JP3376172B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP3376172B2
JP3376172B2 JP16200595A JP16200595A JP3376172B2 JP 3376172 B2 JP3376172 B2 JP 3376172B2 JP 16200595 A JP16200595 A JP 16200595A JP 16200595 A JP16200595 A JP 16200595A JP 3376172 B2 JP3376172 B2 JP 3376172B2
Authority
JP
Japan
Prior art keywords
purge
air
fuel ratio
fuel
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16200595A
Other languages
Japanese (ja)
Other versions
JPH0914062A (en
Inventor
渡邊  悟
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP16200595A priority Critical patent/JP3376172B2/en
Publication of JPH0914062A publication Critical patent/JPH0914062A/en
Application granted granted Critical
Publication of JP3376172B2 publication Critical patent/JP3376172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の空燃比制御
装置に関し、詳しくは蒸発燃料処理装置を備えた機関の
空燃比制御技術の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly to an improvement of an air-fuel ratio control technique for an engine equipped with an evaporated fuel processing system.

【0002】[0002]

【従来の技術】従来より、燃料タンク等の燃料供給系内
において発生する蒸発燃料の大気中への放出による大気
汚染拡大防止対策として、該蒸発燃料を一旦キャニスタ
と称される吸着手段に吸着させ、この吸着燃料を機関運
転中にキャニスタから脱離(パージ)させたパージガス
(パージ燃料と、脱離時にキャニスタに導入される外気
と、の混合気)を吸入空気中に導入させて処理(以下、
パージ処理と言う)するようにした蒸発燃料処理装置が
知られており、例えば、図6に示すようなものがある。
2. Description of the Related Art Conventionally, as a measure for preventing the spread of vaporized fuel generated in a fuel supply system such as a fuel tank into the atmosphere, the vaporized fuel is once adsorbed by an adsorption means called a canister. , The adsorbed fuel is purged from the canister during engine operation (purge gas) (a mixture of purge fuel and the outside air introduced into the canister at the time of desorption) is introduced into the intake air for treatment (hereinafter ,
There is known an evaporative fuel treatment device which is called a purge process, and there is, for example, one shown in FIG.

【0003】このものは、燃料タンク11の上部空間に逆
止弁12を介して連通しているキャニスタ5と機関1の吸
気通路2との連通を開閉(ON・OFF)するパージ制
御弁3をパージ通路4に介装し、前記パージ制御弁3の
ON時に機関吸入負圧によってキャニスタ5からパージ
ガスを吸気系に外気と共に吸引させるものである。な
お、前記パージ制御弁3の開度(例えば、パージ制御弁
としてデューティ制御弁を用いる場合は、所定ON・O
FF周期中のON時間割合等)は、コントロールユニッ
ト10からの駆動信号に基づいて、所定のパージ率(パー
ジガス量/新気吸入空気量)が得られるように制御され
るようになっている。
This one has a purge control valve 3 for opening and closing (ON / OFF) communication between a canister 5 communicating with an upper space of a fuel tank 11 via a check valve 12 and an intake passage 2 of an engine 1. It is interposed in the purge passage 4 and sucks the purge gas from the canister 5 into the intake system together with the outside air by the engine suction negative pressure when the purge control valve 3 is turned on. The opening of the purge control valve 3 (for example, when a duty control valve is used as the purge control valve, a predetermined ON / O
The ON time ratio in the FF cycle, etc.) is controlled based on the drive signal from the control unit 10 so that a predetermined purge rate (purge gas amount / fresh air intake air amount) can be obtained.

【0004】[0004]

【発明の解決すべき課題】ところで、パージガスは、パ
ージ燃料と、脱離時にキャニスタに導入される外気と、
の混合気であるから、所定の燃料濃度(以下、パージ濃
度とも言う)を有する。従って、パージ処理中にあって
も、目標空燃比が得られるようにするためには、排気通
路6に設けた空燃比センサ7の検出値に基づいて、燃料
噴射弁14から噴射される燃料量(或いは吸入空気流量
でもよい)を制御する所謂空燃比フィードバック制御を
行なう必要があるが、かかる場合において、空燃比セン
サ7の検出遅れや、パージガス量やパージ濃度が経時的
に変化する場合があり、かつ、パージ通路4の開口部4
Aと燃料噴射弁14及び空燃比センサ7等とは離れてい
るため、従来同様の方法で空燃比センサ7の検出値に基
づいて燃料噴射弁14からの燃料噴射量の補正を行なう
と、例えば、経時的なパージ量変化やパージ濃度変化
と、これを補正すべくなされるはずの燃料補正と、の間
で位相ズレが生じ、最悪の場合には制御ハンチング、即
ち却って空燃比の変動が大きくなってしまうという恐れ
があった。
By the way, the purge gas is composed of the purge fuel and the outside air introduced into the canister during desorption.
Therefore, it has a predetermined fuel concentration (hereinafter, also referred to as purge concentration). Therefore, in order to obtain the target air-fuel ratio even during the purging process, the fuel amount injected from the fuel injection valve 14 is determined based on the detection value of the air-fuel ratio sensor 7 provided in the exhaust passage 6. It is necessary to perform so-called air-fuel ratio feedback control for controlling (or the intake air flow rate), but in such a case, the detection delay of the air-fuel ratio sensor 7 and the purge gas amount and purge concentration may change over time. And the opening 4 of the purge passage 4
Since A is separated from the fuel injection valve 14, the air-fuel ratio sensor 7 and the like, if the fuel injection amount from the fuel injection valve 14 is corrected based on the detection value of the air-fuel ratio sensor 7 by a method similar to the conventional one, for example, , A phase shift occurs between the change of the purge amount and the change of the purge concentration over time and the fuel correction that is supposed to be corrected, and in the worst case, the control hunting, that is, the change of the air-fuel ratio is large. There was a fear of becoming.

【0005】本発明は、かかる従来の実情に鑑みなされ
たもので、パージ処理中の空燃比制御を、より一層高精
度化することができるようにした内燃機関の空燃比制御
装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and provides an air-fuel ratio control device for an internal combustion engine capable of further improving the accuracy of the air-fuel ratio control during the purging process. With the goal.

【0006】[0006]

【課題を解決するための手段】このため、請求項1に記
載の発明にかかる内燃機関の空燃比制御装置は、図1に
示すように、燃料タンク等で発生した蒸発燃料を一時的
に吸着して貯留する吸着手段と、該吸着手段と機関吸気
系とを接続する通路に介装され、所定の機関運転条件
で、前記吸着手段に貯留された蒸発燃料をパージさせ前
記吸気系にパージガスとして導入させるべく所定開度に
制御されるパージ制御弁と、を含んで構成した内燃機関
の空燃比制御装置において、機関運転状態に応じて燃料
供給手段から供給する燃料供給量を設定する燃料供給量
設定手段と、排気中の特定成分濃度を検出して機関吸入
混合気の空燃比を検出する空燃比検出手段と、前記空燃
比検出手段の検出値に基づいて空燃比変化量を検出する
空燃比変化量検出手段と、パージ時における蒸発燃料の
パージ変化量を検出するパージ変化量検出手段と、前記
検出されたパージ変化量を所定時間毎に記憶するパージ
変化量記憶手段と、パージガスが吸気系に導入されてか
ら前記空燃比検出手段により検出されるまでのパージ検
出遅れ時間を演算するパージ検出遅れ演算手段と、前記
演算されたパージ検出遅れ時間に基づいて、現時点での
空燃比変化量に影響を与えたパージ変化量を、前記パー
ジ変化量記憶手段を介して特定する検出パージ変化量特
定手段と、パージガスが吸気系に導入されてから燃焼さ
れるまでのパージ燃焼遅れ時間を演算するパージ燃焼遅
れ演算手段と、前記演算されたパージ燃焼遅れ時間に基
づいて、次回燃焼時に燃焼されるパージ変化量を、前記
パージ変化量記憶手段を介して特定する燃焼パージ変化
量特定手段と、前記特定された検出パージ変化量と、現
時点での空燃比変化量と、前記特定された燃焼パージ変
化量と、に基づいて、前記燃料供給量設定手段で設定さ
れた次回燃焼のための燃料噴射量を補正する燃料供給量
補正手段と、を含んで構成した。
Therefore, as shown in FIG. 1, an air-fuel ratio control system for an internal combustion engine according to a first aspect of the present invention temporarily adsorbs evaporated fuel generated in a fuel tank or the like. And adsorbing means for storing the adsorbing means and the passage connecting the adsorbing means and the engine intake system, and purging the evaporated fuel stored in the adsorbing means as purge gas under the predetermined engine operating conditions. In an air-fuel ratio control device for an internal combustion engine that includes a purge control valve that is controlled to a predetermined opening degree to be introduced, a fuel supply amount that sets the fuel supply amount supplied from the fuel supply means according to the engine operating state. Setting means, air-fuel ratio detecting means for detecting a specific component concentration in the exhaust gas to detect the air-fuel ratio of the engine intake air-fuel mixture, and air-fuel ratio for detecting an air-fuel ratio change amount based on the detection value of the air-fuel ratio detecting means. Change detection hand When the purge variation amount detecting means for detecting a purge amount of change in the fuel vapor during the purge, the purge variation amount storage means for storing the detected purged change amount for each predetermined time, a purge gas is introduced into the intake system Based on the calculated purge detection delay time and the purge detection delay calculation means for calculating the purge detection delay time from the above to the detection by the air-fuel ratio detection means, the air-fuel ratio change amount at the present time is affected. Detected purge change amount specifying means for specifying the purge change amount via the purge change amount storage means, and purge combustion delay calculation means for calculating the purge combustion delay time from when the purge gas is introduced into the intake system to when it is burned. And based on the calculated purge combustion delay time, the purge change amount to be burned at the next combustion is specified through the purge change amount storage means. Based on the combustion purge change amount specifying unit, the specified detected purge change amount, the current air-fuel ratio change amount, and the specified combustion purge change amount, set by the fuel supply amount setting unit. And a fuel supply amount correction means for correcting the fuel injection amount for the next combustion.

【0007】請求項2に記載の発明では、前記空燃比変
化量検出手段により検出された空燃比変化量が、所定の
値に維持されるように、パージ制御弁の開度を補正する
パージ制御弁開度補正手段を含んで構成した。請求項3
に記載の発明では、前記パージ検出遅れ演算手段を、吸
気輸送遅れ時間と、充填効率による補正時間と、空燃比
検出手段までの排気通路長さと、空燃比検出手段の応答
遅れ時間と、に基づいて、パージ検出遅れ時間を演算す
るように構成した。
According to the second aspect of the present invention, the purge control for correcting the opening of the purge control valve so that the air-fuel ratio change amount detected by the air-fuel ratio change amount detecting means is maintained at a predetermined value. The valve opening correction means is included. Claim 3
In the invention described in the above paragraph, the purge detection delay calculation means is based on the intake transportation delay time, the correction time by the filling efficiency, the exhaust passage length to the air-fuel ratio detection means, and the response delay time of the air-fuel ratio detection means. Then, the purge detection delay time is calculated.

【0008】請求項4に記載の発明では、前記パージ燃
焼遅れ演算手段を、吸気輸送遅れ時間と、充填効率によ
る補正時間と、に基づいて、パージ燃焼遅れ時間を演算
するように構成した。
According to the fourth aspect of the present invention, the purge combustion delay calculating means is configured to calculate the purge combustion delay time based on the intake transportation delay time and the correction time based on the charging efficiency.

【0009】[0009]

【作用】上記の構成を備える請求項1に記載の発明で
は、パージガスの輸送遅れを考慮しつつ、排気空燃比の
変化に基づいて、次回燃焼される予定のパージガス濃度
(量)に対応させた燃料供給量の補正を行えるようにす
る。これにより、パージ処理中の空燃比制御の制御ハン
チング、延いては空燃比変動を抑制することができるよ
うになる。
According to the first aspect of the invention having the above-described structure, the purge gas concentration (amount) scheduled to be burned next time is made to correspond to the change in the exhaust air-fuel ratio while taking into account the transport delay of the purge gas. Enables correction of fuel supply. As a result, it becomes possible to suppress the control hunting of the air-fuel ratio control during the purging process, and consequently the air-fuel ratio fluctuation.

【0010】請求項2に記載の発明では、所定(例え
ば、略一定)の空燃比変化、即ち所定のパージ変化量と
なるように、パージ制御弁の開度を補正するようにした
ので、パージガスによる空燃比変動をより一層抑制する
ことができるので、以って空燃比制御をより一層高精度
化することができる。請求項3,請求項4に記載の発明
では、パージ検出遅れ時間,パージ燃焼遅れ時間に影響
を与える各因子に基づいて、パージ検出遅れ時間,パー
ジ燃焼遅れ時間を演算させるようにしたので、機種毎或
いは設計変更毎に実験等を行わずとも、各因子の特性を
適宜変更させることで、容易にパージ検出遅れ時間,パ
ージ燃焼遅れ時間を、実際の値にマッチングさせること
ができる。
According to the second aspect of the present invention, since the opening of the purge control valve is corrected so that a predetermined (for example, substantially constant) air-fuel ratio change, that is, a predetermined purge change amount is obtained, the purge gas is purged. Since it is possible to further suppress the fluctuation of the air-fuel ratio, it is possible to further improve the accuracy of the air-fuel ratio control. According to the third and fourth aspects of the invention, the purge detection delay time and the purge combustion delay time are calculated based on the factors that affect the purge detection delay time and the purge combustion delay time. It is possible to easily match the purge detection delay time and the purge combustion delay time with the actual values by appropriately changing the characteristics of each factor without performing an experiment or the like for each time or for each design change.

【0011】[0011]

【実施例】以下に、本発明の一実施例を、添付の図面に
基づいて説明する。なお、従来の図6に示す符号と共通
のものは、共通の符号を付して説明する。図2におい
て、機関1の吸気通路2には、図示しないエアクリーナ
を介して吸入される吸気の吸入空気流量Qを検出するエ
アフローメータ9及びアクセルペダルと連動して吸入空
気流量Qを制御するスロットル弁8が設けられ、下流の
マニホールド部分には気筒毎に電磁式の燃料噴射弁14が
設けられている。なお、スロットル弁8の開度TVOを
検出するスロットルセンサ8A(全閉状態を検出するア
イドルスイッチでもよい)が設けられている。
An embodiment of the present invention will be described below with reference to the accompanying drawings. It should be noted that common reference numerals shown in FIG. In FIG. 2, an intake passage 2 of an engine 1 includes an air flow meter 9 for detecting an intake air flow rate Q of intake air drawn through an air cleaner (not shown) and a throttle valve for controlling the intake air flow rate Q in conjunction with an accelerator pedal. 8 is provided, and an electromagnetic fuel injection valve 14 is provided for each cylinder in the downstream manifold portion. A throttle sensor 8A that detects the opening TVO of the throttle valve 8 (may be an idle switch that detects a fully closed state) is provided.

【0012】燃料噴射弁14は、マイクロコンピュータを
内蔵したコントロールユニット10において後述するよう
な方法で設定される噴射パルス信号によって開弁駆動さ
れ、所定量に調量された燃料を噴射供給する。なお、燃
料タンク11内には燃料ポンプ18が装着され、該燃料ポン
プ18から圧送された燃料がプレッシャレギュレータ19を
介装した燃料供給通路20を経て所定の圧力に調整されて
前記燃料噴射弁14に供給される。前記プレッシャレギュ
レータ19からの余剰燃料はリターン燃料通路21を介して
燃料タンク11に戻されるようになっている。
The fuel injection valve 14 is opened and driven by an injection pulse signal set by a method which will be described later in the control unit 10 having a built-in microcomputer, and injects and supplies a predetermined amount of fuel. A fuel pump 18 is mounted in the fuel tank 11, and the fuel pumped from the fuel pump 18 is adjusted to a predetermined pressure via a fuel supply passage 20 having a pressure regulator 19 interposed therebetween, and the fuel injection valve 14 Is supplied to. Excess fuel from the pressure regulator 19 is returned to the fuel tank 11 via a return fuel passage 21.

【0013】排気通路6には、マニホールド集合部に排
気中酸素濃度を検出することによって吸入混合気の空燃
比を検出する本発明の空燃比検出手段としての空燃比セ
ンサ7が設けられ、その下流側には、所定空燃比(例え
ば、理論空燃比)下において排気中のCO,HCの酸化
とNOX の還元を行って浄化する排気浄化触媒としての
図示しない三元触媒が設けられる。
The exhaust passage 6 is provided with an air-fuel ratio sensor 7 as an air-fuel ratio detecting means of the present invention for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold collecting portion, and the downstream thereof. on the side, a predetermined air-fuel ratio (e.g., stoichiometric air-fuel ratio) CO in the exhaust at the bottom, three-way catalyst (not shown) as an exhaust purifying catalyst for purifying performing the reduction of oxidation and nO X of HC is provided.

【0014】また、図2で図示しないディストリビュー
タには、クランク角センサ15が内蔵されており、該クラ
ンク角センサ15から機関回転と同期して出力されるクラ
ンク単位角信号を一定時間カウントして、又は、クラン
ク基準角信号の周期を計測して機関回転速度Neを検出
する。コントロールユニット10は、前記各種センサ類に
より検出された値に基づいて目標空燃比に見合った燃料
量を演算し、該燃料量に対応するパルス幅を持つ噴射パ
ルス信号を燃料噴射弁14に出力するようになっている。
A crank angle sensor 15 is built in a distributor (not shown in FIG. 2), and a crank unit angle signal output from the crank angle sensor 15 in synchronization with the engine rotation is counted for a certain period of time. Alternatively, the engine speed Ne is detected by measuring the cycle of the crank reference angle signal. The control unit 10 calculates a fuel amount corresponding to the target air-fuel ratio based on the values detected by the various sensors, and outputs an injection pulse signal having a pulse width corresponding to the fuel amount to the fuel injection valve 14. It is like this.

【0015】即ち、前記エアフローメータ9により検出
される吸入空気流量Qと、クランク角センサ15のパルス
信号を一定時間カウントして求めた機関回転速度Ne
と、から、基本燃料噴射パルス幅(燃料噴射量に相当す
る)Tp(Tp=k×Q/Ne,kは定数)を設定する
一方で、機関運転状態に応じた各種補正係数COEF
と、空燃比フィードバック補正係数αと、学習補正係数
L と、バッテリ電圧による電磁式燃料噴射弁の有効開
弁時間の変化を補正するための補正分Tsとをそれぞれ
求め、実際の空燃比が目標空燃比となるように、前記基
本燃料噴射パルス幅Tp を補正演算して最終的な燃料噴
射パルス幅Ti =Tp・COEF・α・KL +Ts
を設定するようになっている。このコントロールユニッ
ト10による燃料噴射量の設定が、本発明の燃料供給量
設定手段に相当する。
That is, the engine rotation speed Ne obtained by counting the intake air flow rate Q detected by the air flow meter 9 and the pulse signal of the crank angle sensor 15 for a certain period of time.
From the following, while the basic fuel injection pulse width (corresponding to the fuel injection amount) Tp (Tp = k × Q / Ne, k is a constant) is set, various correction coefficients COEF according to the engine operating state are set.
, The air-fuel ratio feedback correction coefficient α, the learning correction coefficient K L, and the correction amount Ts for correcting the change in the effective opening time of the electromagnetic fuel injection valve due to the battery voltage, respectively, and the actual air-fuel ratio is calculated. so that a target air-fuel ratio, a final fuel injection pulse width the basic fuel injection pulse width Tp correction operation to Ti = Tp · COEF · α · K L + Ts
Is set. The setting of the fuel injection amount by the control unit 10 corresponds to the fuel supply amount setting means of the present invention.

【0016】なお、前記各種補正係数COEFは、例え
ば、COEF=1+KMR+KTW+K AS+KAI+・・・な
る式で演算されるものであり、ここで、KMRは空燃比補
正係数、KTWは水温増量補正係数、KASは始動及び始動
後増量補正係数、KAIはアイドル後増量補正係数であ
る。前記空燃比フィードバック補正係数αは、前記空燃
比センサ7の排気空燃比の検出結果に基づいて比例・積
分制御などにより増減されるもので、これにより機関の
吸入混合気の実際の空燃比を目標空燃比(例えば、理論
空燃比)に制御可能とするものである。当該空燃比フィ
ードバック補正係数αにより行なわれる制御が、所謂空
燃比フィードバック制御に相当する。なお、補正係数α
による補正でなく、補正燃料量を基本燃料噴射量に対し
て加算,減算等することで目標空燃比に制御させる構成
としてもよい。
The various correction coefficients COEF are, for example,
For example, COEF = 1 + KMR+ KTW+ K AS+ KAI+ ...
Is calculated by the following formula, where KMRIs the air-fuel ratio supplement
Positive coefficient, KTWIs the water temperature increase correction coefficient, KASStart and start
Post-increase correction coefficient, KAIIs the increase correction coefficient after idle
It The air-fuel ratio feedback correction coefficient α is equal to the air-fuel ratio.
Proportional / product based on the exhaust air-fuel ratio detection result of the ratio sensor 7.
It is increased or decreased by minute control, etc.
The actual air-fuel ratio of the intake air-fuel mixture is set to the target air-fuel ratio (for example, theoretical
The air-fuel ratio) can be controlled. The air-fuel ratio
The control performed by the feedback correction coefficient α is the so-called empty
It corresponds to the fuel ratio feedback control. The correction coefficient α
The correction fuel amount to the basic fuel injection amount
Controlled to the target air-fuel ratio by adding, subtracting, etc.
May be

【0017】また、空燃比フィードバック制御中の空燃
比フィードバック補正係数αの基準値(例えば、1.0 )
からの偏差を、予め定めた機関運転状態毎のエリア毎に
学習して学習補正係数KL を定めることで、前記燃料噴
射量の演算にあって、基本燃料噴射量Tp を学習補正係
数KL により補正して、前記空燃比フィードバック補正
係数αによる補正なしで(α=1.0としたときに)演
算される燃料噴射量Tiにより目標空燃比が得られるよ
うにして、運転条件が変化したとき等に空燃比フィード
バック補正係数αが取得できる前から応答性よく空燃比
制御精度を向上させるようになっている。
The reference value of the air-fuel ratio feedback correction coefficient α during the air-fuel ratio feedback control (for example, 1.0)
Deviations from, by determining the predetermined learned for each area of each engine operating state learning correction coefficient K L, the In the calculation of the fuel injection amount, the learning correction coefficient a basic fuel injection amount Tp K L And the operating condition is changed so that the target air-fuel ratio can be obtained by the fuel injection amount Ti calculated without correction by the air-fuel ratio feedback correction coefficient α (when α = 1.0). The air-fuel ratio control accuracy is improved with good responsiveness before the air-fuel ratio feedback correction coefficient α can be acquired.

【0018】ところで、燃料タンク11の上部空間に溜ま
る蒸発燃料は、チェックバルブ12を介装した蒸発燃料通
路13を介してキャニスタ5に導かれ、キャニスタ5に一
時的に吸着される。このキャニスタ5内に一時的に吸着
された蒸発燃料は、所定の運転条件で、コントロールユ
ニット10により予め定めた目標パージ率が得られるよう
に開弁制御されるパージ制御弁3を介装したパージ通路
4を経てスロットル弁8下流で吸気通路2に導入される
ようになっている。
By the way, the evaporated fuel accumulated in the upper space of the fuel tank 11 is guided to the canister 5 through the evaporated fuel passage 13 having the check valve 12 and is temporarily adsorbed to the canister 5. The vaporized fuel temporarily adsorbed in the canister 5 is purged through a purge control valve 3 whose opening is controlled by the control unit 10 so as to obtain a predetermined target purge rate under predetermined operating conditions. It is adapted to be introduced into the intake passage 2 downstream of the throttle valve 8 via the passage 4.

【0019】ここで、本発明の空燃比変化量検出手段、
パージ変化量検出手段、パージ変化量記憶手段、パージ
検出遅れ演算手段、検出パージ変化量特定手段、パージ
燃焼遅れ演算手段、燃焼パージ変化量特定手段、燃料供
給量補正手段、パージ制御弁開度補正手段として機能す
るコントロールユニット10が行なう空燃比制御及びパー
ジ制御について、図3のフローチャート(メインルーチ
ン)に従って説明する。ここでは、アイドル運転時につ
いて説明するが、これに限るものではなく、定常状態で
あれば他の運転領域で当該制御を行なうことが可能であ
る。
Here, the air-fuel ratio change amount detecting means of the present invention,
Purge change amount detecting means, purge change amount storing means, purge detection delay calculating means, detected purge change amount specifying means, purge combustion delay calculating means, combustion purge change amount specifying means, fuel supply amount correcting means, purge control valve opening correction The air-fuel ratio control and purge control performed by the control unit 10 functioning as a means will be described with reference to the flowchart (main routine) of FIG. Here, the idle operation will be described, but the present invention is not limited to this, and the control can be performed in another operation region in a steady state.

【0020】ステップ(図ではSと記す。以下、同様)
1では、現在の運転状態が、アイドル運転状態であるか
否かを、機関回転速度Neやスロットルセンサ8A等の
検出信号に基づいて判断する。YESであればステップ
2へ進み、NOであれば本フローを終了する。なお、定
常運転状態であることを検出するようにしてもよい。ス
テップ2では、パージディレイ時間等を演算すべく、サ
ブルーチンAを実行する。
Step (denoted by S in the figure. The same applies hereinafter)
In No. 1, it is determined whether or not the current operating state is the idle operating state based on the engine rotation speed Ne, the detection signal from the throttle sensor 8A, and the like. If YES, the process proceeds to step 2, and if NO, this flow ends. It should be noted that the steady operation state may be detected. In step 2, a subroutine A is executed to calculate the purge delay time and the like.

【0021】かかるサブルーチンAでは、図4に示すフ
ローチャートが実行される。即ち、ステップ11では、
パージディレイ時間Tを演算する。このパージディレイ
時間Tは、開口部4Aから放出されたパージガスが空燃
比センサ7で検出されるまでの遅れ時間(パージ検出遅
れ時間)に相当し、例えば、パージディレイ時間Tは、
「吸気通路輸送遅れ時間+吸気充填効率の関数から求ま
る補正時間+排気遅れ時間+空燃比センサ応答遅れ時間
等」に基づき演算することができる。
In the subroutine A, the flowchart shown in FIG. 4 is executed. That is, in step 11,
The purge delay time T is calculated. The purge delay time T corresponds to a delay time (purge detection delay time) until the purge gas released from the opening 4A is detected by the air-fuel ratio sensor 7. For example, the purge delay time T is
It can be calculated based on “intake passage transport delay time + correction time obtained from a function of intake charge efficiency + exhaust delay time + air-fuel ratio sensor response delay time and the like”.

【0022】ステップ12では、フロー中に示すように
パージ処理開始後から所定時間毎(例えば空燃比センサ
の検出毎や燃焼毎等でもよい)のパージ変化量(ΔPurg
e ,当該ΔPurge はパージ制御弁3の開度制御量の変化
量等から算出できる。また、後述するΔO2 /Sから求
めることもできる)を記憶するようにしたテーブルを参
照し、前記パージディレイ時間T前に相当し、現時点で
の空燃比センサ7の出力変化〔ΔO2 /Sn =O2 /S
n (現在の空燃比センサ出力値)− 2 /S n-1 (前
回の空燃比センサ出力値)〕に影響を与えているパージ
変化量(ΔPurge n-3 )を求める。
In step 12, as shown in the flow,
Every predetermined time (for example, air-fuel ratio sensor
Change amount (ΔPurg)
e, the ΔPurge is the change in the opening control amount of the purge control valve 3
It can be calculated from the amount. Also, ΔO described later2/ S request
You can also turn on the table)
It corresponds to before the purge delay time T, and
Output of the air-fuel ratio sensor 7 [ΔO2/ Sn= O2/ S
n(Current air-fuel ratio sensor output value)- O2/ S n-1(Previous
Purge that affects the air-fuel ratio sensor output value)
Amount of change (ΔPurgen-3).

【0023】ステップ13では、ΔO2 /Sn は、パー
ジディレイ時間T前のパージ変化量(ΔPurge n-3 )に
よる空燃比変化に相当すると見做し、以降のパージ変化
量による空燃比変動を防止すべく、前記ステップ12で
説明したテーブルを参照し、次回空燃比検出までに燃焼
され空燃比に影響を与えるパージ変化量(ΔPurge
n- 2 )を検索し、関数f〔ΔPurge n-2 ,(ΔO2
n )/ΔPurge n-3 〕に基づき燃料補正係数xを求め
る。つまり、当該補正係数xで、次回空燃比検出までの
燃料噴射量を補正することで、パージ変化量(ΔPurge
n-2 )の影響で空燃比が変動することになるのを抑制す
るようになっている。
In step 13, ΔO 2 / S n is regarded as corresponding to the change in the air-fuel ratio due to the purge change amount (ΔPurge n-3 ) before the purge delay time T, and the subsequent change in the air-fuel ratio due to the purge change amount is considered. In order to prevent this, referring to the table described in step 12, the purge change amount (ΔPurge) that is burned by the next air-fuel ratio detection and affects the air-fuel ratio.
n− 2 ) and search for the function f [ΔPurge n-2 , (ΔO 2 /
S n ) / ΔPurge n −3 ] based on the fuel correction coefficient x. That is, the purge change amount (ΔPurge) is corrected by correcting the fuel injection amount until the next air-fuel ratio detection with the correction coefficient x.
It is designed to prevent the air-fuel ratio from fluctuating under the influence of ( n-2 ).

【0024】なお、次回空燃比検出までに燃焼され影響
を与えるパージ変化量(ΔPurge n- 2 )の検索は、前記
パージディレイ時間Tの所定時間前のパージ変化量であ
り、次回燃焼される予定にあるT0 (パージ燃焼遅れ時
間)前のパージ変化量を検索すればよい。ステップ14
では、パージ変化量(ΔPurge )の補正量PDを求め
る。
It should be noted that the search for the purge change amount (ΔPurge n− 2 ) that is burned and has an influence by the next air-fuel ratio detection is the purge change amount before the purge delay time T, and is scheduled to be burned next time. It suffices to retrieve the purge change amount before T 0 (purge combustion delay time) in the above. Step 14
Then, the correction amount PD of the purge change amount (ΔPurge) is obtained.

【0025】即ち、フロー中に示すテーブルを参照し
て、ΔO2 /Sn が所定の範囲に収まるように、例え
ば、ΔO2 /Sn を0近傍に維持すべく(換言すれば、
筒内に導入される混合気の空燃比を目標空燃比に維持す
べく、パージ濃度が目標空燃比より濃いときにはパージ
制御弁開度を小さくし、薄いときにもパージ制御弁開度
を小さく補正する)、パージ変化量(ΔPurge )の補正
量PDを求めて、本フローを終了する。
[0025] That is, with reference to the table shown in the flow, as ΔO 2 / S n falls within a predetermined range, for example, to maintain the ΔO 2 / S n in the vicinity 0 (in other words,
In order to maintain the air-fuel ratio of the air-fuel mixture introduced into the cylinder at the target air-fuel ratio, the purge control valve opening is reduced when the purge concentration is higher than the target air-fuel ratio, and the purge control valve opening is corrected to be small when the purge concentration is thin. Then, the correction amount PD of the purge change amount (ΔPurge) is obtained, and this flow ends.

【0026】ここで、メインルーチンの説明に戻る。前
述のように、ステップ2でサブルーチンAを実行した
後、ステップ3へ進むが、当該ステップ3では、空燃比
センサ7の検出値に基づいて、排気空燃比がリッチ
(R)(ΔO2 /Sn >0)であるか、リーン(L)
(ΔO2 n /S<0)であるか、或いはストイキ(S)
(ΔO2 /Sn =0)であるか、を判断する。
Now, let us return to the description of the main routine. As described above, after executing the subroutine A in step 2, the process proceeds to step 3. In step 3, the exhaust air-fuel ratio is rich (R) (ΔO 2 / S based on the detection value of the air-fuel ratio sensor 7). n > 0) or lean (L)
(ΔO 2 n / S <0) or stoichiometry (S)
It is determined whether or not (ΔO 2 / S n = 0).

【0027】リッチであればステップ4へ進み、リーン
であればステップ5へ進み、ストイキであればステップ
6へ進む。ステップ4では、サブルーチンAのステップ
13で求めた燃料補正係数xで、燃料噴射量を減量補正
する。なお、空燃比フィードバック補正係数αは、基準
値(例えば1.0)に固定させておいてもよい。
If rich, go to step 4, if lean, go to step 5, and if stoichiometric, go to step 6. In step 4, the fuel injection amount is reduced and corrected by the fuel correction coefficient x obtained in step 13 of the subroutine A. The air-fuel ratio feedback correction coefficient α may be fixed to a reference value (for example, 1.0).

【0028】ステップ5では、サブルーチンAのステッ
プ13で求めた燃料補正係数xで、燃料噴射量を増量補
正する。なお、空燃比フィードバック補正係数αは、基
準値(例えば1.0)に固定させておいてもよい。ステ
ップ6では、現在の状態でも空燃比変動はない、即ちパ
ージ濃度と目標空燃比とは略一致しているとして、通常
の空燃比フィードバック制御を行なわせる。
In step 5, the fuel injection amount is increased and corrected by the fuel correction coefficient x obtained in step 13 of the subroutine A. The air-fuel ratio feedback correction coefficient α may be fixed to a reference value (for example, 1.0). In step 6, it is assumed that there is no air-fuel ratio fluctuation even in the current state, that is, the purge concentration and the target air-fuel ratio substantially match, and normal air-fuel ratio feedback control is performed.

【0029】ステップ7では、パージを終了するか否か
を判断する(総パージ量が目標まで到達したか、或いは
パージ制御弁3が所定開度まで到達したか等に基づいて
判断する)。YESであれば、本フローを終了する。N
Oであれば、ステップ8へ進む。ステップ8では、サブ
ルーチンAのステップ14で求めた補正量PDを読み込
み、現在までの総パージ量(Total Purge n )を、下式
に基づいて算出する。
In step 7, it is determined whether or not the purge is completed (determined based on whether the total purge amount has reached a target or the purge control valve 3 has reached a predetermined opening). If YES, this flow ends. N
If O, go to step 8. In step 8, the correction amount PD obtained in step 14 of subroutine A is read, and the total purge amount (Total Purge n ) up to now is calculated based on the following equation.

【0030】 Total Purge n =Total Purge n-1 +ΔPurge n ×PD ステップ9では、フロー中に示すような予め設定されて
いるテーブルを参照して、総パージ量(或いは率)とパ
ージ制御弁3の開度との関係に基づいて、パージ制御弁
3の開度(デューティ)を設定し、パージ制御弁3を駆
動して、本フローを終了する。
Total Purge n = Total Purge n-1 + ΔPurge n × PD In step 9, the total purge amount (or rate) and the purge control valve 3 reference are made by referring to a preset table as shown in the flow. Based on the relationship with the opening degree, the opening degree (duty) of the purge control valve 3 is set, the purge control valve 3 is driven, and this flow ends.

【0031】このように、本実施例によれば、パージガ
スの輸送遅れを考慮しつつ、排気空燃比の変化に基づい
て、パージ変化量に対応した燃料噴射量の補正を行なえ
るようにしたので、パージ処理中の制御ハンチング延い
ては空燃比変動を抑制することができると共に、所望
(略一定)のパージ変化量となるようにパージ制御弁の
開度補正を行なうようにしたので、空燃比変動をより一
層抑制することができ、以ってパージガス量やパージ濃
度変化に起因する空燃比制御の制御不良の発生をより一
層確実に防止することができる。
As described above, according to this embodiment, the fuel injection amount corresponding to the purge change amount can be corrected on the basis of the change in the exhaust air-fuel ratio, while taking into account the transport delay of the purge gas. The control hunting during the purging process and the variation of the air-fuel ratio can be suppressed, and the opening degree of the purge control valve is corrected so that the desired (substantially constant) amount of change in purge is corrected. Fluctuations can be further suppressed, and thus the occurrence of control failure of the air-fuel ratio control due to changes in the purge gas amount and the purge concentration can be prevented more reliably.

【0032】なお、本発明の制御フローを、機能ブロッ
ク図として表したものを、図5に示しておく。図5のよ
うに、吸気通路輸送遅れ時間,吸気充填効率の関数から
求まる補正時間,排気遅れ時間,空燃比センサ応答遅れ
時間等を各々別個独立に入力し、これらの入力データか
ら各補正量を求めるようにすれば、即ち、モデル化する
ようにすれば、機種を変えても、或いは吸気系、排気系
の設計変更等を行なっても、そのマッチングを容易なも
のとすることができ、適合工数の低減を図ることができ
る。
FIG. 5 is a functional block diagram showing the control flow of the present invention. As shown in FIG. 5, the intake passage transport delay time, the correction time obtained from the function of the intake charging efficiency, the exhaust delay time, the air-fuel ratio sensor response delay time, etc. are input independently, and each correction amount is calculated from these input data. If it is obtained, that is, if it is modeled, even if the model is changed or the design of the intake system and the exhaust system is changed, the matching can be made easy, and the matching can be achieved. The number of steps can be reduced.

【0033】ところで、本実施例においては、空燃比セ
ンサ7の出力値の変化ΔO2 /Sに基づいて、燃料補正
係数xやパージ変化量の補正量PDを求めるようにした
が、空燃比フィードバック補正係数αの平均値の基準値
からの偏差の変化に基づいて、空燃比変動、延いてはパ
ージ変化量を求め、これにより燃料補正係数xやパージ
変化量の補正量PDを求めるようにすることもできる。
By the way, in this embodiment, the fuel correction coefficient x and the correction amount PD of the purge change amount are calculated based on the change ΔO 2 / S of the output value of the air-fuel ratio sensor 7. Based on a change in deviation of the average value of the correction coefficient α from the reference value, the air-fuel ratio variation, and thus the purge change amount, is obtained, and thereby the fuel correction coefficient x and the purge change amount correction amount PD are obtained. You can also

【0034】なお、本実施例では、パージ制御弁開度の
補正も行なうようにして説明したが、パージガスの輸送
遅れを考慮しつつ、排気空燃比の変化に基づいて燃料噴
射量の補正を行なうだけでも、空燃比制御の制御精度を
向上させることができるものである。
In this embodiment, the purge control valve opening is also corrected. However, the fuel injection amount is corrected based on the change in the exhaust air-fuel ratio while taking into account the delay of the purge gas transportation. Only by itself, the control accuracy of the air-fuel ratio control can be improved.

【0035】[0035]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、パージガスの輸送遅れを考慮しつつ、排
気空燃比の変化に基づいて、次回燃焼される予定のパー
ジガス濃度(量)に対応させた燃料供給量の補正を行え
るようにしたので、パージ処理中の空燃比制御の制御ハ
ンチング、延いては空燃比変動を抑制でき、以ってパー
ジ処理中の空燃比制御精度を向上させることができる。
As described above, according to the first aspect of the present invention, the purge gas concentration (amount) scheduled to be burned next time is based on the change in the exhaust air-fuel ratio while considering the purge gas transportation delay. ), It is possible to correct the fuel supply amount so that the control hunting of the air-fuel ratio control during the purging process and, consequently, the fluctuation of the air-fuel ratio can be suppressed, thereby improving the accuracy of the air-fuel ratio control during the purging process. Can be improved.

【0036】請求項2に記載の発明によれば、更に、所
定(例えば、略一定)の空燃比変化、即ち所定のパージ
変化量となるように、パージ制御弁の開度を補正するよ
うにしたので、パージガスによる空燃比変動をより一層
抑制することができるので、以って空燃比制御をより一
層高精度化することができる。請求項3,請求項4に記
載の発明では、パージ検出遅れ時間,パージ燃焼遅れ時
間のマッチンッグ工数を低減することができる。
According to the second aspect of the present invention, the opening degree of the purge control valve is further corrected so that a predetermined (for example, substantially constant) air-fuel ratio change, that is, a predetermined purge change amount is obtained. Therefore, the fluctuation of the air-fuel ratio due to the purge gas can be further suppressed, so that the accuracy of the air-fuel ratio control can be further improved. According to the third and fourth aspects of the invention, it is possible to reduce the matching man-hours of the purge detection delay time and the purge combustion delay time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクレーム対応図。FIG. 1 is a diagram corresponding to a claim of the present invention.

【図2】本発明の一実施例にかかる全体構成図。FIG. 2 is an overall configuration diagram according to an embodiment of the present invention.

【図3】同上実施例にかかる空燃比制御・パージ制御の
メインルーチンを説明するフローチャート
FIG. 3 is a flowchart illustrating a main routine of air-fuel ratio control / purge control according to the embodiment.

【図4】同上実施例のサブルーチンAを説明するフロー
チャート
FIG. 4 is a flowchart illustrating a subroutine A of the above embodiment.

【図5】本発明の制御フローを説明する機能ブロック
図。
FIG. 5 is a functional block diagram illustrating a control flow of the present invention.

【図6】従来の蒸発燃料処理装置の一例を示す全体構成
図。
FIG. 6 is an overall configuration diagram showing an example of a conventional evaporated fuel processing device.

【符号の説明】[Explanation of symbols]

1 機関 2 吸気通路 3 パージ制御弁 4 パージ通路 5 キャニスタ 6 排気通路 7 空燃比センサ 8 スロットル弁 9 エアフロメータ 14 燃料噴射弁 10 コントロールユニット 11 燃料タンク 15 クランク角センサ 1 organization 2 Intake passage 3 Purge control valve 4 Purge passage 5 canister 6 exhaust passage 7 Air-fuel ratio sensor 8 Throttle valve 9 Air flow meter 14 Fuel injection valve 10 Control unit 11 Fuel tank 15 crank angle sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02M 25/08 301 F02D 41/02 330 F02D 45/00 368 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F02M 25/08 301 F02D 41/02 330 F02D 45/00 368

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料タンク等で発生した蒸発燃料を一時的
に吸着して貯留する吸着手段と、 該吸着手段と機関吸気系とを接続する通路に介装され、
所定の機関運転条件で、前記吸着手段に貯留された蒸発
燃料をパージさせ前記吸気系にパージガスとして導入さ
せるべく所定開度に制御されるパージ制御弁と、 を含んで構成した内燃機関の空燃比制御装置において、 機関運転状態に応じて燃料供給手段から供給する燃料供
給量を設定する燃料供給量設定手段と、 排気中の特定成分濃度を検出して機関吸入混合気の空燃
比を検出する空燃比検出手段と、 前記空燃比検出手段の検出値に基づいて空燃比変化量を
検出する空燃比変化量検出手段と、パージ時における 蒸発燃料のパージ変化量を検出するパ
ージ変化量検出手段と、 前記検出されたパージ変化量を所定時間毎に記憶するパ
ージ変化量記憶手段と、 パージガスが吸気系に導入されてから前記空燃比検出手
段により検出されるまでのパージ検出遅れ時間を演算す
るパージ検出遅れ演算手段と、 前記演算されたパージ検出遅れ時間に基づいて、現時点
での空燃比変化量に影響を与えたパージ変化量を、前記
パージ変化量記憶手段を介して特定する検出パージ変化
量特定手段と、 パージガスが吸気系に導入されてから燃焼されるまでの
パージ燃焼遅れ時間を演算するパージ燃焼遅れ演算手段
と、 前記演算されたパージ燃焼遅れ時間に基づいて、次回燃
焼時に燃焼されるパージ変化量を、前記パージ変化量記
憶手段を介して特定する燃焼パージ変化量特定手段と、 前記特定された検出パージ変化量と、現時点での空燃比
変化量と、前記特定された燃焼パージ変化量と、に基づ
いて、前記燃料供給量設定手段で設定された次回燃焼の
ための燃料噴射量を補正する燃料供給量補正手段と、 を含んで構成したことを特徴とする内燃機関の空燃比制
御装置。
1. An adsorbing means for temporarily adsorbing and storing evaporative fuel generated in a fuel tank or the like, and a passage connecting the adsorbing means and an engine intake system,
An air-fuel ratio of an internal combustion engine configured to include a purge control valve controlled to a predetermined opening degree so as to purge the evaporated fuel stored in the adsorbing means and introduce the evaporated fuel into the intake system as purge gas under predetermined engine operating conditions. In the control device, the fuel supply amount setting means for setting the fuel supply amount supplied from the fuel supply means in accordance with the engine operating state, and the air-fuel ratio of the engine intake air-fuel mixture by detecting the concentration of the specific component in the exhaust gas A fuel ratio detection unit, an air-fuel ratio change amount detection unit that detects an air-fuel ratio change amount based on a detection value of the air-fuel ratio detection unit, and a purge change amount detection unit that detects a purge change amount of the evaporated fuel during purging, Purge change amount storage means for storing the detected purge change amount at every predetermined time, and the purge change amount detection means for introducing the purge gas into the intake system until it is detected by the air-fuel ratio detection means. Purge detection delay calculating means for calculating the purge detection delay time, and the purge change amount storing means for storing the purge change amount that has influenced the current air-fuel ratio change amount based on the calculated purge detection delay time. The purge combustion delay amount specifying means for specifying the purge combustion delay amount specifying means for calculating the purge combustion delay time for calculating the purge combustion delay time from when the purge gas is introduced into the intake system until it is burned, Based on this, the purge change amount to be combusted at the next combustion, the combustion purge change amount specifying means for specifying via the purge change amount storage means, the specified detected purge change amount, and the current air-fuel ratio change amount And a fuel supply amount correction means for correcting the fuel injection amount for the next combustion set by the fuel supply amount setting means based on the specified combustion purge change amount. An air-fuel ratio control device for an internal combustion engine, comprising:
【請求項2】前記空燃比変化量検出手段により検出され
た空燃比変化量が、所定の値に維持されるように、パー
ジ制御弁の開度を補正するパージ制御弁開度補正手段を
含んで構成したことを特徴とする請求項1に記載の内燃
機関の空燃比制御装置。
2. A purge control valve opening correction means for correcting the opening of the purge control valve so that the air-fuel ratio change amount detected by the air-fuel ratio change amount detecting means is maintained at a predetermined value. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein
【請求項3】前記パージ検出遅れ演算手段が、吸気輸送
遅れ時間と、充填効率による補正時間と、空燃比検出手
段までの排気通路長さと、空燃比検出手段の応答遅れ時
間と、に基づいて、パージ検出遅れ時間を演算する手段
であることを特徴とする請求項1または請求項2に記載
の内燃機関の空燃比制御装置。
3. The purge detection delay calculation means is based on an intake transportation delay time, a correction time based on charging efficiency, an exhaust passage length to the air-fuel ratio detection means, and a response delay time of the air-fuel ratio detection means. The air-fuel ratio control device for an internal combustion engine according to claim 1 or claim 2, wherein the purge detection delay time is calculated.
【請求項4】前記パージ燃焼遅れ演算手段が、吸気輸送
遅れ時間と、充填効率による補正時間と、に基づいて、
パージ燃焼遅れ時間を演算する手段であることを特徴と
する請求項1〜請求項3の何れか1つに記載の内燃機関
の空燃比制御装置。
4. The purge combustion delay calculation means, based on the intake transportation delay time and the correction time based on the charging efficiency,
The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio control device is means for calculating a purge combustion delay time.
JP16200595A 1995-06-28 1995-06-28 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP3376172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16200595A JP3376172B2 (en) 1995-06-28 1995-06-28 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16200595A JP3376172B2 (en) 1995-06-28 1995-06-28 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0914062A JPH0914062A (en) 1997-01-14
JP3376172B2 true JP3376172B2 (en) 2003-02-10

Family

ID=15746238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16200595A Expired - Lifetime JP3376172B2 (en) 1995-06-28 1995-06-28 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3376172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7171960B1 (en) 2005-11-28 2007-02-06 Mitsubishi Denki Dabushiki Kaisha Control apparatus for an internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443138B1 (en) * 2000-07-31 2002-09-03 Daimlerchrysler Corporation Full range fuel shift determination
JP5949218B2 (en) * 2012-06-29 2016-07-06 三菱自動車工業株式会社 Engine control device
KR20200074519A (en) * 2018-12-17 2020-06-25 현대자동차주식회사 Air-fuel ratio control method in vehicle comprising continuosly variable vale duration appratus and active purge system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7171960B1 (en) 2005-11-28 2007-02-06 Mitsubishi Denki Dabushiki Kaisha Control apparatus for an internal combustion engine
DE102006027376B4 (en) * 2005-11-28 2014-07-10 Mitsubishi Denki K.K. Control unit for an internal combustion engine

Also Published As

Publication number Publication date
JPH0914062A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
US5884609A (en) Air/fuel ratio control apparatus
US20040129259A1 (en) Apparatus and method for controlling internal combustion engine
US20040040366A1 (en) Intake air oxygen concentration sensor calibration device and method
JP2860851B2 (en) Evaporative fuel control system for internal combustion engine
JPH0783126A (en) Canister purge controlling method and device for internal combustion engine
US6039032A (en) Air-fuel ratio controller for an internal combustion engine
JP3818226B2 (en) Control device for internal combustion engine
JPH1162728A (en) Vaporized fuel concentration determining device for internal combustion engine
JP3194670B2 (en) Electronic control unit for internal combustion engine
US5655507A (en) Evaporated fuel purge device for engine
JP3264221B2 (en) Air-fuel ratio control device for internal combustion engine
JP3376172B2 (en) Air-fuel ratio control device for internal combustion engine
JP2508180B2 (en) Fuel control device
JPH0514551U (en) Evaporative fuel control device for internal combustion engine
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP3488480B2 (en) Evaporative fuel control system for internal combustion engine
JP3339258B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3161219B2 (en) Evaporative fuel treatment system for internal combustion engine
JPH1018890A (en) Electrically controlled fuel injection device of internal combustion engine
JP2760175B2 (en) Evaporative fuel treatment system for internal combustion engines
JPH08177651A (en) Vaporized fuel processing device for internal combustion engine
JPH07224729A (en) Evaporated fuel processing device for internal combustion engine
JP3314577B2 (en) Evaporative fuel processor for engine
JP3531213B2 (en) Evaporative fuel processing control device for internal combustion engine
JP3601080B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141129

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term