JP3404253B2 - Method and apparatus for producing billet for bar steel - Google Patents

Method and apparatus for producing billet for bar steel

Info

Publication number
JP3404253B2
JP3404253B2 JP11582997A JP11582997A JP3404253B2 JP 3404253 B2 JP3404253 B2 JP 3404253B2 JP 11582997 A JP11582997 A JP 11582997A JP 11582997 A JP11582997 A JP 11582997A JP 3404253 B2 JP3404253 B2 JP 3404253B2
Authority
JP
Japan
Prior art keywords
slab
rolling
steel
ratio
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11582997A
Other languages
Japanese (ja)
Other versions
JPH10305301A (en
Inventor
健 菅原
淳二 西野
尚 矢崎
靖 石橋
隆 八塚
浩一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11582997A priority Critical patent/JP3404253B2/en
Publication of JPH10305301A publication Critical patent/JPH10305301A/en
Application granted granted Critical
Publication of JP3404253B2 publication Critical patent/JP3404253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造鋳片から
棒鋼や線材などの圧延に供される内部品質の良好な条鋼
用鋼片の製造方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a steel strip for bar steel having a good internal quality, which is used for rolling a steel bar or a wire rod from a continuously cast slab.

【0002】[0002]

【従来の技術】棒鋼や線材などの圧延に供される条鋼用
鋼片の素材としては、一般に連続鋳造法により製造され
るブルームが使用されている。連続鋳造ブルームは、条
鋼用鋼片の約4〜17倍程度の横断面積を有する大断面
サイズで鋳造され切断・加熱後に、二重逆転式やVH連
続式分塊圧延機等により鋳片と鋼片の中間サイズに多パ
スで圧延され、次いで二重連続式やVH連続式ビレット
圧延機等により所定のサイズの条鋼用鋼片に成形され
る。この方法は、鋳片サイズの大断面化と分塊法を組合
わせることにより、大型の製鋼炉にマッチングして連鋳
比率の拡大及び生産性の向上に大きく寄与している。し
かし、鋳片加熱時間が約2〜3時間と長く、また分塊圧
延のパス回数も約10〜20回と多いために、加熱圧延
に要するエネルギー消費が増えると共に圧延歩留りが低
下し、また鋼片精整での疵手入れ量が増えるため製造コ
ストが大幅に増加する問題がある。
2. Description of the Prior Art Bloom is generally used as a raw material for steel strips for rolling steel bars and wire rods, which is manufactured by a continuous casting method. The continuous casting bloom is cast with a large cross-sectional size having a cross-sectional area of about 4 to 17 times that of the steel strip for bar steel, and after cutting and heating, the slab and steel are cut by a double reversing type or VH continuous slab mill. It is rolled in multiple passes to an intermediate size of the piece, and then formed into a predetermined size steel billet for bar steel by a double continuous type or VH continuous type billet rolling machine or the like. This method is suitable for a large-scale steelmaking furnace by combining the large cross-section of the slab size and the slab-casting method, and greatly contributes to the expansion of the continuous casting ratio and the improvement of productivity. However, since the slab heating time is as long as about 2 to 3 hours and the number of passes of the slabbing is large as about 10 to 20 times, the energy consumption required for heating and rolling increases and the rolling yield decreases, and the steel There is a problem that the manufacturing cost increases significantly because the amount of flaw maintenance in single-sided adjustment increases.

【0003】近年、上記分塊圧延工程の省略・簡略化を
目的に高級棒線材の分野においても、ビレット連鋳の採
用、或いはブルーム連鋳での断面サイズの縮小化が行わ
れている。しかしながら、ビレット連鋳やブルーム連鋳
での断面サイズの縮小においては、連続鋳造の凝固過程
で不可避的に形成される内部割れやセンターポロシティ
ーなどが圧着されずに鋼片に残存し易く、また鋼片の結
晶粒度が粗いために超音波が浸透し難くなって、介在物
等内部欠陥の超音波探傷が不可能であり、加えて棒鋼ま
での圧延比が小さいために、機械的性質が低下し適用可
能な棒鋼成品径が限定される等の問題がある。
In recent years, billet continuous casting has been adopted or the cross-sectional size of bloom continuous casting has been reduced in the field of high-grade rods for the purpose of omitting and simplifying the slabbing process. However, in the reduction of the cross-sectional size in billet continuous casting or bloom continuous casting, internal cracks and center porosities that are inevitably formed in the solidification process of continuous casting are not pressure-bonded and tend to remain in the steel slab, and Since the crystal grain size of the steel slab is coarse, it is difficult for ultrasonic waves to penetrate, and ultrasonic flaw detection of internal defects such as inclusions is not possible.In addition, the rolling ratio up to the steel bar is small, resulting in poor mechanical properties. However, there is a problem that the applicable bar steel product diameter is limited.

【0004】連続鋳造鋳片のセンターポロシティー等を
改善する方法として、従来数多くの報告が行われてい
る。例えば、特公昭59−16862号公報や特公平2
−56982号公報には、凝固末期の鋳片を軽圧下する
ことにより中心偏析やセンターポロシティーを防止する
方法が述べられている。これらの方法は、連鋳機内にお
いて凝固末期の鋳片に軽圧下を加えることにより、偏析
やセンターポロシティーを軽減するものであり完全に防
止するものではない。
As a method for improving the center porosity and the like of continuously cast slabs, many reports have hitherto been made. For example, Japanese Patent Publication No. 59-16862 and Japanese Patent Publication No. 2
Japanese Patent No. 56982 describes a method of preventing center segregation and center porosity by lightly reducing a slab in the final stage of solidification. These methods reduce the segregation and the center porosity by applying a light reduction to the slab at the final stage of solidification in the continuous casting machine, and cannot completely prevent it.

【0005】連鋳機内で鋳片に大圧下を加える方法も幾
つか報告されている。例えば、鉄と鋼,60(197
4),p.875には、120mm□の鋳片を連鋳機内に
設けた圧延機により30mm□〜50mm□となるように未
凝固圧延または凝固後圧延するインラインリダクション
法が報告され、内部割れや表面割れの防止条件、センタ
ーポロシティーの圧着、並びに凝固組織の微細化に関し
て述べられている。また、特公平8−4891号公報に
は、鋳片を保温または加熱し凝固完了直後の切断前に圧
下比1.4以上3.0未満で圧下を行った後、超音波に
よって介在物を検出する方法が、特公平5−73508
号公報には、凝固完了後の鋳片を保温または加熱した後
切断前に9%以上の圧下を加える方法が、更に特公平6
−28784号公報には、凝固完了直後に1対の面状加
圧装置によりセンターポロシティーを圧着させて内部健
全性に優れた厚鋼板用スラブを製造する方法が述べられ
ている。
Several methods have been reported for applying a large reduction to a cast piece in a continuous casting machine. For example, iron and steel, 60 (197)
4), p. In 875, an in-line reduction method was reported in which a 120 mm square slab was rolled in a continuous casting machine to a non-solidified rolling or rolling after solidification to 30 mm square to 50 mm square to prevent internal cracks and surface cracks. The conditions, pressure bonding of center porosity, and refinement of solidification structure are described. Further, in Japanese Examined Patent Publication No. 8-4891, the slab is heat-insulated or heated to perform a reduction at a reduction ratio of 1.4 or more and less than 3.0 immediately before completion of solidification, and then detect inclusions by ultrasonic waves. How to do is Japanese Patent Publication No. 5-73508
Japanese Patent Laid-Open Publication No. Hei 6 (1994) -96 is a method in which the slab after completion of solidification is kept warm or heated and a reduction of 9% or more is applied before cutting.
JP-A-28784 describes a method for producing a slab for thick steel plates having excellent internal soundness by pressing center porosity by a pair of sheet pressure devices immediately after completion of solidification.

【0006】次に、圧延過程における鋼片のセンターポ
ロシティーの圧着は、一般に形状比(ロール接触孤長/
平均鋼片厚み)が増加する程、圧縮応力が中心部にも作
用し圧着に有効であるとされている。圧延過程でのセン
ターポロシティーの圧着と形状比との関係については、
例えば特開昭61−23840号公報には、表面と中心
部に400℃以上の温度差を設け、形状比を0.5以上
としてプレスまたはロールで圧下を加える方法が、また
特開平3−47916号公報には、形状比0.4以下で
1パスないし数パスの圧延を行い、次いで形状比を0.
7以上として少なくとも1パス以上の圧延を施す方法が
述べられている。この方法は、前段の圧延で表層部に加
工歪を蓄積して表層部の変形抵抗を増大せしめ、後段の
圧延で中心部の圧縮応力を高めてセンターポロシティー
を圧着せしめ厚鋼板を製造するものである。
Next, the center porosity of the steel piece in the rolling process is generally pressure-bonded by the shape ratio (roll contact arc length / roll contact arc length /
It is said that as the average thickness of the steel strip) increases, the compressive stress also acts on the central portion and is more effective for crimping. Regarding the relationship between the center porosity pressure bonding and the shape ratio in the rolling process,
For example, Japanese Patent Laid-Open No. 61-23840 discloses a method in which a temperature difference of 400 ° C. or more is provided between the surface and the central portion, a shape ratio is 0.5 or more, and a rolling is performed by a press or a roll. According to the publication, rolling is performed for one pass or several passes at a shape ratio of 0.4 or less, and then the shape ratio is set to 0.
As 7 or more, a method of rolling at least one pass or more is described. This method is to manufacture thick steel plate by accumulating work strain in the surface layer part in the former rolling to increase the deformation resistance of the surface part and increasing the compressive stress in the central part in the latter rolling to press the center porosity. Is.

【0007】その他の方法として、特開平5−6900
1号公報にはスラブからの圧下比が1.5〜2.0の低
圧下比圧延においてセンターポロシティーを完全に圧着
し、内部欠陥のない厚鋼板を製造する方法が述べられて
いる。また、鉄と鋼,67(1981),S339には
パススケジュールの改善による強圧下圧延法が、鉄と
鋼,67(1981),S369には幅中央部の部分冷
却による温度差圧延と強圧下圧延の組み合わせになる方
法が述べられている。いずれも、中心部の圧縮応力を高
めてセンターポロシティーの圧着性を向上させる厚鋼板
の圧延方法に関するものである。
As another method, Japanese Patent Laid-Open No. 5-6900
Japanese Unexamined Patent Publication (Kokai) No. 1 describes a method of manufacturing a thick steel sheet having no internal defects by completely crimping center porosity in a low pressure reduction rolling with a reduction ratio of 1.5 to 2.0 from a slab. For iron and steel, 67 (1981) and S339, the strong reduction rolling method by improving the pass schedule is used. For iron and steel, 67 (1981) and S369, temperature reduction rolling and strong reduction by partial cooling of the width center part are performed. A method of combining rolling is described. Each of them relates to a method for rolling a thick steel plate which increases the compressive stress in the central portion and improves the pressure-bonding property of the center porosity.

【0008】[0008]

【発明が解決しようとする課題】連続鋳造鋳片のセンタ
ーポロシティーは、凝固末期において凝固収縮に起因し
形成されるものであり、これを防止しようとすれば連鋳
機内において凝固末期の鋳片に対し凝固収縮を補償する
ように圧下を加える必要があるが、過圧下となって局部
的に溶鋼が流動し偏析が悪化する問題がある。しから
ば、凝固末期の鋳片に対し軸心部の溶鋼を上流側へ絞り
出すようにしてセンターポロシティーの形成を防止する
未凝固鋳片大圧下法や、凝固完了直後にセンターポロシ
ティーを圧着させる凝固後大圧下法も考えられるが、こ
れらの方法は相当の圧下力と圧下量を必要とすると同時
に圧下による内部割れが発生し易く、且つ鋳片サイズに
もよるが0.5〜3m/min 程度の遅い鋳造速度に同期し
て大圧下を行うために、鋳片表面割れ疵の発生や圧下ロ
ールの熱亀裂発生による寿命低下などの問題がある。
The center porosity of a continuously cast slab is formed due to solidification shrinkage at the end of solidification, and if it is attempted to prevent this, the slab at the end of solidification in a continuous casting machine is attempted. On the other hand, it is necessary to apply a reduction so as to compensate for the solidification shrinkage, but there is a problem that under the overpressure, molten steel locally flows and segregation deteriorates. Therefore, the unsolidified cast large rolling method that prevents the formation of center porosity by squeezing the molten steel in the axial center of the slab in the final stage of solidification to the upstream side, and pressing the center porosity immediately after completion of solidification Although a large reduction method after solidification can be considered, these methods require a considerable reduction force and reduction amount, and at the same time, internal cracking is likely to occur due to the reduction, and 0.5 to 3 m / Since a large reduction is performed in synchronization with a casting speed as low as about min, there are problems such as the generation of slab surface cracks and the shortening of the life due to the generation of thermal cracks in the reduction roll.

【0009】分塊圧延工程の省略・簡略化を達成するに
は、中断面ブルームから低延伸比の圧延により条鋼用鋼
片を製造する方法を確立する必要がある。即ち、鋼片は
棒線材に圧延する前に一般に介在物の超音波探傷が行わ
れるが、介在物の延伸が少なく比較的微小であること、
内部割れやセンターポロシティーが圧着せずに残存する
とノイズ信号になること、結晶粒度が粗いと超音波の浸
透性が低下して同様にノイズ信号が高くなること等の問
題を解決する必要がある。介在物の検出性能としてのS
/N比は3以上を確保する必要があり、そのためには内
部割れやセンターポロシティーを確実に圧着せしめると
共に鋼片の結晶粒度番号を5以上とする必要がある。
In order to achieve the omission and simplification of the slab rolling process, it is necessary to establish a method for producing a steel strip for a steel strip by rolling a medium cross section bloom at a low draw ratio. That is, the steel piece is generally subjected to ultrasonic flaw detection of inclusions before being rolled into a rod wire, but the extension of inclusions is small and relatively minute,
It is necessary to solve problems such as internal cracks and noise remaining when center porosity remains without being crimped, and when the crystal grain size is coarse, the ultrasonic permeability decreases and noise signals similarly rise. . S as detection performance of inclusions
It is necessary to secure the / N ratio of 3 or more. For that purpose, it is necessary to surely crimp internal cracks and center porosity and to set the grain size number of the steel slab to 5 or more.

【0010】本発明は、連続鋳造鋳片を圧延して条鋼用
鋼片を得るにあたり、表面疵のないかつ内部割れやセン
ターポロシティーを圧着せしめた、高品質の鋼片を効率
よく得られる手段を提供することを課題とする。
The present invention is a means for efficiently obtaining a high-quality steel slab that has no surface flaws and is crimped with internal cracks and center porosity when rolling a continuously cast slab to obtain a steel strip for a steel strip. The challenge is to provide.

【0011】[0011]

【課題を解決するための手段】本発明は、前記課題を解
決するものである。即ち、本発明の請求項1は連続鋳造
鋳片からビレット圧延により条鋼用鋼片を製造する方法
において、鋳片横断面のサイズ及び形状を一辺140mm
〜300mmの正方形またはこれと等価な断面積を有し長
辺対短辺の比が1.6以下の矩形として連続鋳造し、凝
固完了後該鋳片を所定の長さに切断し所定の温度に加熱
した後、形状比(ロール接触孤長/平均鋼片厚み)≧
1.0を満足する厚み方向及び幅方向の圧延を少なくと
も各1パスずつ圧延して、鋳片から鋼片までの延伸比が
1.5〜2.8となるように2〜4パス圧延で鋼片を製
造するものである。
The present invention solves the above-mentioned problems. That is, according to claim 1 of the present invention, in a method for producing a billet rolling billet from a continuously cast billet, the size and shape of the cross section of the billet is 140 mm on a side.
~ 300 mm square or a rectangle having a cross-sectional area equivalent to this and having a long side to short side ratio of 1.6 or less is continuously cast, and after solidification is completed, the cast piece is cut into a predetermined length and a predetermined temperature. Shape ratio (roll contact arc length / average billet thickness) ≧
Rolling in the thickness direction and width direction satisfying 1.0 is performed by at least one pass each, and is performed by 2 to 4 pass rolling so that the stretch ratio from the slab to the steel slab is 1.5 to 2.8. It manufactures steel billets.

【0012】また、本発明の請求項2は直径が950mm
φ以上のロールで圧延する請求項1記載の方法、請求項
3は鋼片の圧延完了温度を940℃以上とする請求項1
又は2記載の方法、請求項4は孔型の無いフラットロー
ルで圧延する請求項1又は2記載の方法である。
According to claim 2 of the present invention, the diameter is 950 mm.
The method according to claim 1, wherein rolling is performed with a roll having a diameter of φ or more, and the rolling completion temperature of the billet according to claim 3 is 940 ° C. or more.
Alternatively, the method according to claim 2 is the method according to claim 1 or 2, wherein rolling is performed with a flat roll having no hole shape.

【0013】更に、本発明の請求項5は一辺140mm〜
300mmの正方形またはこれと等価な断面積を有し長辺
対短辺の比が1.6以下の矩形の鋳片を連続鋳造する連
続鋳造機と、凝固完了後所定の長さに切断する鋳片切断
機と、該鋳片切断機で切断された鋳片を装入し所定の温
度に加熱する鋳片加熱炉と、加熱された鋳片を所定断面
サイズの鋼片に圧延する直径が950mmφ以上のフラッ
トロールを有する1スタンドまたは複数スタンドからな
る圧延機とを順次配列したことを特徴とする条鋼用鋼片
の製造装置である。
Further, claim 5 of the present invention is such that one side is 140 mm
A continuous casting machine that continuously casts a rectangular slab of 300 mm square or a cross-sectional area equivalent to this with a long side to short side ratio of 1.6 or less, and a casting that cuts to a predetermined length after solidification is completed. A piece cutting machine, a slab heating furnace for charging a slab cut by the slab cutting machine and heating the slab to a predetermined temperature, and a diameter for rolling the heated slab into a steel slab having a predetermined cross-sectional size of 950 mmφ An apparatus for manufacturing a steel strip for a steel strip, characterized in that the rolling mill comprising one stand or a plurality of stands having the above flat rolls is sequentially arranged.

【0014】先ず、本発明で延伸比(鋳片横断面積/鋼
片横断面積の比)を1.5〜2.8となるように2〜4
パス圧延して鋼片に成形する理由、並びに鋳片サイズ及
び形状を140mm□〜300mm□の正方形またはこれと
等価な断面積を有し長辺対短辺の比が1.6以下の矩形
とする理由について以下に説明する。前述のごとく、鋼
片は棒線材に圧延する前に介在物検査を目的に超音波探
傷が行われるが、このためには鋼片の結晶粒を微細化し
て超音波の浸透性を高める必要がある。しかるに、中断
面ブルームは延伸比が大断面ブルームに比べて小さいの
で、分塊圧延においては1パスあたりの圧下量を大きく
して鋳片の表面から中心部まで圧下力を作用せしめ鋳造
組織を破壊する必要がある。
First, in the present invention, the stretch ratio (ratio of the cross-sectional area of the slab / the cross-sectional area of the steel slab) is 2 to 4 so as to be 1.5 to 2.8.
The reason for pass rolling to form a steel slab, and a slab size and shape of a square of 140 mm □ to 300 mm □ or a rectangle having a cross-sectional area equivalent to this and a long side to short side ratio of 1.6 or less. The reason for doing so will be described below. As mentioned above, the steel piece is subjected to ultrasonic flaw detection for the purpose of inspecting inclusions before rolling it into a rod or wire rod, but for this purpose it is necessary to refine the crystal grains of the steel piece to enhance ultrasonic permeability. is there. However, since the stretch ratio of medium cross-section bloom is smaller than that of large cross-section bloom, in slabbing, the amount of reduction per pass is increased to apply a reduction force from the surface of the slab to the center to destroy the cast structure. There is a need to.

【0015】発明者らの調査によれば分塊圧延における
延伸比、パス回数及び得られる鋼片のオーステナイト結
晶粒度には密接な関係があり、図1に示した如く延伸比
を1.5以上とし且つ2〜4パス圧延を行った場合に安
定して5以上の微細組織が得られることが判明した。図
から明らかなように、延伸比が1.5未満で2〜4パス
圧延した場合、或いは延伸比が1.5以上でも1パス当
たりの圧下量が小さく5パス以上の多パス圧延を行った
場合には5以上が得られない。オーステナイト結晶粒度
番号5以上では、超音波が鋼片内に十分浸透するためS
/N比が向上し介在物の検出が可能となる。以上の理由
から、本発明では鋳片から鋼片までの延伸比を1.5以
上と規定し2〜4パス圧延するものである。
According to the investigation by the inventors, there is a close relationship between the drawing ratio in the slab rolling, the number of passes and the austenite grain size of the obtained steel slab. As shown in FIG. 1, the drawing ratio is 1.5 or more. It was found that a fine structure of 5 or more can be stably obtained when 2 to 4 pass rolling is performed. As is clear from the figure, when the drawing ratio is less than 1.5 and 2 to 4 passes are rolled, or even when the drawing ratio is 1.5 or more, the reduction amount per pass is small and multi-pass rolling of 5 or more passes is performed. In that case, 5 or more cannot be obtained. When the austenite grain size is 5 or more, ultrasonic waves sufficiently penetrate into the steel slab, so S
The / N ratio is improved and inclusions can be detected. For the above reason, in the present invention, the stretching ratio from the cast slab to the steel slab is specified to be 1.5 or more, and the rolling is performed for 2 to 4 passes.

【0016】次に、条鋼用鋼片のサイズは115mm□〜
180mm□が一般的であるが、これらの鋼片を2〜4パ
スで圧延可能な鋳片サイズの代表例を求めると表1が得
られる。ここで、前提条件として1パス当たりの最大減
面率を30%以内、軸比(各パスの長辺/短辺の寸法
比)を1.8以下、圧下による幅拡がりを圧下量の1/
3に近似して算出した。減面率や軸比がこれらの値より
も大きいと、噛込角度が過大となってスリップが発生し
たり、鋼片の捻れや倒れが発生しやすくなり圧延の作業
性が低下するため夫々上限値とした。
Next, the size of the billet for bar steel is 115 mm □
Although 180 mm □ is generally used, Table 1 can be obtained by obtaining a representative example of a slab size capable of rolling these steel slabs in 2 to 4 passes. Here, as a precondition, the maximum surface reduction rate per pass is 30% or less, the axial ratio (dimension ratio of the long side / short side of each pass) is 1.8 or less, and the width expansion due to the reduction is 1 / th of the reduction amount.
It was calculated by approximating to 3. If the area reduction ratio or axial ratio is larger than these values, the biting angle becomes too large and slippage occurs, or the steel pieces are easily twisted or fallen and the workability of rolling decreases. Value.

【0017】表1より、115mm□の鋼片は、延伸比
1.5の140mm□の鋳片から2パスで、延伸比1.5
の124mm×158mm鋳片から3パスで、延伸比2.8
の194mm□鋳片から4パスで夫々圧延可能である。ま
た、180mm□の鋼片は延伸比1.8の240mm□鋳片
から2パスで、延伸比2.1の210mm×330mm鋳片
から3パスで、延伸比2.8の300mm□鋳片から4パ
スで夫々圧延可能である。そして、延伸比2.8を超え
ると減面率が30%を超え軸比が1.8を超えるため4
パス圧延による鋼片への成形が困難となる。また、延伸
比が2.8を超えると5パス以上の多パス圧延となるた
め、微細な結晶粒が得られなくなる。以上述べた理由か
ら、本発明では鋳片から鋼片への延伸比を1.5〜2.
8と規定し2〜4パスでビレット圧延を行うものであ
る。そして、鋳片形状については条鋼用鋼片として一般
的な115mm□〜180mm□を本発明になる圧延条件で
成形可能な最小断面サイズと最大断面サイズをとって、
140mm□〜300mm□の正方形または長辺対短辺の比
(偏平比)が1.6以下の矩形とするものである。尚、
本発明では前記鋼片への成形性の難易度を考慮し鋳片形
状を正方形または矩形とするが、前記条件を満足する円
形であっても良い。
From Table 1, it can be seen that the 115 mm □ steel slab has two passes from a 140 mm □ slab with a draw ratio of 1.5 and a draw ratio of 1.5.
Stretching ratio of 2.8 in 3 passes from a 124 mm × 158 mm slab
It can be rolled in 4 passes from a 194 mm square slab. In addition, 180 mm square steel slab is two passes from 240 mm square slab with a stretch ratio of 1.8, three passes from 210 mm x 330 mm slab with a stretch ratio of 2.1, and 300 mm square slab with a stretch ratio of 2.8. Each can be rolled in 4 passes. If the stretch ratio exceeds 2.8, the area reduction ratio exceeds 30% and the axial ratio exceeds 1.8, so 4
It becomes difficult to form a billet by pass rolling. If the stretching ratio exceeds 2.8, multi-pass rolling of 5 passes or more is performed, and fine crystal grains cannot be obtained. For the reasons described above, in the present invention, the stretch ratio from the cast piece to the steel piece is 1.5 to 2.
The billet rolling is performed in 2 to 4 passes, which is defined as 8. Regarding the shape of the slab, the minimum cross-sectional size and the maximum cross-sectional size that can be formed under the rolling conditions according to the present invention are set to the general 115 mm □ to 180 mm □ as a steel strip for bar steel,
It is a square of 140 mm □ to 300 mm □ or a rectangle having a long side to short side ratio (flatness ratio) of 1.6 or less. still,
In the present invention, the slab shape is a square or a rectangle in consideration of the degree of difficulty in forming the steel slab, but it may be a circle that satisfies the above conditions.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、本発明では形状比が下記(1)式を
満足する厚み方向及び幅方向の圧延を少なくとも各1パ
スずつ圧延する理由について説明する。 Ld /Hm =√{R(h0 −h1 )}/{1/2(h0 +h1 )}≧1.0 ・・・・・・・・・・(1) ここで、Ld はロール接触孤長、Hm は平均鋼片厚み、
Rはロール半径、h0は入り側鋼片厚み、h1 は出側鋼
片厚みである。
Next, in the present invention, the reason why the rolling in the thickness direction and the width direction satisfying the following formula (1) is performed by at least one pass each will be explained. L d / H m = √ {R (h 0 −h 1 )} / {1/2 (h 0 + h 1 )} ≧ 1.0 (1) Here, L d is the roll contact arc length, H m is the average billet thickness,
R is the roll radius, h 0 is the thickness of the entering steel piece, and h 1 is the thickness of the exiting steel piece.

【0020】発明者らは、140mm□〜300mm□の鋳
片から圧下量やロール径を変えて115mm□〜180mm
□の鋼片を2〜4パス圧延で成形する実験を行い、鋼片
内部のセンターポロシティー及び内部割れの残存状況に
ついて調査した。センターポロシティーの調査結果を図
2に、内部割れの結果を図3に示す。両図において、横
軸のLd /Hm としては2パス圧延の場合には1パス目
と2パス目、3パス圧延の場合は2パス目と3パス目、
4パス圧延の場合には3パス目と4パス目の値を示して
いる。
The inventors have changed the amount of reduction and the roll diameter from a slab of 140 mm □ to 300 mm □ to 115 mm □ to 180 mm.
An experiment in which the steel piece of □ was formed by 2 to 4 pass rolling was conducted, and the center porosity inside the steel piece and the residual state of internal cracks were investigated. The results of the center porosity investigation are shown in Fig. 2, and the results of internal cracking are shown in Fig. 3. In both figures, L d / H m on the horizontal axis is the first pass and the second pass in the case of 2-pass rolling, and the second pass and the third pass in the case of 3-pass rolling.
In the case of 4-pass rolling, the values of the 3rd and 4th passes are shown.

【0021】先ず、図2においてセンターポロシティー
厚みはLd /Hm の増加と共に低減し、Ld /Hm
1.0以上で圧着している。また、図3に示す如く、内
部割れについては、センターポロシティーの場合と同様
にLd /Hm の増加と共に低減し、Ld /Hm ≧0.8
以上で圧着している。本調査において、センターポロシ
ティーと内部割れにつていは鋼片を超音波で探傷し欠陥
部の顕微鏡検査を組み合わせて厚みと長さを測定した。
尚、図には示していないが鋳片でのセンターポロシティ
ー厚みは0.5〜3.0mm、内部割れは隅割れ・バルジ
ング矯正割れ・中心割れが観察され2〜10mmの長さで
あった。両図から明らかなように、厚み方向及び幅方向
の少なくとも各1パスでLd /Hm ≧1.0以上を満足
することにより、内部割れ及びセンターポロシティーを
同時に圧着させることが可能である。以上より、鋼片を
2パス圧延で成形する場合には1パス目及び2パス目の
形状比が(1)式を満足する必要があり、また3パス圧
延と4パス圧延で成形する場合には、厚み方向および幅
方向の圧延の少なくても各1パスの形状比が(1)式を
満足するようにするものである。
[0021] First, center porosity thickness 2 reduces with increasing L d / H m, L d / H m ≧
It is crimped at 1.0 or more. Further, as shown in FIG. 3, the internal cracking decreases with an increase in L d / H m as in the case of the center porosity, and L d / H m ≧ 0.8.
The above is crimped. In this investigation, for the center porosity and internal cracking, the steel piece was ultrasonically flaw-detected and the thickness and length were measured by combining microscopic inspection of the defective portion.
Although not shown in the figure, the thickness of the center porosity in the cast slab was 0.5 to 3.0 mm, and internal cracks were 2 to 10 mm in which corner cracks, bulging straightening cracks, and center cracks were observed. . As is clear from both figures, by satisfying L d / H m ≧ 1.0 or more in at least one pass in each of the thickness direction and the width direction, it is possible to press-bond the internal crack and the center porosity at the same time. . From the above, when forming a steel slab by 2-pass rolling, the shape ratio of the first pass and the second pass must satisfy the formula (1), and when forming by 3-pass rolling and 4-pass rolling. Is such that the shape ratio of each one pass satisfies Expression (1) even if at least rolling in the thickness direction and the width direction is performed.

【0022】次に、本発明の請求項2のロール径を95
0mmφ以上とする理由を説明する。一般に、ロール径は
大きい方が鋼片内部に作用する圧縮力や剪断力が増大
し、センターポロシティー等の圧着には有利であるが、
過大であると設備費やランニングコストが増加し問題で
ある。そこで、(1)式を満足する最小ロール径につい
て設定する必要がある。表1より知られるように、11
5mm□の鋼片は延伸比1.5〜2.8及び2〜4パス圧
延の条件では140mm□〜194mm□の鋳片から成形可
能である。この場合のロール径と形状比の関係から
(1)式を満足する最小ロール径を求めると950mmφ
が得られる。また、代表例として115mm□の鋼片を1
40mm□〜155mm□の鋳片から2パス圧延で成形する
場合について、1パス目よりも形状比の小さい2パス目
において形状比が(1)式を満足する最小ロール径を求
めると、図4より950mmφが得られる。以上より、本
発明ではロール径を950mmφ以上と規定するものであ
る。尚、条鋼用鋼片の圧延用ロール径としては、設備費
・ランニングコスト・メンテナンス性等から1300mm
φ以下が望ましい。
Next, the roll diameter according to claim 2 of the present invention is set to 95.
The reason why it is set to 0 mmφ or more will be described. Generally, the larger the roll diameter, the more the compressive force and shearing force acting on the inside of the steel slab increase, which is advantageous for pressure bonding such as center porosity.
If it is too large, equipment costs and running costs increase, which is a problem. Therefore, it is necessary to set the minimum roll diameter that satisfies the expression (1). As known from Table 1, 11
A steel piece of 5 mm square can be formed from a slab of 140 mm square to 194 mm square under the conditions of a draw ratio of 1.5 to 2.8 and rolling of 2 to 4 passes. In this case, the minimum roll diameter that satisfies the formula (1) is calculated from the relationship between the roll diameter and the shape ratio, and it is 950 mmφ.
Is obtained. Also, as a typical example, a 115 mm □ steel piece is used.
In the case of molding from a slab of 40 mm □ to 155 mm □ by two-pass rolling, the minimum roll diameter whose shape ratio satisfies the expression (1) in the second pass having a smaller shape ratio than the first pass is shown in FIG. 950 mmφ can be obtained. From the above, in the present invention, the roll diameter is defined as 950 mmφ or more. In addition, the roll diameter for rolling the billet for bar steel is 1300 mm from the viewpoint of equipment cost, running cost, maintainability, etc.
φ or less is desirable.

【0023】次に、凝固完了後鋳片を所定の長さに切断
した後に加熱し圧延を行う理由を以下に説明する。発明
者らは、連鋳機内において切断機の上流側にロール径7
20mmφのVH式圧延機を設置し、凝固完了後直ちに2
パス圧延して222mm□鋳片から165mm□鋼片に成形
する実験を行った。この場合、鋳片顕熱により中心部温
度が約1300〜1350℃と高いため比較的小さな形
状比(Ld /Hm =0.98、0.84)で内部割れ及
びセンターポロシティーが圧着したが、鋼片のコーナー
部を主体に深い割れ疵が観察された。即ち、圧延が鋳造
速度(Vc=1.0〜2.0m/min )に同期して行われ
るため圧延速度が遅くて歪速度が小さく、且つロール接
触部の鋼片温度が低下するために鋼片コーナー部に深い
割れ疵が発生したものと推察された。圧延機前に保温カ
バーや加熱装置を設置して圧延温度を上昇させた結果、
疵深さは軽減されたが皆無とはならず鋼片手入れを必要
とすると共に、圧延ロールについては極低速圧延のため
鋼片との接触時間が長く熱亀裂が発生して寿命が大幅に
低下した。
Next, the reason why the slab is cut into a predetermined length after completion of solidification and then heated and rolled will be described below. The inventors of the present invention have found that a roll diameter of 7 is provided upstream of the cutting machine in the continuous casting machine.
Install a 20mmφ VH type rolling mill, and immediately after completion of solidification, 2
An experiment was conducted in which a 222 mm square slab was pass-rolled into a 165 mm square slab. In this case, since the center temperature is as high as about 1300 to 1350 ° C. due to the sensible heat of the slab, internal cracking and center porosity were pressure-bonded with a relatively small shape ratio (L d / H m = 0.98, 0.84). However, deep cracks and flaws were observed mainly in the corners of the steel slab. That is, since the rolling is performed in synchronization with the casting speed (Vc = 1.0 to 2.0 m / min), the rolling speed is slow and the strain rate is small, and the billet temperature at the roll contact portion is lowered, so It was inferred that deep cracks had occurred at one corner. As a result of raising the rolling temperature by installing a heat insulating cover and a heating device in front of the rolling mill,
The flaw depth was reduced, but it was not completely eliminated and required maintenance of the billet, and the rolling roll had an extremely low rolling time, so the contact time with the billet was long and thermal cracking occurred, resulting in a significant decrease in life. did.

【0024】本発明では、上記知見に基づき鋳片を凝固
完了後に切断し加熱した後に圧延を行うものである。こ
れにより、20〜100m/min 程度の高速圧延が可能と
なり、低い圧延温度でも割れ疵の発生が防止出来ると共
にロール寿命低下の問題も解決出来る。
In the present invention, based on the above knowledge, the slab is cut after completion of solidification, heated, and then rolled. As a result, high speed rolling of about 20 to 100 m / min is possible, cracks can be prevented from occurring even at a low rolling temperature, and the problem of roll life shortening can be solved.

【0025】次に、本発明の請求項3では、切断後の鋳
片を所定の長さに加熱した後、鋼片表面温度940℃以
上で圧延完了させるが、その理由を以下に説明する。2
〜4パス・低延伸比圧延においては、圧下量が大きくな
り鋼片表面での応力が増加するため熱間延性を向上させ
る必要がある。そこで、発明者らは機械構造用鋼を22
2mm□の鋳片に鋳造し、該鋳片を切断し加熱した後2パ
ス圧延して165mm□の鋼片とし、表面疵に及ぼす圧延
温度の影響について調査した。圧延条件は、ロール径1
010mmφで孔型の無いフラットロールまたはダイアス
クエアロールを用い、1パス当たりの圧下量を85mm、
形状比を1パス目1.16、2パス目1.00とした。
図5に得られた結果を示すが、上記圧延条件では940
℃以上で圧延完了することにより表面疵の発生が皆無と
なっている。これは、圧延完了温度の上昇により熱間延
性が向上し割れ疵が防止出来ることを示している。以上
より、本発明では940℃以上で圧延完了させるもので
ある。
Next, in claim 3 of the present invention, after the cut slab is heated to a predetermined length, the rolling is completed at a steel slab surface temperature of 940 ° C. or higher. The reason for this will be described below. Two
In ~ 4 pass / low draw ratio rolling, it is necessary to improve hot ductility because the amount of reduction increases and the stress on the surface of the billet increases. Therefore, the present inventors
Casting into a 2 mm square slab, cutting and heating the slab, and performing 2-pass rolling to obtain a 165 mm square slab, the effect of the rolling temperature on the surface flaw was investigated. Rolling condition is roll diameter 1
Using a flat roll or dia square roll with no hole shape of 010 mmφ, the reduction amount per pass is 85 mm,
The shape ratio was 1.16 for the first pass and 1.00 for the second pass.
The results obtained are shown in FIG. 5, which is 940 under the above rolling conditions.
By completing the rolling at a temperature of ℃ or higher, no surface defects are generated. This indicates that the hot ductility is improved and cracks can be prevented by increasing the rolling completion temperature. From the above, in the present invention, rolling is completed at 940 ° C or higher.

【0026】一方、図5においてロール形状の影響を比
較すると孔型の無いフラットロールの方が孔型のあるダ
イアスクエアロールよりも疵深さが浅く、且つ疵が発生
しない圧延完了温度も910℃と低くなっており有利で
ある。そこで、ロール形状と鋼片コーナー部表面応力と
の関係についてFEM解析を行い得られた結果を図6に
示す。解析条件は、有効ロール径を1010mmφ、圧延
温度を1000℃、圧延速度を36m/min 、鋼種をS4
5Cとして比較した。この結果、フラットロールの方が
ロール出側近傍で引張応力が小さく有利であることが確
認された。以上の実験及び解析結果から、本発明の請求
項4ではロールを孔型の無いフラットロールに規定する
ものである。
On the other hand, comparing the effect of the roll shape in FIG. 5, the flat roll having no hole type has a shallower flaw depth than the dia square roll having a hole type, and the rolling completion temperature at which no flaw occurs is 910 ° C. It is low and it is advantageous. Therefore, FIG. 6 shows results obtained by performing FEM analysis on the relationship between the roll shape and the surface stress of the billet corner portion. The analysis conditions are: effective roll diameter 1010 mmφ, rolling temperature 1000 ° C., rolling speed 36 m / min, steel grade S4.
It was compared as 5C. As a result, it was confirmed that the flat roll was advantageous in that the tensile stress was small near the roll exit side. From the above experiment and analysis results, in claim 4 of the present invention, the roll is defined as a flat roll having no hole type.

【0027】[0027]

【発明の実施の形態】本発明の実施形態の一例を図7に
示す。1は取鍋、2はタンディッシュ、3は鋳型、4は
二次冷却帯、5はガイドロール、6は鋳片切断機、7は
切断後の鋳片、8は鋳片加熱炉、9は1スタンドまたは
複数スタンドからなるビレット圧延機、10は条鋼用鋼
片である。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention is shown in FIG. 1 is a ladle, 2 is a tundish, 3 is a mold, 4 is a secondary cooling zone, 5 is a guide roll, 6 is a slab cutting machine, 7 is a slab after cutting, 8 is a slab heating furnace, and 9 is a slab heating furnace. A billet rolling machine consisting of one stand or a plurality of stands is a billet for steel strip 10.

【0028】鋳型3を用いて、横断面形状が140mm□
〜300mm□の機械構造用鋼の中断面ブルームを鋳造
し、凝固完了後に鋳片切断機6により所定の長さに切断
した鋳片7を加熱炉8で所定の温度に加熱した後、ビレ
ット圧延機9を用いて2〜4パスで115mm□〜180
mm□の鋼片10に成形した。ビレット圧延は、950mm
φ以上の直径を有するフラットロールで形状比がLd
m ≧1.0を満足する厚み方向及び幅方向の圧延を少
なくとも各1パスずつ圧延して、鋳片から鋼片までの延
伸比が1.5〜2.8となるように、且つ圧延完了温度
が940℃以上となるようにして行った。そして、得ら
れた鋼片については表面疵の発生もなく且つ超音波探傷
を行った結果内部割れやセンターポロシティーが完全に
圧着し介在物の検出性能は十分であった。
Using the mold 3, the cross-sectional shape is 140 mm □
~ 300 mm square medium-section bloom of machine structural steel is cast, and after the solidification is completed, the slab 7 cut into a predetermined length by a slab cutting machine 6 is heated to a predetermined temperature in a heating furnace 8 and then billet-rolled. 115mm □ ~ 180 in 2 to 4 passes using machine 9
It was formed into a steel piece 10 of mm □. Billet rolling is 950mm
A flat roll with a diameter of φ or more and a shape ratio of L d /
The rolling in the thickness direction and the width direction satisfying H m ≧ 1.0 is rolled at least for each one pass so that the stretch ratio from the slab to the steel slab is 1.5 to 2.8, and the rolling is performed. The completion temperature was 940 ° C. or higher. The obtained steel piece was free of surface flaws and was subjected to ultrasonic flaw detection. As a result, internal cracks and center porosity were completely crimped, and the inclusion detection performance was satisfactory.

【0029】尚、本発明では切断後の鋳片7を熱片のま
ま加熱炉に挿入するものであるが、加熱または/および
ビレット圧延による表面疵の発生を防止する目的から、
必要に応じて連続鋳造機と鋳片加熱炉との間に鋳片冷却
装置を設置し鋳片を一旦所定の温度に冷却後に加熱炉に
装入しても良い。また、本発明では前述の条件にて2〜
4パス圧延し鋼片に成形するが、更に必要に応じて鋼片
形状の調整や寸法精度の向上等を目的とするスキンパス
圧延を行っても良い。
Incidentally, in the present invention, the cast slab 7 after cutting is inserted into the heating furnace as it is as a hot piece, but for the purpose of preventing the occurrence of surface defects due to heating or / and billet rolling,
If necessary, a slab cooling device may be installed between the continuous casting machine and the slab heating furnace, and the slab may be once cooled to a predetermined temperature and then charged into the heating furnace. Further, in the present invention, 2 to
Although 4-pass rolling is performed to form a steel slab, skin pass rolling for the purpose of adjusting the shape of the slab and improving dimensional accuracy may be performed, if necessary.

【0030】[0030]

【実施例】以下、実施例について詳細に説明する。ヒー
トサイズ260トンの転炉にて機械構造用鋼を溶製し、
図7に示した曲率半径12mの湾曲型6ストランドブル
ーム連鋳機において、取鍋1の溶鋼をタンディッシュ2
を通して鋳型3に注入し、断面サイズが140mm□〜3
00mm□の正方形またはこれと同等の断面積を有し偏平
比が1.6以下の矩形の鋳片を鋳造速度1.0〜3.0
m/min で鋳造した。
EXAMPLES Examples will be described in detail below. Melting steel for machine structure in a converter with a heat size of 260 tons,
In the curved 6-strand bloom continuous casting machine with a radius of curvature of 12 m shown in FIG. 7, the molten steel in the ladle 1 is replaced with the tundish 2
Through the mold into the mold 3 and the cross-sectional size is 140 mm □ ~ 3
A square slab of 00 mm □ or a rectangular slab having a cross-sectional area equivalent to this and an aspect ratio of 1.6 or less is cast at a speed of 1.0 to 3.0.
Cast at m / min.

【0031】凝固完了後鋳片切断機6で所定の長さに切
断し、該鋳片7を加熱炉8で断面平均温度が990〜1
140℃となるように加熱した後、ロール径950mmφ
〜1300mmφのフラットロールからなるVH式連続圧
延機9により、2〜4パス圧延で940℃以上で圧延完
了するように115mm□〜180mm□の鋼片10に成形
した。本発明の実施例と比較例を対比して表2に示す。
After the solidification is completed, the slab cutting machine 6 cuts the slab 7 into a predetermined length, and the slab 7 is heated in a heating furnace 8 to have an average cross-section temperature of 990 to 1
After heating to 140 ℃, roll diameter 950mmφ
Using a VH type continuous rolling mill 9 composed of flat rolls of ˜1300 mmφ, a steel piece 10 of 115 mm □ to 180 mm □ was formed so as to be completed in 2 to 4 pass rolling at 940 ° C. or higher. Table 2 compares the examples of the present invention with the comparative examples.

【0032】[0032]

【表2】 [Table 2]

【0033】本発明になる方法では、各鋳片サイズに対
応して適正なロール径、圧下量、パス回数を選択してい
るため、それぞれ所定の延伸比及び形状比を満足してお
り、得られた鋼片は表面疵の発生もなくオーステナイト
結晶粒度番号は5以上を確保し、且つ内部割れとセンタ
ーポロシティーは完全に圧着しているため、鋼片の超音
波探傷において必要なS/N比3以上を満足し介在物の
検出性能は十分であった。
In the method according to the present invention, since the proper roll diameter, reduction amount, and number of passes are selected in accordance with each slab size, the predetermined stretch ratio and shape ratio are satisfied, and The resulting steel slab has no austenite defects and has an austenite grain size number of 5 or more, and internal cracks and center porosity are completely crimped, so the S / N required for ultrasonic flaw detection of the steel slab The ratio of 3 or more was satisfied, and the detection performance of inclusions was sufficient.

【0034】これに対して、鋳片を2〜4パス圧延し形
状比が1.0未満の比較例においては、センターポロシ
ティーが圧着せず鋼片の超音波探傷においてノイズが発
生し必要なS/N比が得られなかった。また、ビレット
圧延を行わない比較例では、結晶粒が粗く且つ内部割れ
とセンターポロシティーが残存するため、超音波探傷時
にノイズが発生し介在物の検出が不可能であった。一
方、大断面ブルームから多パスの分塊圧延とビレット圧
延を行い鋼片に成形した比較例では、鋼片の超音波探傷
は可能であったものの鋳片加熱や圧延に関わる製造コス
トが大きく問題であった。
On the other hand, in the comparative example in which the slab is rolled for 2 to 4 passes and the shape ratio is less than 1.0, the center porosity is not pressure-bonded and noise is generated in ultrasonic flaw detection of the steel slab. No S / N ratio was obtained. Further, in the comparative example in which the billet rolling was not performed, the crystal grains were coarse and internal cracks and center porosity remained, so noise was generated during ultrasonic flaw detection, and inclusions could not be detected. On the other hand, in a comparative example in which a slab is formed by performing multipass slabbing and billet rolling from a large cross-section bloom, ultrasonic flaw detection of the slab was possible, but the manufacturing cost related to slab heating and rolling was a big problem. Met.

【0035】図8に、鋳造から圧延完了までの鋳片及び
鋼片の温度推移(鋳造から抽出までは断面平均温度、抽
出から圧延完了までは中心・表面・コーナー部温度を図
示)の代表例を示す。本発明例は、222mm□の鋳片を
鋳造速度1.8m/min で鋳造し、切断後加熱炉に装入し
て35分加熱し断面平均温度1040℃で抽出した後V
H式連続圧延機で165mm□の鋼片に成形した例であ
る。一方、比較例は400×500mmの鋳片を鋳造速度
0.65m/min で鋳造し、切断後加熱炉で断面平均温度
で1170℃に加熱し抽出した後、二重逆転式圧延機で
16パス圧延して250mm□鋼片とし、次いで二重連続
式圧延機で4パス圧延して165mm□鋼片に成形した例
である。両者を比較すると、圧延完了温度を940℃に
合わせているが、大断面ブルームの場合には多パス圧延
を行い加熱炉抽出から圧延完了までの時間が約7〜8分
かかるため、抽出から圧延完了までコーナー部温度は約
230℃低下している。これに対して、本発明になる実
施例では2〜4パス圧延のため抽出から圧延完了までの
時間が約40〜60秒と短いため、抽出から圧延完了ま
でのコーナー部温度は約100℃の低下で済む。このよ
うに、本発明例では加熱炉抽出温度を低くすることが可
能であり、省エネルギー効果も享受できるのである。
FIG. 8 shows a typical example of the temperature transitions of the slab and the steel slab from casting to completion of rolling (average cross-section temperature from casting to extraction, and center / surface / corner temperature from extraction to completion of rolling). Indicates. In the example of the present invention, a 222 mm square slab was cast at a casting speed of 1.8 m / min, charged into a heating furnace after cutting, heated for 35 minutes and extracted at an average cross-section temperature of 1040 ° C.
This is an example of forming into a 165 mm square steel piece by an H type continuous rolling mill. On the other hand, in the comparative example, a 400 × 500 mm slab was cast at a casting speed of 0.65 m / min, and after cutting, it was heated to 1170 ° C. at the average cross-section temperature in a heating furnace and extracted, and then 16 passes with a double reversing type rolling mill. This is an example in which a slab of 250 mm square was rolled to form a 165 mm square billet which was then subjected to 4-pass rolling by a double continuous rolling mill. Comparing the two, the rolling completion temperature is adjusted to 940 ° C. However, in the case of a large cross-section bloom, it takes about 7 to 8 minutes from the heating furnace extraction to the rolling completion, so it takes from extraction to rolling. Until the completion, the corner temperature has dropped by about 230 ° C. On the other hand, in the embodiment of the present invention, since the time from extraction to completion of rolling is short at about 40 to 60 seconds due to 2 to 4 pass rolling, the corner temperature from extraction to completion of rolling is about 100 ° C. It only needs to be lowered. As described above, in the example of the present invention, the heating furnace extraction temperature can be lowered, and the energy saving effect can be enjoyed.

【0036】更に、図9に鋳片厚みと鋼片厚み及び延伸
比との関係を比較して示す。比較例1は分塊圧延を省略
したビレット連鋳法を示し、比較例2は分塊圧延とビレ
ット圧延を行う大断面ブルーム連鋳・分塊法を示す。本
発明は、140mm□〜300mm□の鋳片から115mm□
〜180mm□の鋼片を延伸比1.5〜2.8で成形する
方法であり、表2に示したように鋼片の超音波探傷が可
能で、且つ鋼片製造コストが大幅に低い製造方法である
と言える。
Furthermore, FIG. 9 shows the relationship between the thickness of the slab, the thickness of the slab, and the stretch ratio in comparison. Comparative Example 1 shows a billet continuous casting method in which slabbing rolling is omitted, and Comparative Example 2 shows a large-section bloom continuous casting / slumping method in which slabbing rolling and billet rolling are performed. The present invention uses a slab of 140 mm □ to 300 mm □ to 115 mm □
This is a method of forming steel pieces of 180 mm square with a draw ratio of 1.5 to 2.8. As shown in Table 2, ultrasonic flaw detection of the steel pieces is possible, and the production cost of the steel pieces is significantly low. Can be said to be a method.

【0037】[0037]

【発明の効果】本発明は、中断面ブルームを短時間加熱
し少ないパス回数で圧延する場合であっても、鋼片表面
疵を発生させずに効率的に鋳造組織を微細化し且つ内部
割れやセンターポロシティーを圧着せしめるため、鋼片
の超音波探傷が可能となると共に分塊圧延工程の大幅な
簡略化が図られ、鋳片の加熱燃料や圧延電力の削減、圧
延歩留の向上等大幅な製造コストの低減が可能であり、
その工業的価値は極めて大きい。
Industrial Applicability According to the present invention, even when a medium cross-section bloom is heated for a short period of time and rolled with a small number of passes, the cast structure is efficiently refined and internal cracks and Since center porosity is crimped, it enables ultrasonic flaw detection of steel slabs and greatly simplifies the slab rolling process, reducing heating fuel and electric power for rolling slabs and improving rolling yield. It is possible to reduce the manufacturing cost,
Its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】延伸比、パス回数及び鋼片のオーステナイト結
晶粒度の関係を示す図。
FIG. 1 is a diagram showing a relationship between a draw ratio, the number of passes, and an austenite grain size of a steel slab.

【図2】Ld /Hm と鋼片センターポロシティー厚みの
関係を示す図。
FIG. 2 is a diagram showing the relationship between L d / H m and the billet center porosity thickness.

【図3】Ld /Hm と鋼片内部割れ長さの関係を示す
図。
FIG. 3 is a diagram showing a relationship between L d / H m and a steel piece internal crack length.

【図4】ロール径とLd /Hm の関係の代表例図。FIG. 4 is a typical example of a relationship between roll diameter and L d / H m .

【図5】圧延温度と鋼片表面疵深さの関係を示す図。FIG. 5 is a diagram showing a relationship between rolling temperature and billet surface flaw depth.

【図6】ロール形状と鋼片コーナー部表面応力について
のFEM解析結果を示す図。
FIG. 6 is a view showing a result of FEM analysis on a roll shape and a surface stress of a billet corner portion.

【図7】本発明の実施形態の一例を示す全体概略図。FIG. 7 is an overall schematic diagram showing an example of an embodiment of the present invention.

【図8】鋳造から圧延完了までの鋳片及び鋼片の温度推
移の比較図。
FIG. 8 is a comparative diagram of temperature changes of a cast slab and a steel slab from casting to completion of rolling.

【図9】鋳片厚みと鋼片厚み及び延伸比の比較図。FIG. 9 is a comparison diagram of the thickness of the slab, the thickness of the slab, and the draw ratio.

【符号の説明】[Explanation of symbols]

1 取鍋 2 タンディッシュ 3 鋳型 4 二次冷却帯 5 ガイドロール 6 鋳片切断機 7 切断後の鋳片 8 鋳片加熱炉 9 1スタンドまたは複数のスタンドからなるビレット
圧延機 10 条鋼用鋼片
1 Ladle 2 Tundish 3 Mold 4 Secondary Cooling Zone 5 Guide Roll 6 Slab Cutting Machine 7 Slab after Cutting 8 Slab Heating Furnace 9 Billet Rolling Machine 10 with One Stand or Multiple Stands 10 Steel Strip for Steel

フロントページの続き (72)発明者 石橋 靖 北海道室蘭市仲町12番地 新日本製鐵株 式会社 室蘭製鐵所内 (72)発明者 八塚 隆 北海道室蘭市仲町12番地 新日本製鐵株 式会社 室蘭製鐵所内 (72)発明者 磯部 浩一 北海道室蘭市仲町12番地 新日本製鐵株 式会社 室蘭製鐵所内 (56)参考文献 特開 平10−180307(JP,A) 特開 昭53−1156(JP,A) 特開 昭62−16802(JP,A) 特開 昭55−33840(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 1/00 - 1/46 B22D 11/00 - 11/22 Front page continuation (72) Inventor Yasushi Ishibashi 12 Nakamachi, Muroran City, Hokkaido Inside Nippon Steel Co., Ltd. Muroran Ironworks (72) Inventor Takashi Yatsuka 12 Nakamachi, Muroran Hokkaido Hokkaido Nippon Steel Co., Ltd. Muroran In-house (72) Inventor Koichi Isobe 12 Naka-machi, Muroran-shi, Hokkaido Nippon Steel Co., Ltd. Muroran In-house (56) Reference JP-A-10-180307 (JP, A) JP-A-53-1156 (JP) , A) JP 62-16802 (JP, A) JP 55-33840 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B21B 1/00-1/46 B22D 11/00-11/22

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造鋳片からビレット圧延により条
鋼用鋼片を製造する方法において、鋳片横断面のサイズ
及び形状を一辺140mm〜300mmの正方形またはこれ
と等価な断面積を有し長辺対短辺の比が1.6以下の矩
形として連続鋳造し、凝固完了後該鋳片を所定の長さに
切断し所定の温度に加熱した後、形状比(ロール接触孤
長/平均鋼片厚み)≧1.0を満足する厚み方向及び幅
方向の圧延を少なくとも各1パスずつ圧延して、鋳片か
ら鋼片までの延伸比が1.5〜2.8となるように2〜
4パス圧延で鋼片を製造することを特徴とする条鋼用鋼
片の製造方法。
1. A method for producing a steel slab for bar steel from a continuously cast slab by billet rolling, wherein the slab has a transverse cross-sectional size and shape of 140 mm to 300 mm square or a long side having a cross-sectional area equivalent to this. Continuously cast into a rectangle having a ratio of the shorter side to 1.6 or less, and after solidification is completed, the slab is cut into a predetermined length and heated to a predetermined temperature, and then the shape ratio (roll contact arc length / average steel slab). (Thickness) ≧ 1.0, at least one pass each in the thickness direction and width direction is rolled so that the stretch ratio from the slab to the steel slab becomes 1.5 to 2.8.
A method for producing a billet for a strip steel, which comprises producing a billet by 4-pass rolling.
【請求項2】 直径が950mmφ以上のロールで圧延す
ることを特徴とする請求項1記載の方法。
2. The method according to claim 1, which comprises rolling with a roll having a diameter of 950 mmφ or more.
【請求項3】 鋼片の圧延完了温度を940℃以上とす
ることを特徴とする請求項1又は2記載の方法。
3. The method according to claim 1, wherein the rolling completion temperature of the steel slab is 940 ° C. or higher.
【請求項4】 孔型の無いフラットロールで圧延するこ
とを特徴とする請求項1又は2記載の方法。
4. The method according to claim 1, wherein rolling is performed with a flat roll having no hole shape.
【請求項5】 一辺140mm〜300mmの正方形または
これと等価な断面積を有し長辺対短辺の比が1.6以下
の矩形の鋳片を連続鋳造する連続鋳造機と、凝固完了後
所定の長さに切断する鋳片切断機と、該鋳片切断機で切
断された鋳片を装入し所定の温度に加熱する鋳片加熱炉
と、加熱された鋳片を所定断面サイズの鋼片に圧延する
直径が950mmφ以上のフラットロールを有する1スタ
ンドまたは複数スタンドからなる圧延機とを順次配列し
たことを特徴とする条鋼用鋼片の製造装置。
5. A continuous casting machine for continuously casting a rectangular slab having a side length of 140 mm to 300 mm or a cross-sectional area equivalent thereto and having a long side to short side ratio of 1.6 or less, and after solidification is completed. A slab cutting machine for cutting to a predetermined length, a slab heating furnace for charging a slab cut by the slab cutting machine and heating the slab to a predetermined temperature, and a heated slab having a predetermined cross-sectional size An apparatus for producing a steel strip for a steel strip, characterized in that a rolling mill comprising one stand or a plurality of stands having a flat roll having a diameter of 950 mmφ or more for rolling on a steel strip is sequentially arranged.
JP11582997A 1997-05-06 1997-05-06 Method and apparatus for producing billet for bar steel Expired - Fee Related JP3404253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11582997A JP3404253B2 (en) 1997-05-06 1997-05-06 Method and apparatus for producing billet for bar steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11582997A JP3404253B2 (en) 1997-05-06 1997-05-06 Method and apparatus for producing billet for bar steel

Publications (2)

Publication Number Publication Date
JPH10305301A JPH10305301A (en) 1998-11-17
JP3404253B2 true JP3404253B2 (en) 2003-05-06

Family

ID=14672159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11582997A Expired - Fee Related JP3404253B2 (en) 1997-05-06 1997-05-06 Method and apparatus for producing billet for bar steel

Country Status (1)

Country Link
JP (1) JP3404253B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453413B (en) * 2022-01-12 2024-02-27 山东工业职业学院 Rolling method of sulfur-containing free-cutting stainless steel wire rod

Also Published As

Publication number Publication date
JPH10305301A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP2738934B2 (en) Method and apparatus for manufacturing steel strip
KR101204479B1 (en) Process and plant for manufacturing steel plates without interruption
US4962808A (en) Method of producing a steel strip having a thickness of less than 10 mm
JP3139402B2 (en) Unsolidified rolling method of slab
CN113714280A (en) Production process for improving microscopic pores of high-carbon chromium bearing steel 100Cr6 bar
JP3404253B2 (en) Method and apparatus for producing billet for bar steel
JP3333619B2 (en) Manufacturing method of extra thick steel plate
JPH0569099A (en) Method for improving internal quality in cast slab
JP3289132B2 (en) Method of manufacturing billet for bar steel
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
CA1325326C (en) Method of producing a steel strip having a thickness of less than 10 mm
JPH10263614A (en) Production of extra thick steel plate
JP3648825B2 (en) Manufacturing method of continuous cast round slab for seamless steel pipe manufacturing with good workability
JP3092543B2 (en) Manufacturing method of round billet slab by continuous casting
JPH09201601A (en) Production of continuously cast round billet for producing seamless steel pipe having good workability
JPH07276020A (en) Continuous casting method
JP3114671B2 (en) Steel continuous casting method
JP3356100B2 (en) Continuous casting method
JP3018888B2 (en) Continuous casting method for stainless steel pipe material
JPH0815640B2 (en) Method for manufacturing austenitic stainless steel strip
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JP4259424B2 (en) Method for producing high chromium steel large section billet
US4844145A (en) Bending of continuously cast steel with corrugated rolls to impart compressive stresses
JPS623211B2 (en)
JP3533831B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees