26 1999-11-08 トヨタ自動車株式会社 Power distribution system for series hybrid vehicles
JPH0847107A (en) * 1994-07-29 1996-02-16 Toyota Motor Corp Generating controlling method for series hybrid vehicle
JP3047741B2 (en) * 1994-08-05 2000-06-05 トヨタ自動車株式会社 Power generation control method for series hybrid vehicles
JPH08289407A (en) * 1995-02-13 1996-11-01 Nippon Soken Inc Power generation control device for hybrid vehicle
JP3211699B2 (en) * 1996-09-17 2001-09-25 トヨタ自動車株式会社 Power output device
JPH10215503A (en) * 1997-01-29 1998-08-11 Nissan Motor Co Ltd Device for controlling hybrid electric vehicle
JP3555396B2 (en) * 1997-08-06 2004-08-18 トヨタ自動車株式会社 Power generation control device for hybrid vehicle

Also Published As

Publication number Publication date
JPH11103503A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP3409661B2 (en) Control device for hybrid vehicle
JP3536581B2 (en) Power generation control device for hybrid electric vehicle
JP3614341B2 (en) Display device for hybrid electric vehicle
US7071642B2 (en) Method and apparatus for adaptive control of traction drive units in a hybrid vehicle
JP3463514B2 (en) Generator control device for hybrid electric vehicle
JP3376881B2 (en) Battery Charge Calculation Device for Hybrid Vehicle
CN103079897B (en) Control device for vehicle and control method for vehicle
JPH0998515A (en) Engine controller for hybrid vehicle
JP3711881B2 (en) Charge / discharge control device
JP3296162B2 (en) Control device for hybrid vehicle
JP3268107B2 (en) Electric vehicle control device
JP4193364B2 (en) Electric car
JP2002058111A (en) Generation controller for hybrid electric vehicle
JP7447631B2 (en) Cruising range calculation device
JP2973657B2 (en) Power distribution system for series hybrid vehicles
JPH11103501A (en) Control device of hybrid vehicle
JP3387273B2 (en) Generator control device for hybrid electric vehicle
JPH1014010A (en) Generation control device of hybrid vehicle
JPH10215503A (en) Device for controlling hybrid electric vehicle
JPH1189007A (en) Controller for series hybrid electric car
JP3058036B2 (en) Hybrid electric vehicle
JPH0767209A (en) Electric automobile
JP3399299B2 (en) Series hybrid generator control system
JP3175431B2 (en) Power generation control device for hybrid electric vehicle
JP3449143B2 (en) Generator control device for hybrid electric vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees