JP3400641B2 - Linear displacement detector - Google Patents

Linear displacement detector

Info

Publication number
JP3400641B2
JP3400641B2 JP10559396A JP10559396A JP3400641B2 JP 3400641 B2 JP3400641 B2 JP 3400641B2 JP 10559396 A JP10559396 A JP 10559396A JP 10559396 A JP10559396 A JP 10559396A JP 3400641 B2 JP3400641 B2 JP 3400641B2
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
magnetic detection
detection element
linear displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10559396A
Other languages
Japanese (ja)
Other versions
JPH09292202A (en
Inventor
昌広 横谷
英樹 梅元
直樹 平岡
渉 福井
豊 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10559396A priority Critical patent/JP3400641B2/en
Publication of JPH09292202A publication Critical patent/JPH09292202A/en
Application granted granted Critical
Publication of JP3400641B2 publication Critical patent/JP3400641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、直線変位検出装
置に関し、特に直線変位に連動した永久磁石の直線変位
を、磁気検出素子の感磁面上の磁束方向、あるいは、磁
束密度の変化として検出する直線変位検出装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear displacement detecting device, and more particularly to detecting a linear displacement of a permanent magnet that is interlocked with the linear displacement as a change in the magnetic flux direction on the magnetically sensitive surface of the magnetic detection element or the change in magnetic flux density. The present invention relates to a linear displacement detection device that does.

【0002】[0002]

【従来の技術】図8は、例えば特開平5−280916
号公報に示された従来の直線変位検出装置の一例を模式
的に示す平面図である。図において、1は磁気検出素子
であり、例えばガラス基板上に磁気抵抗パターンに構成
された強磁性体磁気抵抗材料であるNiFeからなる磁気
抵抗素子1aが形成され、さらに絶縁樹脂で直方体形状
にモールドされて構成され、ガラス基板表面の磁気抵抗
素子1aの形成面が感磁面1bとなっている。ここで
は、磁気抵抗素子1aの磁気抵抗パターンは、櫛歯状パ
ターンが出力端子1cのパターンを中心に左右対称にハ
の字状に構成されている。2は永久磁石であり、この永
久磁石2は、磁石長手方向に磁極面をもち、直線変位に
応じて磁石長手方向に変位し、磁気検出素子1に磁束変
化を与える。磁気検出素子1は磁束変化を出力電圧に変
換し、直線変位を検出する。
2. Description of the Related Art FIG. 8 shows, for example, JP-A-5-280916.
FIG. 11 is a plan view schematically showing an example of a conventional linear displacement detection device shown in Japanese Patent Publication. In the figure, reference numeral 1 is a magnetic detection element, for example, a magnetoresistive element 1a made of NiFe, which is a ferromagnetic magnetoresistive material configured in a magnetoresistive pattern, is formed on a glass substrate, and is further molded into a rectangular parallelepiped shape with an insulating resin. The surface of the glass substrate on which the magnetoresistive element 1a is formed is the magnetically sensitive surface 1b. Here, the magnetoresistive pattern of the magnetoresistive element 1a has a comb-shaped pattern symmetrically arranged in a V shape with respect to the pattern of the output terminal 1c. Reference numeral 2 denotes a permanent magnet. The permanent magnet 2 has a magnetic pole surface in the magnet longitudinal direction, is displaced in the magnet longitudinal direction according to linear displacement, and gives a magnetic flux change to the magnetic detection element 1. The magnetic detection element 1 converts a magnetic flux change into an output voltage and detects a linear displacement.

【0003】次に、動作について説明する。検出する直
線変位に応じて永久磁石2は変位し、磁気検出素子1に
は検出する直線変位に対応した磁束方向あるいは磁束密
度変化が印加される。磁気検出素子1は、この磁束変化
に応じて磁気抵抗素子1aの磁気抵抗パターンの抵抗値
が変化し、検出する直線変位に対応した電圧を出力す
る。なお、この場合、出力電圧は、磁気抵抗パターンの
抵抗値に比例して大きくなる。磁気検出素子1からの出
力電圧は、出力端子1cを介して外部に出力される。
Next, the operation will be described. The permanent magnet 2 is displaced according to the detected linear displacement, and the magnetic flux direction or the change in magnetic flux density corresponding to the detected linear displacement is applied to the magnetic detection element 1. The magnetic detection element 1 changes the resistance value of the magnetic resistance pattern of the magnetic resistance element 1a according to the change in the magnetic flux, and outputs a voltage corresponding to the detected linear displacement. In this case, the output voltage increases in proportion to the resistance value of the magnetoresistive pattern. The output voltage from the magnetic detection element 1 is output to the outside via the output terminal 1c.

【0004】図9は永久磁石2の変位に対する磁気検出
素子1の出力電圧の関係を示したものである。同図にお
いて、電圧V1,V2は永久磁石2が0を基準にして左右
(−X側およびX側)に変位したときの磁気検出素子1
の出力電圧のそれぞれの側における最大値を実質的に表
している。また、実線Aは磁気検出素子1の理想的な出
力電圧の特性、破線Bは磁気検出素子1の実際の出力電
圧の波形である。ここで、磁気検出素子1の直線性は、
理想的な出力電圧に対する実際の出力電圧の偏位分をΔ
V、永久磁石2の変位がフルスケール(FS)時の出力
電圧をVFSとすると、次式で与えられる。
FIG. 9 shows the relationship between the displacement of the permanent magnet 2 and the output voltage of the magnetic detection element 1. In the figure, the voltages V 1 and V 2 are the magnetic detection element 1 when the permanent magnet 2 is displaced to the left and right (−X side and X side) with 0 as a reference.
Substantially represents the maximum value on each side of the output voltage of. A solid line A is an ideal output voltage characteristic of the magnetic detection element 1, and a broken line B is an actual output voltage waveform of the magnetic detection element 1. Here, the linearity of the magnetic detection element 1 is
The deviation of the actual output voltage from the ideal output voltage is Δ
V and the output voltage when the displacement of the permanent magnet 2 is full scale (FS) are V FS , they are given by the following equation.

【0005】 直線性=(ΔV/VFS)×100% ・・・(1)Linearity = (ΔV / V FS ) × 100% (1)

【0006】図10は、磁石長手方向に磁極面を持つ永
久磁石2の変位と、その変位に対応して変化する磁気検
出素子1の出力電圧の関係を示したものである。図8に
示すように磁気検出素子1は永久磁石2の長手方向の中
心(磁極境面)に対向して配置されているため、永久磁
石2の着磁精度がよい(正常である)と、ニュートラル
ゾーンが図10(b)の符号2aで示すように磁極境面
と一致しているので、このような永久磁石2の直線変位
を、その感磁面1b上の磁束方向、あるいは、磁束密度
の変化として検出する磁気検出素子1の出力電圧の特性
は、図10(a)の実線で示すように略理想的な特性と
なるが、永久磁石2の着磁精度が悪い(異常である)
と、ニュートラルゾーンが図10(b)の符号2bで示
すように磁極境面より大きくずれるので、磁気検出素子
1の出力電圧の特性は、図10(a)の破線で示すよう
な特性となり、例えば中点電圧(永久磁石2が停止して
いるとき(X=0)の磁気検出素子1の出力電圧(V1
+V2)/2相当)に対して電圧D1なる大きなずれを生
じる。
FIG. 10 shows the relationship between the displacement of the permanent magnet 2 having a magnetic pole surface in the longitudinal direction of the magnet and the output voltage of the magnetic detection element 1 which changes corresponding to the displacement. As shown in FIG. 8, since the magnetic detection element 1 is arranged so as to face the center (the magnetic pole boundary surface) of the permanent magnet 2 in the longitudinal direction, the magnetizing accuracy of the permanent magnet 2 is good (normal). Since the neutral zone coincides with the magnetic pole boundary surface as indicated by reference numeral 2a in FIG. 10 (b), such a linear displacement of the permanent magnet 2 is determined by the magnetic flux direction on the magnetic sensitive surface 1b or the magnetic flux density. The characteristic of the output voltage of the magnetic detection element 1 detected as a change in the magnetic field is a substantially ideal characteristic as shown by the solid line in FIG. 10A, but the magnetizing accuracy of the permanent magnet 2 is poor (abnormal).
Then, the neutral zone deviates more than the magnetic pole boundary surface as indicated by reference numeral 2b in FIG. 10B, so that the characteristic of the output voltage of the magnetic detection element 1 becomes the characteristic shown by the broken line in FIG. For example, the midpoint voltage (the output voltage (V 1 of the magnetic detection element 1 when the permanent magnet 2 is stopped (X = 0)
A large deviation of voltage D 1 occurs with respect to + V 2 ) / 2 equivalent).

【0007】従って、磁気検出素子1の出力電圧は永久
磁石2の着磁精度に大きく左右されることが分かる。換
言すれば、このように磁気検出素子1を永久磁石2の長
手方向の中心(磁極境面)に対向して配置した場合、磁
気検出素子1の出力電圧は、永久磁石2のニュートラル
ゾーンに大きく影響されることが分かる。一般に、永久
磁石の着磁は、N極とS極の間が長くなればなる程、難
しいと云われている。
Therefore, it can be seen that the output voltage of the magnetic detection element 1 greatly depends on the magnetization accuracy of the permanent magnet 2. In other words, when the magnetic detection element 1 is arranged so as to face the longitudinal center (magnetic pole boundary surface) of the permanent magnet 2 as described above, the output voltage of the magnetic detection element 1 is large in the neutral zone of the permanent magnet 2. I know that it will be affected. It is generally said that the permanent magnet is more difficult to magnetize as the distance between the N pole and the S pole becomes longer.

【0008】[0008]

【発明が解決しようとする課題】従来の直線変位検出装
置は、以上のように、長手方向に磁極面をもつ永久磁石
を使用しているので、以下のような種々の問題点があっ
た。即ち、先ず、磁気検出素子への印加磁界が弱いため
外部磁界および外部磁性体の影響を受けやすく、取り付
け環境を考慮する必要があり、取り付け環境に対する自
由度が制限されるという問題点があった。また、磁気検
出素子は永久磁石の長手方向の中心(磁極境面)に対向
して配置されているため、磁気検出素子の出力電圧は永
久磁石の着磁精度に大きく左右されるという問題点があ
った。さらに、磁気検出素子の出力電圧の直線性を確保
するために永久磁石の長手方向寸法Lと短手方向寸法M
の比率L/Mを大きくする必要があり、磁石形状が大き
くなり、コスト的にも高価になるという問題点があっ
た。
Since the conventional linear displacement detection device uses the permanent magnet having the magnetic pole surface in the longitudinal direction as described above, it has various problems as follows. That is, first, since the magnetic field applied to the magnetic detection element is weak, it is easily affected by the external magnetic field and the external magnetic material, and it is necessary to consider the mounting environment, which limits the degree of freedom for the mounting environment. . Further, since the magnetic detection element is arranged so as to face the center of the permanent magnet in the longitudinal direction (the magnetic pole boundary surface), the output voltage of the magnetic detection element greatly depends on the magnetizing accuracy of the permanent magnet. there were. Further, in order to secure the linearity of the output voltage of the magnetic detection element, the longitudinal dimension L and the lateral dimension M of the permanent magnet are secured.
It is necessary to increase the ratio L / M of the magnet, the magnet shape becomes large, and the cost becomes high.

【0009】この発明はこのような問題点を解決するた
めになされたもので、取り付け環境に対する自由度を拡
大して汎用性を持たせることができ、また、磁気検出素
子の出力電圧に対する永久磁石の着磁精度の影響度を小
さくでき、しかも、磁石形状を小さくできると共にコス
トの低廉化を図ることができ、また、構成簡単且つ安価
にして2重系出力が可能な直線変位検出装置を提供する
ことを目的とする。
The present invention has been made in order to solve such a problem, and it is possible to expand the degree of freedom with respect to the mounting environment to provide versatility, and to provide a permanent magnet with respect to the output voltage of the magnetic detection element. A linear displacement detection device capable of reducing the influence of the magnetizing accuracy, reducing the magnet shape, and reducing the cost, and having a simple structure and low cost and capable of outputting a dual system. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明に係
る直線変位検出装置は、所定のパターンに形成された感
磁面を有する磁気検出素子と、単一の永久磁石であっ
て、短軸方向の両端面に磁極面を有し、この磁極面が磁
気検出素子の感磁面に対向して開磁路を構成し、且つ
気検出素子の感磁面の延長上に長軸心がくるようにこの
磁気検出素子と対向して長軸方向に移動可能に配設され
た永久磁石とを備え、この永久磁石の磁界角度変化によ
長軸方向の直線変位を検出するようにしたものであ
る。
According to a first aspect of the present invention, there is provided a linear displacement detecting device comprising a magnetic detecting element having a magnetically sensitive surface formed in a predetermined pattern and a single permanent magnet.
And has magnetic pole surfaces on both end surfaces in the short axis direction, the magnetic pole surfaces facing the magnetic sensitive surface of the magnetic detection element to form an open magnetic path, and the magnetic sensitive surface of the magnetic detection element. Is provided with a permanent magnet movably arranged in the long axis direction so as to face the magnetic detection element so that the long axis lies on the extension of the magnetic field angle of the permanent magnet .
Ri is obtained to detect the linear displacement of the axial direction.

【0011】請求項2記載の発明に係る直線変位検出装
置は、所定のパターンに形成された感磁面を有し、この
感磁面が相互に所定間隔で対向するように配置された複
数の磁気検出素子と、短軸方向の両端面に磁極面を有
し、この磁極面が複数の磁気検出素子の感磁面に対向さ
せられ、且つ長軸方向に移動可能に複数の磁気検出素子
の間に配設された永久磁石とを備え、この永久磁石の長
軸方向の変位を検出するようにしたものである。
According to a second aspect of the present invention, there is provided a linear displacement detecting device having a magnetic sensitive surface formed in a predetermined pattern, and the magnetic sensitive surfaces are arranged so as to face each other at a predetermined distance. The magnetic detection element has magnetic pole surfaces on both end faces in the short axis direction, the magnetic pole surface is opposed to the magnetically sensitive surfaces of the plurality of magnetic detection elements, and is movable in the long axis direction. The permanent magnet is disposed between the permanent magnets, and the displacement of the permanent magnet in the long axis direction is detected.

【0012】請求項3記載の発明に係る直線変位検出装
置は、請求項1または2の発明において、永久磁石の長
軸方向寸法Lと検出変位Xとの比率X/Lを0.8〜
1.2とするものである。
A linear displacement detection device according to a third aspect of the present invention is the linear displacement detection device according to the first or second aspect of the invention, wherein the ratio X / L between the dimension L of the permanent magnet in the major axis direction and the detected displacement X is 0.8 to.
It is set to 1.2.

【0013】請求項4記載の発明に係る直線変位検出装
置は、請求項1〜3のいずれかの発明において、磁気検
出素子の感磁面は櫛歯状パターンが左右対称にハの字状
に構成されたパターンに形成されているものである。
A linear displacement detecting device according to a fourth aspect of the present invention is the linear displacement detecting device according to any one of the first to third aspects of the invention, wherein the magnetic sensing surface of the magnetic detecting element has a comb-shaped pattern symmetrically arranged in a V shape. It is formed in a configured pattern.

【0014】[0014]

【発明の実施の形態】以下、この発明の一実施の形態を
図について説明する。 実施の形態1.図1はこの発明の実施の形態1を模式的
に示す平面図である。図において、3は磁気検出素子で
あり、例えばガラス基板上に磁気抵抗パターンに構成さ
れた強磁性体磁気抵抗材料であるNiFeからなる磁気抵
抗素子3aが形成され、さらに絶縁樹脂で直方体形状に
モールドされて構成され、ガラス基板表面の磁気抵抗素
子3aの形成面が感磁面3bとなっている。ここでは、
磁気抵抗素子3aの磁気抵抗パターンは、櫛歯状パター
ンが出力端子3cのパターンを中心に左右対称にハの字
状に構成されている。4は棒状の永久磁石であり、この
永久磁石4は、磁気検出素子3の感磁面の延長上に長軸
心がくるように、磁気検出素子3と対向して、長軸方向
に移動可能に配設され、かつ短軸方向の両端面を磁極面
とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. Embodiment 1. 1 is a plan view schematically showing a first embodiment of the present invention. In the figure, 3 is a magnetic detection element, for example, a magnetoresistive element 3a made of NiFe, which is a ferromagnetic magnetoresistive material formed in a magnetoresistive pattern, is formed on a glass substrate, and is further molded in a rectangular parallelepiped shape with insulating resin. The surface of the glass substrate on which the magnetoresistive element 3a is formed is the magnetically sensitive surface 3b. here,
The magnetoresistive pattern of the magnetoresistive element 3a has a comb-shaped pattern formed in a V-shape symmetrically with respect to the pattern of the output terminal 3c. Reference numeral 4 is a rod-shaped permanent magnet, and this permanent magnet 4 is movable in the long axis direction so as to face the magnetic detection element 3 so that the long axis lies on the extension of the magnetically sensitive surface of the magnetic detection element 3. And both end surfaces in the minor axis direction are magnetic pole surfaces.

【0015】次に、動作について説明する。検出する直
線変位に応じて永久磁石4は変位し、磁気検出素子3に
は検出する直線変位に対応した磁束方向あるいは磁束密
度変化が印加される。磁気検出素子3は、この磁束変化
に応じて磁気抵抗素子3aの磁気抵抗パターンの抵抗値
が変化し、検出する直線変位に対応した電圧を出力す
る。なお、この場合も、出力電圧は、磁気抵抗パターン
の抵抗値に比例して大きくなる。磁気検出素子3からの
出力電圧は、出力端子3cを介して外部に出力される。
Next, the operation will be described. The permanent magnet 4 is displaced according to the detected linear displacement, and the magnetic flux direction or the magnetic flux density change corresponding to the detected linear displacement is applied to the magnetic detection element 3. The magnetic detection element 3 changes the resistance value of the magnetic resistance pattern of the magnetic resistance element 3a according to the change in the magnetic flux, and outputs a voltage corresponding to the detected linear displacement. In this case as well, the output voltage increases in proportion to the resistance value of the magnetoresistive pattern. The output voltage from the magnetic detection element 3 is output to the outside via the output terminal 3c.

【0016】図2は、短軸方向の両端面を磁極面として
いる永久磁石4の変位と、その変位に対応して変化する
磁気検出素子3の出力電圧の関係を示したものである。
同図において、電圧V1,V2は永久磁石4が0を基準に
して左右(−X側およびX側)に変位したときの磁気検
出素子3の出力電圧のそれぞれの側における最大値を実
質的に表している。ここでは、永久磁石4は、磁気検出
素子3の感磁面の延長上に長軸心がくるように磁気検出
素子3と対向して長軸方向に移動可能に配設され、かつ
短軸方向の両端面を磁極面としているため、図2(b)
の符号4aで示すようにそのニュートラルゾーンは、磁
気検出素子3の感磁面に対して略平行の関係にあり、こ
の場合、実質的にニュートラルゾーンを使用していない
ので、その影響を受けない。従って、磁気検出素子3の
出力電圧の理想的な特性を図2(a)の実線で示すよう
な特性とすると、実際の磁気検出素子3の出力電圧の特
性は、図2(a)の破線で示すような特性となり、中点
電圧(永久磁石4が停止しているとき(X=0)の磁気
検出素子3の出力電圧(V1+V2)/2相当)に対して
電圧D2(≪D1)なるずれを生じるのみで、略理想的な
特性に近い特性が得られる。この場合の特性のずれは、
着磁のずれや磁気検出素子と永久磁石の配置関係のずれ
等によるものと思われる。
FIG. 2 shows the relationship between the displacement of the permanent magnet 4 having the magnetic pole faces on both end faces in the minor axis direction and the output voltage of the magnetic detection element 3 which changes in response to the displacement.
In the figure, the voltages V 1 and V 2 are substantially the maximum values on the respective sides of the output voltage of the magnetic detection element 3 when the permanent magnet 4 is displaced to the left and right (−X side and X side) with respect to 0. It represents. Here, the permanent magnet 4 is arranged movably in the long axis direction so as to face the magnetic detection element 3 so that the long axis lies on the extension of the magnetically sensitive surface of the magnetic detection element 3, and in the short axis direction. 2 (b) because both end surfaces of the magnetic pole surface are magnetic pole surfaces.
As shown by reference numeral 4a, the neutral zone is in a relationship substantially parallel to the magnetically sensitive surface of the magnetic detection element 3, and in this case, since the neutral zone is not substantially used, it is not affected. . Therefore, assuming that the ideal characteristic of the output voltage of the magnetic detection element 3 is the characteristic shown by the solid line in FIG. 2A, the actual output voltage characteristic of the magnetic detection element 3 is the broken line in FIG. The voltage D 2 (corresponding to the output voltage (V 1 + V 2 ) / 2 of the magnetic detection element 3 when the permanent magnet 4 is stopped (X = 0)) is obtained as shown in ( 2 ). The characteristic close to the ideal characteristic can be obtained only by the deviation << D 1 }. The deviation of the characteristics in this case is
This is probably due to the deviation of the magnetization or the positional relationship between the magnetic detection element and the permanent magnet.

【0017】ここで、検出する直線変位Xに対応した磁
束方向及び磁束密度の変化量を、永久磁石4の長手方向
寸法LをX/L=0.8〜1.2で設定することによ
り、図3で示すように、その出力直線性を最適にでき、
永久磁石4の長手方向寸法を短縮できるためコスト低減
が可能となる。また、検出する直線変位に対応して決定
される永久磁石4の長手方向寸法の構成上の余裕度を大
きくできる。
Here, the amount of change in the magnetic flux direction and the magnetic flux density corresponding to the detected linear displacement X is set by setting the longitudinal dimension L of the permanent magnet 4 to X / L = 0.8 to 1.2. As shown in FIG. 3, the output linearity can be optimized,
Since the longitudinal dimension of the permanent magnet 4 can be shortened, the cost can be reduced. Further, it is possible to increase the structural margin of the dimension of the permanent magnet 4 in the longitudinal direction, which is determined corresponding to the detected linear displacement.

【0018】図4は図1で説明した磁気検出素子3およ
び永久磁石4を組み込んだこの発明に係る直線変位検出
装置の構成を示す断面図、図5は図4の線IーIの断面図
であり、各図において、図1と対応する部分には同一符
号を付し、その説明を省略する。図において、5はケー
ス本体6に形成された取付フランジ、7は取付フランジ
5から突出する状態にケース本体6に形成される挿入筒
部で、この中心線8上を永久磁石4が移動するようにシ
ャフト9が装着されている。10は被検出装置である例
えばEGRバルブで、本装置取り付け用としての鉄等の
強磁性体からなる取付フランジ10aおよび開口部10
bを有している。11は負圧室で、エンジン(図示せ
ず)に発生する負圧が供給される。12はロッドで、負
圧室11の負圧の大きさにより作動されてバルブ13を
開閉する。
FIG. 4 is a sectional view showing the structure of the linear displacement detecting device according to the present invention, which incorporates the magnetic detecting element 3 and the permanent magnet 4 described in FIG. 1, and FIG. 5 is a sectional view taken along the line I--I in FIG. In each drawing, the same reference numerals are given to the portions corresponding to those in FIG. 1, and the description thereof will be omitted. In the figure, 5 is a mounting flange formed on the case main body 6, and 7 is an insertion cylindrical portion formed on the case main body 6 in a state of protruding from the mounting flange 5 so that the permanent magnet 4 moves on the center line 8. A shaft 9 is attached to the shaft. Reference numeral 10 denotes a device to be detected, such as an EGR valve, which is a mounting flange 10a and an opening 10 made of a ferromagnetic material such as iron for mounting the device.
b. A negative pressure chamber 11 is supplied with a negative pressure generated in an engine (not shown). Reference numeral 12 is a rod, which is operated according to the negative pressure in the negative pressure chamber 11 to open and close the valve 13.

【0019】また、14はケース本体6に収納された回
路基板、15はケース本体6のスペースを防ぐと共に、
シャフト9の貫挿穴を有するカバーで、ケース本体6に
接着されてシャフト9の脱落を防止している。そして、
回路基板14の固定・収納スペースとシャフト9の動作
スペースが完全に隔離されているので、装置の気密性が
確保されている。
Further, 14 is a circuit board housed in the case body 6, 15 is a space for the case body 6, and
A cover having a through hole for the shaft 9 is attached to the case body 6 to prevent the shaft 9 from falling off. And
Since the fixing / accommodating space of the circuit board 14 and the operating space of the shaft 9 are completely separated from each other, the airtightness of the device is ensured.

【0020】以上のように、挿入筒部7を開口部10b
に挿入して両方の取付フランジ5および10aを固定し
て本装置をEGRバルブで10に取り付けると、図4お
よび図5に示すように、永久磁石4が取付フランジ10
aおよび開口部10bの中心線8上を直線変位するよう
になるので、強磁性体(鉄等)の取付フランジ10aに
よる影響が最も少なくなり、出力変動も最も小さく抑制
できる。
As described above, the insertion tube portion 7 is inserted into the opening 10b.
When the present apparatus is mounted on the EGR valve 10 by inserting it into the mounting flange 5 and 10a, the permanent magnet 4 is attached to the mounting flange 10 as shown in FIGS.
Since a is linearly displaced on the center line 8 of the opening 10b and the opening 10b, the influence of the mounting flange 10a of the ferromagnetic material (iron or the like) is minimized, and the output fluctuation can be suppressed to the minimum.

【0021】なお、本装置は、EGRバルブ10に取り
付けられて、負圧室11の負圧の大きさに応じて直線変
位するロッド12の、この直線変位をシャフト9により
取り出し、永久磁石4を磁気検出素子3に対して直線変
位することで印加磁界方向が変化し、アナログ出力を得
ることにより、EGRバルブ10の開度センサとして使
用される。
In the present apparatus, the rod 12 which is attached to the EGR valve 10 and is linearly displaced according to the negative pressure in the negative pressure chamber 11 takes out this linear displacement by the shaft 9 and the permanent magnet 4 is attached. By linearly displacing with respect to the magnetic detection element 3, the direction of the applied magnetic field changes, and an analog output is obtained, which is used as an opening sensor of the EGR valve 10.

【0022】このように、本実施の形態では、磁気検出
素子と永久磁石の磁極面を対向させて配置することによ
り、磁気検出素子に強磁界が印加出来るため、外部磁界
および外部磁性体の影響を低減でき、取付環境に対して
自由度ができる。また、磁束方向変化を検出する磁気検
出素子の場合は飽和磁界以上の非常に安定した領域での
素子使用が可能である。また、永久磁石の磁極面と対向
して磁気検出素子を配置することにより、磁気検出素子
の出力電圧に対する永久磁石の着磁精度に影響度が小さ
くできる。また、検出する直線変位Xに対応した磁束方
向および磁束密度の変化量を、永久磁石の長手方向寸法
LとしてX/L=0.8〜1.2で設定することにより
出力直線性を最適にでき、永久磁石の長手方向寸法を短
縮できるためコスト低減が可能となる。さらに、検出す
る直線変位に対応して決定される永久磁石の長手方向寸
法の構成上の余裕度が大きくできる。
As described above, in the present embodiment, by arranging the magnetic detecting element and the magnetic pole surface of the permanent magnet so as to face each other, a strong magnetic field can be applied to the magnetic detecting element, so that the influence of the external magnetic field and the external magnetic substance is exerted. Can be reduced and the degree of freedom for the mounting environment can be increased. Further, in the case of a magnetic detection element that detects a change in the magnetic flux direction, the element can be used in a very stable region above the saturation magnetic field. Further, by disposing the magnetic detection element so as to face the magnetic pole surface of the permanent magnet, it is possible to reduce the degree of influence on the magnetizing accuracy of the permanent magnet with respect to the output voltage of the magnetic detection element. Further, the output linearity is optimized by setting the amount of change in the magnetic flux direction and the magnetic flux density corresponding to the detected linear displacement X as X / L = 0.8 to 1.2 as the longitudinal dimension L of the permanent magnet. Therefore, the size of the permanent magnet in the longitudinal direction can be shortened, so that the cost can be reduced. Further, it is possible to increase the structural margin of the dimension of the permanent magnet in the longitudinal direction, which is determined corresponding to the detected linear displacement.

【0023】実施の形態2.図6はこの発明の実施の形
態2を模式的に示す平面図である。図6において、図1
と対応する部分には同一符号を付し、その説明を省略す
る。図において、21,22は磁気検出素子3と同様の
磁気検出素子であり、それぞれ、例えばガラス基板上に
磁気抵抗パターンに構成された強磁性体磁気抵抗材料で
あるNiFeからなる磁気抵抗素子21a,22aが形成
され、さらに絶縁樹脂で直方体形状にモールドされて構
成され、また、ガラス基板表面の磁気抵抗素子21a,
22aの形成面がそれぞれ感磁面21b,22bとなっ
ている。これらの磁気抵抗素子21a,22aもその磁
気抵抗パターンは、櫛歯状パターンがそれぞれ出力端子
21c,22cのパターンを中心に左右対称にハの字状
に構成されている。そして、磁気検出素子21,22
を、その感磁面21b,22bが対向するように、永久
磁石4を挟んで配置する。
Embodiment 2. FIG. 6 is a plan view schematically showing a second embodiment of the present invention. In FIG. 6, FIG.
The same reference numerals are given to the portions corresponding to, and the description thereof will be omitted. In the figure, reference numerals 21 and 22 denote magnetic detection elements similar to the magnetic detection element 3, which are, for example, magnetoresistive elements 21a made of NiFe, which is a ferromagnetic magnetoresistive material formed in a magnetoresistive pattern on a glass substrate. 22a is formed, and is further molded in a rectangular parallelepiped shape with an insulating resin. Further, the magnetoresistive element 21a on the surface of the glass substrate,
The surfaces on which 22a are formed are magnetic sensitive surfaces 21b and 22b, respectively. The magnetic resistance patterns of these magnetic resistance elements 21a and 22a are also symmetrically arranged in a V shape with the comb-teeth pattern centering around the pattern of the output terminals 21c and 22c, respectively. Then, the magnetic detection elements 21, 22
Are arranged with the permanent magnets 4 sandwiched therebetween such that the magnetically sensitive surfaces 21b and 22b face each other.

【0024】次に、動作について説明する。検出する直
線変位に応じて永久磁石4は磁気検出素子21,22の
間を長軸方向に変位し、磁気検出素子21,22には検
出する直線変位に対応した磁束方向あるいは磁束密度変
化が印加される。磁気検出素子21,22は、この磁束
変化に応じて磁気抵抗素子21a,22aの磁気抵抗パ
ターンの抵抗値が変化し、検出する直線変位に対応した
電圧を出力する。なお、この場合も、出力電圧は、磁気
抵抗パターンの抵抗値に比例して大きくなる。磁気検出
素子21,22からの出力電圧は、それぞれ出力端子2
1c,22cを介して外部に出力される。
Next, the operation will be described. The permanent magnet 4 is displaced in the major axis direction between the magnetic detection elements 21 and 22 in accordance with the detected linear displacement, and a magnetic flux direction or a change in magnetic flux density corresponding to the detected linear displacement is applied to the magnetic detection elements 21 and 22. To be done. The magnetic detection elements 21 and 22 change the resistance value of the magnetic resistance pattern of the magnetic resistance elements 21a and 22a according to the change of the magnetic flux, and output a voltage corresponding to the detected linear displacement. In this case as well, the output voltage increases in proportion to the resistance value of the magnetoresistive pattern. The output voltages from the magnetic detection elements 21 and 22 are output terminals 2 respectively.
It is output to the outside via 1c and 22c.

【0025】図7は、短軸方向の両端面を磁極面として
いる永久磁石4の変位と、その変位に対応して変化する
磁気検出素子21,22の出力電圧の関係を示したもの
である。同図において、電圧V1,V2は永久磁石4が0
を基準にして左右(−X側およびX側)に変位したとき
の磁気検出素子21,22の出力電圧のそれぞれの側に
おける最大値を実質的に表している。ここでは、永久磁
石4は、磁気検出素子21,22の感磁面の延長上に長
軸心がくるように磁気検出素子21,22と対向して長
軸方向に移動可能に配設され、かつ短軸方向の両端面を
磁極面としているため、図7(b)の符号4aで示すよ
うにそのニュートラルゾーンは、磁気検出素子21,2
2の感磁面に対して略平行の関係にあり、この場合、実
質的にニュートラルゾーンを使用していないので、その
影響を受けない。
FIG. 7 shows the relationship between the displacement of the permanent magnet 4 having the magnetic pole surfaces on both end faces in the minor axis direction and the output voltage of the magnetic detection elements 21 and 22 which changes corresponding to the displacement. . In the figure, the voltages V 1 and V 2 are 0 when the permanent magnet 4 is 0.
The maximum value on each side of the output voltage of the magnetic detection elements 21 and 22 when it is displaced to the left and right (-X side and X side) with respect to is substantially represented. Here, the permanent magnet 4 is arranged so as to be movable in the long axis direction so as to face the magnetic detection elements 21 and 22 so that the long axis lies on an extension of the magnetically sensitive surfaces of the magnetic detection elements 21 and 22. Moreover, since both end faces in the minor axis direction are magnetic pole faces, the neutral zone is the magnetic detection elements 21 and 2 as shown by reference numeral 4a in FIG. 7B.
It has a substantially parallel relationship with the magnetically sensitive surface of No. 2, and in this case, since the neutral zone is not substantially used, it is not affected.

【0026】従って、磁気検出素子21,22の出力電
圧の理想的な特性をそれぞれ図7(a)および図7
(c)の実線で示すような特性とすると、実際の磁気検
出素子21,22の出力電圧の特性は、それぞれ図7
(a)および図7(c)の破線で示すような特性とな
り、中点電圧(永久磁石4が停止しているときの磁気検
出素子21,22の出力電圧(V1+V2)/2相当)に
対して電圧D2(≪D1)なるずれを生じるのみで、略理
想的な特性に近い特性が得られる。この場合の特性のず
れも、着磁のずれや磁気検出素子と永久磁石の配置関係
のずれ等によるものと思われる。
Therefore, the ideal characteristics of the output voltages of the magnetic detection elements 21 and 22 are shown in FIGS. 7 (a) and 7 respectively.
If the characteristics shown by the solid line in (c) are used, the actual characteristics of the output voltages of the magnetic detection elements 21 and 22 are as shown in FIG.
The characteristics shown by the broken lines in (a) and FIG. 7 (c) correspond to the midpoint voltage (the output voltage (V 1 + V 2 ) / 2 of the magnetic detection elements 21 and 22 when the permanent magnet 4 is stopped). ), Only a deviation of voltage D 2 (<< D 1 ) is generated, and characteristics close to the ideal characteristics are obtained. The deviation of the characteristics in this case is also considered to be due to the deviation of the magnetization or the positional relationship between the magnetic detection element and the permanent magnet.

【0027】この図7(a)および図7(c)の特性か
らも分かるように、磁気検出素子21,22の出力電圧
は、理想的な特性に対してそのずれ量(D2)が小さい
ので、実質的に両方の特性は、相似の関係にある。従っ
て、実質的に1つの移動軸(永久磁石)を用いて2つの
信号を同時に取り出すことができ、2重系出力が可能に
なる。
As can be seen from the characteristics of FIGS. 7 (a) and 7 (c), the output voltage of the magnetic detection elements 21, 22 has a smaller deviation amount (D 2 ) from the ideal characteristics. Therefore, substantially both properties are in a similar relationship. Therefore, substantially one moving shaft (permanent magnet) can be used to take out two signals at the same time, and a dual system output is possible.

【0028】因に、上述の図8に示したような長手方向
に磁極面をもつ永久磁石に対して、これを挟むように一
対の磁気検出素子を設けた場合、理想的な特性に対する
ずれ量(D1)は図10に示したように大きいので、双
方の磁気検出素子から出力される出力電圧の特性は、相
似でなくなり、両方の信号を用いるには、もう1つ別の
移動軸を設けて直線変位検出装置を構成する必要があ
り、この場合、形状が大きくなり、また、コスト的にも
高価となる。なお、このような2重系出力が可能な一対
の磁気検出素子21,22を図4に示すような構造の直
線変位検出装置に組み込むには、図示せずも、永久磁石
4を挟んで磁気検出素子21,22を配置するようにす
ればよい。
By the way, when a pair of magnetic detection elements are provided so as to sandwich the permanent magnet having the magnetic pole surface in the longitudinal direction as shown in FIG. Since (D 1 ) is large as shown in FIG. 10, the characteristics of the output voltages output from both magnetic detection elements are not similar to each other, and in order to use both signals, another moving axis is required. It is necessary to provide the linear displacement detection device, and in this case, the shape becomes large and the cost becomes high. In order to incorporate the pair of magnetic detection elements 21 and 22 capable of outputting such a dual system into the linear displacement detection device having the structure shown in FIG. 4, although not shown, the permanent magnet 4 is sandwiched between the magnetic detection elements 21 and 22. The detection elements 21 and 22 may be arranged.

【0029】このように、本実施の形態でも、実施の形
態1と同様の効果が得られると共に、さらに、本実施の
形態では、短軸方向の両端面を磁極面としている永久磁
石に対してこれを挟んで所定間隔で感磁面が対向するよ
うに一対の磁気検出素子を配置したので、構成簡単且つ
安価にて2重系出力が可能になる。
As described above, in the present embodiment as well, the same effect as in the first embodiment can be obtained, and further, in the present embodiment, the permanent magnet having both pole faces in the minor axis direction is used. Since the pair of magnetic detection elements are arranged so that the magnetic sensitive surfaces face each other with a predetermined interval sandwiching this, the dual system output can be performed with a simple structure and at low cost.

【0030】実施の形態3. 上記実施の形態では、磁気検出素子の磁気抵抗パターン
は、出力パターンを中心に左右対称にハの字状に構成さ
れた櫛歯状パターンの場合であったが、その他の形状、
例えば、直交する櫛歯状のパターンでもよい。また、上
記実施の形態では、磁気検出素子として磁気抵抗素子を
用いた場合について説明したが、同様の機能が得られれ
ば、その他の素子、例えばホール素子を用いてもよい。
また、棒状の永久磁石の形状は角形でもよいし、或いは
円筒形でもよい。
Embodiment 3. In the above embodiment, the magnetic resistance pattern of the magnetic detection element is a comb tooth-shaped pattern symmetrically arranged in a V shape with respect to the output pattern, but other shapes,
For example, it may be a comb-teeth pattern that is orthogonal to each other. Further, in the above-described embodiment, the case where the magnetoresistive element is used as the magnetic detection element has been described, but other elements such as a Hall element may be used as long as the same function can be obtained .
The rod-shaped permanent magnet may have a rectangular shape or a cylindrical shape.

【0031】[0031]

【発明の効果】以上のように、請求項1記載の発明によ
れば、所定のパターンに形成された感磁面を有する磁気
検出素子と、単一の永久磁石であって、短軸方向の両端
面に磁極面を有し、この磁極面が磁気検出素子の感磁面
対向して開磁路を構成し、且つ磁気検出素子の感磁面
の延長上に長軸心がくるようにこの磁気検出素子と対向
して長軸方向に移動可能に配設された永久磁石とを備
え、この永久磁石の磁界角度変化により長軸方向の直線
変位を検出するようにしたので、磁気検出素子に強磁界
を印加でき、外部磁界および外部磁性体の影響を低減で
き、以て、取付環境に対して自由度ができ、装置に汎用
性を持たせることが可能になり、また、磁束方向変化を
検出する磁気検出素子の場合は飽和磁界以上の非常に安
定した領域での素子使用が可能となり、さらに、磁気検
出素子の出力電圧に対する永久磁石の着磁精度の影響度
を小さくできるという効果がある。
As described above, according to the first aspect of the invention, the magnetic detecting element having the magnetically sensitive surface formed in the predetermined pattern and the single permanent magnet are arranged in the short axis direction. The magnetic pole surfaces are provided on both end surfaces, the magnetic pole surfaces face the magnetic sensitive surface of the magnetic detection element to form an open magnetic path, and the major axis is located on the extension of the magnetic sensitive surface of the magnetic detection element. The permanent magnet is disposed so as to be opposed to the magnetic detection element so as to be movable in the long-axis direction, and the straight line in the long-axis direction is formed by changing the magnetic field angle of the permanent magnet.
Since the displacement is detected, a strong magnetic field can be applied to the magnetic detection element, the influence of the external magnetic field and the external magnetic substance can be reduced, and the flexibility of the mounting environment can be increased, and the device has general versatility. In addition, in the case of a magnetic detection element that detects changes in the magnetic flux direction, it is possible to use the element in a very stable region above the saturation magnetic field. This has the effect of reducing the influence of the magnetization accuracy.

【0032】請求項2記載の発明によれば、所定のパタ
ーンに形成された感磁面を有し、この感磁面が相互に所
定間隔で対向するように配置された複数の磁気検出素子
と、短軸方向の両端面に磁極面を有し、この磁極面が複
数の磁気検出素子の感磁面に対向させられ、且つ長軸方
向に移動可能に複数の磁気検出素子の間に配設された永
久磁石とを備え、この永久磁石の長軸方向の変位を検出
するようにしたので、磁気検出素子に強磁界を印加で
き、外部磁界および外部磁性体の影響を低減でき、以
て、取付環境に対して自由度ができ、装置に汎用性を持
たせることが可能になり、また、磁束方向変化を検出す
る磁気検出素子の場合は飽和磁界以上の非常に安定した
領域での素子使用が可能となり、さらに、磁気検出素子
の出力電圧に対する永久磁石の着磁精度の影響度を小さ
くでき、しかも、構成簡単且つ安価にて2重系出力が可
能になるという効果がある。
According to the second aspect of the present invention, there are provided a plurality of magnetic sensing elements, each of which has a magnetic sensitive surface formed in a predetermined pattern, and the magnetic sensitive surfaces are arranged to face each other at a predetermined interval. , Having magnetic pole surfaces on both end surfaces in the short axis direction, the magnetic pole surfaces being opposed to the magnetically sensitive surfaces of the plurality of magnetic detection elements and being arranged between the plurality of magnetic detection elements so as to be movable in the long axis direction. Since it is configured to detect the displacement of the permanent magnet in the long axis direction, it is possible to apply a strong magnetic field to the magnetic detection element and reduce the influence of the external magnetic field and the external magnetic body. The degree of freedom for the mounting environment can be increased and the device can be made more versatile. In the case of a magnetic detection element that detects changes in the magnetic flux direction, use the element in a very stable region above the saturation magnetic field. It is also possible to maintain the output voltage of the magnetic sensing element. It is possible to reduce the wear 磁精 degree of influence of the magnet, moreover, there is an effect that it is possible to duplex system output at construction simple and inexpensive.

【0033】請求項3記載の発明によれば、請求項1ま
たは2の発明において、永久磁石の長軸方向寸法Lと検
出変位Xとの比率X/Lを0.8〜1.2としたので、
出力直線性を最適にでき、永久磁石の長手方向寸法を短
縮でき、以て、小型化、コストの低減が可能となり、ま
た、検出する直線変位に対応して決定される永久磁石の
長手方向寸法の構成上の余裕度が大きくできるという効
果がある。
According to the invention of claim 3, in the invention of claim 1 or 2, the ratio X / L of the dimension L of the permanent magnet in the longitudinal direction and the detected displacement X is 0.8 to 1.2. So
The output linearity can be optimized and the dimension of the permanent magnet in the longitudinal direction can be shortened. As a result, downsizing and cost reduction can be achieved, and the dimension of the permanent magnet in the longitudinal direction is determined according to the linear displacement to be detected. This has the effect of increasing the margin in terms of configuration.

【0034】請求項4記載の発明によれば、請求項1〜
3のいずれかの発明において、磁気検出素子の感磁面は
櫛歯状パターンが左右対称にハの字状に構成されたパタ
ーンに形成したので、磁気検出素子の出力電圧の直線域
を有効に利用できるという効果がある。
According to the invention of claim 4, claim 1
In any one of the inventions of Claim 3, the magnetically sensitive surface of the magnetic detecting element is formed in a pattern in which the comb-teeth pattern is symmetrically arranged in a V shape, so that the linear region of the output voltage of the magnetic detecting element is effectively made. There is an effect that it can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1を模式的に示す平面
図である。
FIG. 1 is a plan view schematically showing a first embodiment of the present invention.

【図2】 この発明の実施の形態1の動作説明に供する
ための特性図である。
FIG. 2 is a characteristic diagram for explaining the operation of the first embodiment of the present invention.

【図3】 この発明の実施の形態1の動作説明に供する
ための特性図である。
FIG. 3 is a characteristic diagram for explaining the operation of the first embodiment of the present invention.

【図4】 この発明の実施の形態1に係る直線変位検出
装置の全体の構成を示す断面図である。
FIG. 4 is a sectional view showing the overall configuration of the linear displacement detection device according to the first embodiment of the present invention.

【図5】 図4の線I−Iの断面図である。5 is a cross-sectional view taken along the line I-I of FIG.

【図6】 この発明の実施の形態2を模式的に示す平面
図である。
FIG. 6 is a plan view schematically showing a second embodiment of the present invention.

【図7】 この発明の実施の形態2の動作説明に供する
ための特性図である。
FIG. 7 is a characteristic diagram for explaining the operation of the second embodiment of the present invention.

【図8】 従来の直線変位検出装置を模式的に示す平面
図である。
FIG. 8 is a plan view schematically showing a conventional linear displacement detection device.

【図9】 従来の直線変位検出装置の動作説明に供する
ための特性図である。
FIG. 9 is a characteristic diagram for explaining the operation of the conventional linear displacement detection device.

【図10】 従来の直線変位検出装置の動作説明に供す
るための特性図である。
FIG. 10 is a characteristic diagram for explaining the operation of the conventional linear displacement detection device.

【符号の説明】[Explanation of symbols]

3,21,22 磁気検出素子、3a,21a,22a
磁気抵抗素子(磁気抵抗パターン)、3b,21b,
22b 感磁面、4 棒状の永久磁石。
3,21,22 Magnetic detection elements 3a, 21a, 22a
Magnetoresistive element (magnetoresistive pattern) 3b, 21b,
22b Magnetic sensitive surface, 4 bar-shaped permanent magnet.

フロントページの続き (72)発明者 福井 渉 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 大橋 豊 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平7−4905(JP,A) 特開 平5−280916(JP,A) 特開 昭57−153215(JP,A) 特開 昭52−96047(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 7/00 G01D 5/18 G01D 5/245 G01R 33/09 Front page continued (72) Inventor Wataru Fukui 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Yutaka Ohashi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (56) References JP-A-7-4905 (JP, A) JP-A-5-280916 (JP, A) JP-A-57-153215 (JP, A) JP-A-52-96047 (JP, A) ( 58) Fields investigated (Int.Cl. 7 , DB name) G01B 7/00 G01D 5/18 G01D 5/245 G01R 33/09

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定のパターンに形成された感磁面を有
する磁気検出素子と、単一の永久磁石であって、 短軸方向の両端面に磁極面を
有し、該磁極面が上記磁気検出素子の感磁面に対向して
開磁路を構成し、且つ上記磁気検出素子の感磁面の延長
上に長軸心がくるように該磁気検出素子と対向して長軸
方向に移動可能に配設された永久磁石とを備え、 該永久磁石の磁界角度変化により上記長軸方向の直線変
を検出するようにしたことを特徴とする直線変位検出
装置。
1. A magnetic detection element having a magnetically sensitive surface formed in a predetermined pattern, and a single permanent magnet having magnetic pole surfaces on both end surfaces in the minor axis direction, the magnetic pole surface being the magnetic field. opposite the sensitive detection elements magnetized surface
A permanent magnet that constitutes an open magnetic path and that is arranged so as to be movable in the long axis direction facing the magnetic detection element so that the long axis lies on an extension of the magnetically sensitive surface of the magnetic detection element. The magnetic field angle of the permanent magnet is changed to change the linear axis in the long axis direction.
A linear displacement detection device characterized in that the position is detected.
【請求項2】 所定のパターンに形成された感磁面を有
し、該感磁面が相互に所定間隔で対向するように配置さ
れた複数の磁気検出素子と、 短軸方向の両端面に磁極面を有し、該磁極面が上記複数
の磁気検出素子の感磁面に対向させられ、且つ長軸方向
に移動可能に上記複数の磁気検出素子の間に配設された
永久磁石とを備え、該永久磁石の上記長軸方向の変位を
検出するようにしたことを特徴とする直線変位検出装
置。
2. A plurality of magnetic detection elements each having a magnetically sensitive surface formed in a predetermined pattern and arranged so that the magnetically sensitive surfaces face each other at a predetermined distance, and both end surfaces in the minor axis direction. A permanent magnet having a magnetic pole surface, the magnetic pole surface being opposed to the magnetically sensitive surfaces of the plurality of magnetic detection elements and movably in the long axis direction between the plurality of magnetic detection elements. A linear displacement detection device, comprising: the displacement of the permanent magnet in the long axis direction.
【請求項3】 上記永久磁石の長軸方向寸法Lと検出変
位Xとの比率X/Lを0.8〜1.2とすることを特徴
とする請求項1または2記載の直線変位検出装置。
3. The linear displacement detection device according to claim 1, wherein a ratio X / L of the dimension L of the permanent magnet in the long axis direction and the detected displacement X is 0.8 to 1.2. .
【請求項4】 上記磁気検出素子の感磁面は櫛歯状パタ
ーンが左右対称にハの字状に構成されたパターンに形成
されていることを特徴とする請求項1〜3のいずれかに
記載の直線変位検出装置。
4. The magnetically sensitive surface of the magnetic detection element is formed in a pattern in which a comb-shaped pattern is symmetrically arranged in a V shape. The linear displacement detection device described.
JP10559396A 1996-04-25 1996-04-25 Linear displacement detector Expired - Lifetime JP3400641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10559396A JP3400641B2 (en) 1996-04-25 1996-04-25 Linear displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10559396A JP3400641B2 (en) 1996-04-25 1996-04-25 Linear displacement detector

Publications (2)

Publication Number Publication Date
JPH09292202A JPH09292202A (en) 1997-11-11
JP3400641B2 true JP3400641B2 (en) 2003-04-28

Family

ID=14411806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10559396A Expired - Lifetime JP3400641B2 (en) 1996-04-25 1996-04-25 Linear displacement detector

Country Status (1)

Country Link
JP (1) JP3400641B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759845B2 (en) * 2001-05-21 2011-08-31 パナソニック株式会社 Rotation angle detector
JP2007333490A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2007333489A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
KR101564234B1 (en) * 2007-12-03 2015-10-29 시티에스 코포레이션 Linear position sensor
JP5014968B2 (en) * 2007-12-07 2012-08-29 株式会社東海理化電機製作所 Position sensor
JP5373580B2 (en) * 2009-12-16 2013-12-18 株式会社東海理化電機製作所 Position detection device
JP5875947B2 (en) * 2012-06-22 2016-03-02 株式会社東海理化電機製作所 Magnetic sensor device

Also Published As

Publication number Publication date
JPH09292202A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
US5493216A (en) Magnetic position detector
EP0215454B1 (en) Position detecting apparatus utilizing a magnetic sensor
US6922052B2 (en) Measuring device for contactless detecting a ferromagnetic object
JP5867235B2 (en) Magnetic sensor device
US6160395A (en) Non-contact position sensor
US7521922B2 (en) Linear position sensor
JP5535139B2 (en) Proximity sensor
JPH11304415A (en) Magnetism detecting device
KR20140133876A (en) Magnetic sensor
EP3171126A1 (en) Temperature tolerant magnetic linear displacement sensor
JP3400641B2 (en) Linear displacement detector
EP2339362A1 (en) Magnetic sensor module and piston position detector
US7521923B2 (en) Magnetic displacement transducer
JP2002228733A (en) Magnetism detecting device
JP3666441B2 (en) Position detection device
WO2006020626A1 (en) Precision non-contact digital switch
EP3252426B1 (en) Displacement detection device
JPH02298815A (en) Rotational angle sensor
JPH0676706A (en) Proximity switch for magnetic body detection
JPH04301702A (en) Detecting method for electromagnetic characteristics changing part and device thereof
WO2013054384A1 (en) Location detector device
JPH0666504A (en) Detector of linear displacement
JP2514338B2 (en) Current detector
JP2514346B2 (en) Current detector
JP3671313B2 (en) Displacement detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term