JP3369707B2 - Purification method of 1,3-butylene glycol - Google Patents

Purification method of 1,3-butylene glycol

Info

Publication number
JP3369707B2
JP3369707B2 JP04738794A JP4738794A JP3369707B2 JP 3369707 B2 JP3369707 B2 JP 3369707B2 JP 04738794 A JP04738794 A JP 04738794A JP 4738794 A JP4738794 A JP 4738794A JP 3369707 B2 JP3369707 B2 JP 3369707B2
Authority
JP
Japan
Prior art keywords
butylene glycol
tower
boiling
distillation
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04738794A
Other languages
Japanese (ja)
Other versions
JPH07258129A (en
Inventor
和久 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP04738794A priority Critical patent/JP3369707B2/en
Publication of JPH07258129A publication Critical patent/JPH07258129A/en
Application granted granted Critical
Publication of JP3369707B2 publication Critical patent/JP3369707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は1,3-ブチレングリコ−ル
の精製法に関する。さらに詳しくは臭気の無い極めて高
品質の1,3-ブチレングリコ−ルの製造方法に関する。 【0002】 【従来の技術】1,3-ブチレングリコ−ルは沸点 208℃の
粘調な無色透明無臭の液体で、すぐれた溶解性を有し化
学的安定性にすぐれた誘導体を生成する。したがって、
その用途は各種の合成樹脂、界面活性剤の原料として、
又そのすぐれた及湿特性、低揮発性、低毒性を利用して
化粧品及湿剤、高沸点溶剤、不凍液の素材としても利用
されている。特に近年、化粧品業界では無毒、無刺激の
1,3-ブチレングリコ−ルが保湿剤として優れた性質を有
するため、その需要を大きく伸ばしている。 【0003】 【発明が解決しようとする課題】しかし、1,3-ブチレン
グリコ−ルに残存する臭気のため使用範囲が限定されて
いた。特に無臭の1,3-ブチレングリコ−ルは化粧品グレ
−ドとして有用ではあるが、従来の方法では高い収率で
得ることができなかった。 【0004】アセトアルド−ルの接触還元による1,3-ブ
チレングリコ−ルの精製に於ては反応装置からでてきた
該反応混合物から1,3-ブチレングリコ−ルを製品として
得るに当り、アルコ−ル類を除去した後、水分を除去
し、さらに塩、高沸点物の除去を行い、しかる後に低沸
点物の除去し、該蒸留塔の底部より1,3-ブチレングリコ
−ルを缶出製品として得ていた(特開昭63-156738号公
報)。同公報には、脱高沸蒸留塔の底部より1,3-ブチレ
ングリコ−ルを得る際、前もって、反応混合物を50Torr
以下、好ましくは、10Torr以下の減圧下、140℃以下、
好ましくは、120℃以下でフラッシュ蒸発[30分以下、
好ましくは、滞留時間10分以下]させることが開示され
ている。 【0005】このような方法だけでは臭気成分の除去が
不十分であるため、1,3-ブチレングリコ−ル無臭品の収
率向上が計れず問題となっていた。そこで蒸留工程に化
学物質を添加し、臭い成分を化学反応させることによっ
てその絶対量を低減し、1,3-ブチレングリコ−ル無臭品
の蒸留収率をアップさせることを思い至り鋭意検討した
結果、以下に述べる本発明を完成させた。 【0006】 【発明の構成】すなわち、本発明は「アセトアルド−ル
の液相水素還元法によって得られた反応混合物から、1,
3-ブチレングリコ−ルを蒸留精製するプロセスに於て、
脱高沸物蒸留を行う際に、苛性ソ−ダ、苛性カリ、水素
化硼素ナトリウム及び水素化硼素カリウムからなる群か
ら選ばれる少なくとも1種類の化合物を添加することを
特徴とする1,3-ブチレングリコ−ルの精製方法」であ
る。 【0007】以下に本発明の1,3-ブチレングリコ−ルの
精製方法を具体的に説明する。 【0008】前述したように、アセトアルド−ルの接触
還元による1,3-ブチレングリコ−ルの精製に於ては反応
装置からでてきた該反応混合物から1,3-ブチレングリコ
−ルを製品として得るに当り、まず、アルコ−ル類を除
去した後、水分を除去し、さらに塩、高沸点物の除去を
行い、しかる後に低沸点物の除去し、低沸点物除去用蒸
留塔の底部より1,3-ブチレングリコ−ルを缶出製品とし
て得ていた。 【0009】本発明のポイントは上記の工程中「高沸点
物を除去するための蒸留を行う際、蒸留塔へ特定のアル
カリ金属化合物を添加する」ことにある。 【0010】図−1は本発明の1,3-ブチレングリコ−ル
の精製方法を実施するための実施態様を示した装置のフ
ロ−シ−トであり、1−1が脱水塔、1−2が脱塩塔
(薄膜蒸発器)、1−3が脱高沸塔、1−4が製品塔で
ある。 【0011】本発明で用いる高沸点物を除去するための
蒸留塔は、多孔板塔、泡鐘塔などでもよいが、好ましく
はスルザ−・パッキング、メラパック(共に住友重機械
の商品名)等を充填した低圧損失の充填塔がより適当で
ある。これは1,3-ブチレングリコ−ルが200 ℃以上では
熱分解され臭気に対して悪影響を及ぼす為(特開昭63-1
56738 )、蒸留温度をできるだけ低くするためである。 【0012】また1,3-ブチレングリコ−ルにかかる熱履
歴(滞留時間)が長い場合も、同様に影響が出る。した
がって、採用されるリボイラ−はプロセス側流体の滞留
時間の短い、例えば自然流下型薄膜蒸発器、強制撹拌型
薄膜蒸発器等の薄膜蒸発器が適当である。反応粗液から
アルコ−ル類、水、塩を除去された、粗1,3-ブチレング
リコ−ルは脱高沸塔1−3に供給される。 【0013】本発明の1,3-ブチレングリコ−ルの精製方
法において、添加されるアルカリ金属化合物は苛性ソ−
ダ、苛性カリ、水素化硼素ナトリウム及び水素化硼素カ
リウムの中から選ばれる少なくとも1種類を用いること
が必須であるが、好ましくは、苛性ソ−ダと水素化硼素
ナトリウムのように水酸化物と水素化硼素化合物とを組
み合わせて使用することが有効である。その理由は臭気
の主な原因物質であるアルデヒド類が還元されやすくな
るためである。 【0014】アルカリ等は固体状のものをそのまま加え
てもよいが、操作上及び対象液との接触を促進するため
水溶液で添加することが望ましい。 【0015】添加量は仕込み液の 0.05 〜10重量%、好
ましくは 0.1〜1.0 重量%加える。アルカリ金属化合物
の濃度が10%以上では蒸留塔、配管などでアルカリ金属
化合物が析出し、閉塞の原因となり、逆に 0.05 %未満
では臭気の原因物質に対する効果が小さいので、いずれ
も好ましくない。 【0016】蒸留塔へのアルカリ金属化合物水溶液の仕
込みはあらかじめ蒸留塔仕込み液へ添加すれば十分であ
るが、飛沫同伴等の理由により溜出液側にアルカリ金属
化合物が移動しない位置であればどこでもよい。好まし
くは、アルカリ金属化合物と対象液が接触する時間を長
くするため塔中央部より高い位置がよい。 【0017】蒸留塔は、仕込み液中の高沸物濃度にもよ
るが、仕込み液中の高沸物濃度が3%以下である場合、
理論段数が 10 〜 20 段程度のもで良い。仕込み液は塔
頂部から塔の高さの、20〜70%程度の位置に供給される
ことが望ましい。 【0018】この時、蒸留塔塔頂部の圧力は 100 torr
以下、望ましくは 5〜20 torr の減圧下で行われる。前
述のように1,3-ブチレングリコ−ルの臭気に対しては、
蒸留温度を低くすることが好ましく、圧力は低いほど良
い。なお、還流比は 0.5〜 2.0程度で運転することが望
ましい。 【0019】上記のような条件下で蒸留が行われると蒸
留塔内の温度は、塔頂部で90〜120℃、塔底部で 100〜1
60 ℃に保持される。添加したアルカリは高沸物と共に
塔底より抜き取られ、塔頂からは低沸物含みの1,3-ブチ
レングリコ−ルが留出し、次の脱低沸塔に仕込まれる。
このように、脱高沸蒸留工程においてアルカリ等を添加
した場合、アセトアルデヒド、ブチルアルデヒド、クロ
トンアルデヒド、アセトン、メチルビニルケトン等の臭
気の原因となる物質が、アルド−ル縮合等により高沸
物、あるいは還元されてアルコ−ル類となり絶対量を低
減できる。 【0020】 【発明の効果】その結果、臭気成分を除去するためのカ
ット液量を低減でき極めて臭気の少ない優れた1,3-ブチ
レングリコ−ルを製造することができるようになった。 【0021】[実施例]図−1に示されるフロ−シ−ト
にしたがって本発明の方法を実施例に基づいて説明す
る。原料としてアセトアルド−ル 100部、水素を 6.5部
反応器に仕込んだ。反応器を温度 125〜135 ℃、圧力 1
50 Kg/cm2 に保持した。触媒としてラネ−ニッケルを
3.5部加えた。反応器から取り出された反応粗液は触媒
を分離されたのち、苛性ソ−ダで中和された。その後、
アルコ−ル類を除去された粗1,3-ブチレングリコ−ルは
図−1に示す脱水塔1−1に仕込まれた。脱水塔では仕
込み液量100 部に対して塔頂より水 15 部を加え、圧力
50torrで蒸留塔底部より水分0.5重量%以下の粗1,3-ブ
チレングリコ−ルを得た。脱水された粗1,3-ブチレング
リコ−ルは次に、脱塩塔 1-2に仕込まれた。ここでは
仕込液量100 部に対して蒸発残分として、塩、高沸物お
よび1,3-ブチレングリコ−ルの一部が底部より5部、排
出された。塔頂からは1,3-ブチレングリコ−ル及び低沸
物と高沸物の一部が 95 部留出された。 【0022】脱塩塔1−2より留出された1,3-ブチレン
グリコ−ル及び低沸物及び高沸物の一部は、脱高沸塔 1
-3に仕込まれ、この際仕込み液に対して苛性ソ−ダ濃度
が0.5 重量%となるように10重量%苛性ソ−ダ水溶液を
添加した。塔底より高沸物、苛性ソ−ダ及び1,3-ブチレ
ングリコ−ルの一部が排出された。 【0023】塔頂からは1,3-ブチレングリコ−ル及び低
沸物が留出され、製品塔1−4に仕込まれた。製品塔1
−4においては、塔頂から低沸物及び1,3-ブチレングリ
コ−ルの一部が留出された。塔底からは製品1,3-ブチレ
ングリコ−ルが取り出された。 実施例における、脱高
沸塔、製品塔でのそれぞれの仕込液量に対する塔底での
高沸物等の抜き取り及び塔頂からの低沸物等の抜き取り
のカット率は脱高沸塔に苛性ソ−ダを添加する以前と比
べて以下のようになった。 【0024】 脱高沸塔 製品塔 カット率 カット率 苛性ソ−ダ添加 前 11 % 7 % 後 11 % 5 % また、製品1,3-ブチレングリコ−ルの臭気は、蒸留条件
が厳しくなったにもかかわらず以下の様に水添加前と同
じ品質のものが得られた。 【0025】臭気評点は苛性ソ−ダ添加の前と後でいず
れも5であった。 【0026】さらに、以下のようにカット率を増加し、
品質を上げた場合でもアルカリを添加した方がカット率
が少なくて済んだ。 【0027】 脱高沸塔 製品塔 カット率 カット率 苛性ソ−ダ添加 前 20 % 20 % 後 20 % 15 % 臭気評点は苛性ソ−ダ添加の前と後でいずれも3であっ
た。 【0028】なお、臭気評点とは、評価試料としてほと
んど無臭の1,3-ブチレングリコ−ルを 5とし、僅かに臭
気の感じられるものを 10 としその相対評価で点数をつ
ける。 評価試料は水と 1:1で混合し、共栓広口試薬瓶
に入れ、密栓し室温にて静置した後、大気中にてすみや
かに臭いをかぎ、比較する方法によって行った。 【0029】(以下余白)
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying 1,3-butylene glycol. More specifically, the present invention relates to a method for producing extremely high quality 1,3-butylene glycol without odor. [0002] 1,3-butylene glycol is a viscous, colorless, transparent and odorless liquid having a boiling point of 208 ° C., and produces a derivative having excellent solubility and excellent chemical stability. Therefore,
Its use is as a raw material for various synthetic resins and surfactants.
It is also used as a material for cosmetics, humectants, high-boiling solvents, and antifreezes due to its excellent moisture and moisture properties, low volatility and low toxicity. In recent years, especially in the cosmetics industry,
Since 1,3-butylene glycol has excellent properties as a humectant, its demand has greatly increased. [0003] However, the range of use has been limited due to the odor remaining in 1,3-butylene glycol. In particular, odorless 1,3-butylene glycol is useful as a cosmetic grade, but could not be obtained in a high yield by the conventional method. [0004] In the purification of 1,3-butylene glycol by catalytic reduction of acetoaldole, in order to obtain 1,3-butylene glycol as a product from the reaction mixture discharged from the reactor, an alcohol is used. -After the removal of alcohols, water is removed, salts and high-boiling substances are removed, then low-boiling substances are removed, and 1,3-butylene glycol is removed from the bottom of the distillation column. It was obtained as a product (JP-A-63-156738). According to the publication, when 1,3-butylene glycol is obtained from the bottom of a de-high boiling distillation column, the reaction mixture is previously prepared at 50 Torr.
Or less, preferably under a reduced pressure of 10 Torr or less, 140 ° C. or less,
Preferably, flash evaporation at 120 ° C or less [30 minutes or less,
Preferably, the residence time is 10 minutes or less]. [0005] Since the removal of odor components is inadequate by such a method alone, there has been a problem that the yield of 1,3-butyleneglycol-free products cannot be improved. Therefore, we added a chemical substance to the distillation process and made a chemical reaction of the odorous component to reduce the absolute amount and increase the distillation yield of odorless 1,3-butylene glycol. The present invention described below has been completed. That is, the present invention relates to a method for producing a 1,2,3-dichlorobenzene from a reaction mixture obtained by a liquid phase hydrogen reduction method of acetodol.
In the process of distilling and refining 3-butylene glycol,
1,3-butylene, wherein at least one compound selected from the group consisting of caustic soda, caustic potash, sodium borohydride and potassium borohydride is added during the de-boiling distillation. Glycol purification method ". The method for purifying 1,3-butylene glycol of the present invention will be specifically described below. As mentioned above, in the purification of 1,3-butylene glycol by catalytic reduction of acetodol, 1,3-butylene glycol is produced as a product from the reaction mixture obtained from the reactor. In obtaining, first, alcohols are removed, then water is removed, salts and high-boiling substances are removed, and then low-boiling substances are removed. 1,3-butylene glycol was obtained as a canned product. [0009] The point of the present invention lies in that "in performing distillation for removing high-boiling substances, a specific alkali metal compound is added to a distillation column" in the above process. FIG. 1 is a flow chart of an apparatus showing an embodiment for carrying out the method for purifying 1,3-butylene glycol of the present invention, wherein 1-1 is a dehydration column, and 1- is a dehydration column. 2 is a desalination tower (thin film evaporator), 1-3 is a high boiling tower, and 1-4 is a product tower. The distillation column for removing high-boiling substances used in the present invention may be a perforated plate tower, a bubble-cap tower or the like, but preferably, Sulzer-Packing, Merapak (both are trade names of Sumitomo Heavy Industries) or the like. Packed low pressure loss packed columns are more suitable. This is because 1,3-butylene glycol is thermally decomposed at a temperature of 200 ° C. or more and has an adverse effect on the odor (see JP-A-63-163).
56738), in order to keep the distillation temperature as low as possible. [0012] Further, when the heat history (residence time) applied to 1,3-butylene glycol is long, the influence is similarly exerted. Therefore, the reboiler to be used is suitably a thin film evaporator such as a naturally falling thin film evaporator or a forced stirring type thin film evaporator having a short residence time of the process side fluid. Alcohols, water and salts are removed from the reaction crude liquid, and the crude 1,3-butylene glycol is supplied to the dehigh boiling tower 1-3. In the method for purifying 1,3-butylene glycol of the present invention, the added alkali metal compound is caustic soda.
It is essential to use at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium borohydride and potassium borohydride. Preferably, hydroxide and hydrogen such as sodium hydroxide and sodium borohydride are used. It is effective to use in combination with a boron halide compound. The reason for this is that aldehydes, which are the main causes of odor, are easily reduced. The alkali or the like may be added in a solid form as it is, but is preferably added in an aqueous solution in order to promote the operation and contact with the target liquid. The amount of addition is 0.05 to 10% by weight, preferably 0.1 to 1.0% by weight of the charged solution. When the concentration of the alkali metal compound is 10% or more, the alkali metal compound precipitates in a distillation tower or a pipe and causes clogging. On the contrary, when the concentration is less than 0.05%, the effect on the odor-causing substance is small, and neither is preferable. It is sufficient to add the aqueous solution of the alkali metal compound to the distillation column in advance if the alkali metal compound is not added to the distillate side because of entrainment or the like. Good. Preferably, a position higher than the center of the tower is good in order to prolong the contact time between the alkali metal compound and the target liquid. The distillation column depends on the high boiling substance concentration in the charged liquid, but when the high boiling substance concentration in the charged liquid is 3% or less,
A theoretical plate number of about 10 to 20 is acceptable. The charged liquid is desirably supplied from the top of the tower to a position of about 20 to 70% of the height of the tower. At this time, the pressure at the top of the distillation column is 100 torr
Hereinafter, the reaction is preferably performed under reduced pressure of 5 to 20 torr. As mentioned above, against the odor of 1,3-butylene glycol,
It is preferable to lower the distillation temperature, and the lower the pressure, the better. It is desirable to operate at a reflux ratio of about 0.5 to 2.0. When distillation is carried out under the above conditions, the temperature in the distillation column is 90 to 120 ° C. at the top and 100 to 1 at the bottom.
Keep at 60 ° C. The added alkali is withdrawn from the bottom of the column together with the high-boiling substances, and 1,3-butylene glycol containing low-boiling substances is distilled off from the top of the column, and is charged into the next low-boiling tower.
As described above, when an alkali or the like is added in the dehigh-boiling distillation step, substances that cause an odor, such as acetaldehyde, butyraldehyde, crotonaldehyde, acetone, and methyl vinyl ketone, have a high boiling point due to aldole condensation or the like. Alternatively, it can be reduced to alcohols to reduce the absolute amount. As a result, the amount of cut solution for removing odor components can be reduced, and excellent 1,3-butylene glycol with extremely low odor can be produced. [Embodiment] The method of the present invention will be described with reference to the flow chart shown in FIG. A reactor was charged with 100 parts of acetodol and 6.5 parts of hydrogen as raw materials. Reactor temperature 125-135 ° C, pressure 1
It was kept at 50 Kg / cm 2 . Raney nickel as catalyst
3.5 parts added. The reaction crude liquid taken out of the reactor was separated from the catalyst and neutralized with caustic soda. afterwards,
The crude 1,3-butylene glycol from which the alcohols had been removed was charged into the dehydration column 1-1 shown in FIG. In the dehydration tower, 15 parts of water was added from the top of the tower to 100 parts of the charged liquid, and the pressure was increased.
At 50 torr, crude 1,3-butylene glycol having a water content of 0.5% by weight or less was obtained from the bottom of the distillation column. The dehydrated crude 1,3-butylene glycol was then charged to desalination tower 1-2. Here, 5 parts of salts, high-boiling substances and 1,3-butylene glycol were discharged from the bottom as a residue of evaporation with respect to 100 parts of the charged liquid. From the top of the column, 1,3-butylene glycol and 95 parts of low and high boilers were distilled off. The 1,3-butylene glycol distilled from the desalting tower 1-2 and a part of the low-boiling and high-boiling substances are removed from the high-boiling tower 1.
In this case, a 10% by weight aqueous solution of caustic soda was added so that the concentration of caustic soda was 0.5% by weight with respect to the charged solution. High boilers, caustic soda and part of 1,3-butylene glycol were discharged from the bottom of the column. From the top of the column, 1,3-butylene glycol and low-boiling substances were distilled off and charged into the product column 1-4. Product tower 1
In -4, low-boiling substances and part of 1,3-butylene glycol were distilled off from the top of the column. Product 1,3-butylene glycol was removed from the bottom of the column. In the examples, the cut rate of the extraction of high-boiling substances and the like at the bottom and the extraction of low-boiling substances and the like from the top of the column with respect to the amounts of the charged liquids in the dehigh-boiling tower and the product tower are caustic. The results were as follows as compared to before the addition of soda. De-high boiling tower Product tower cut rate Cut rate 11% before addition of caustic soda 11% 5% After addition of caustic soda The odor of 1,3-butylene glycol as a product is reduced as the distillation conditions become severe. Nevertheless, the same quality as before water addition was obtained as follows. The odor score was 5 both before and after the addition of the caustic soda. Further, the cut rate is increased as follows,
Even when the quality was improved, the addition of alkali reduced the cutting rate. De-high boiling tower Product tower cut rate Cut rate 20% before addition of caustic soda 20% 20% 15% 15% The odor score was 3 before and after addition of caustic soda. The odor score is given as 5 based on almost odorless 1,3-butylene glycol as an evaluation sample, and as 10 based on a slight odor as an evaluation sample. The evaluation sample was mixed 1: 1 with water, placed in a stoppered wide-mouthed reagent bottle, sealed and allowed to stand at room temperature. (Hereinafter referred to as margin)

【図面の簡単な説明】 【図1】図1は1,3-ブチレングリコ−ルの精製方法を実
施する際の状況を示したフロ−シ−トであり、点線部分
からアルカリ金属化合物を仕込む状況が示されている。 【符号の説明】 1−1:脱水塔 1−2:脱塩塔 1−3:脱高沸物塔 1−4:製品塔 1−1−1、1−3−1、1−4−1:リボイラ− 1−1−2、1−2−2、1−3−2、1−4−2:コ
ンデンサ−(以下余白)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a situation when a method for purifying 1,3-butylene glycol is carried out, and an alkali metal compound is charged from a dotted line portion. The situation is shown. [Description of Signs] 1-1: Dehydration tower 1-2: Desalting tower 1-3: Dehigh-boiling tower 1-4: Product tower 1-1-1, 1-3-1 and 1-4-1 : Reboiler 1-1-2, 1-2-2, 1-3-2, 1-4-2: Condenser (Margin)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−10789(JP,A) 特開 平5−977(JP,A) 特開 昭63−156738(JP,A) 特開 昭62−246529(JP,A) 特開 昭61−65834(JP,A) 特開 昭58−121228(JP,A) 特開 昭49−211(JP,A) 特開 昭48−26712(JP,A) 特公 昭48−19608(JP,B1) 特公 昭48−10764(JP,B1) 特公 昭45−10483(JP,B1) 特公 昭38−7718(JP,B1) 特公 昭33−5629(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C07C 31/00 C07C 29/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-10789 (JP, A) JP-A-5-977 (JP, A) JP-A-63-156738 (JP, A) JP-A-62-1 246529 (JP, A) JP-A-61-65834 (JP, A) JP-A-58-121228 (JP, A) JP-A-49-211 (JP, A) JP-A-48-26712 (JP, A) JP-B-48-19608 (JP, B1) JP-B-48-10766 (JP, B1) JP-B-45-10483 (JP, B1) JP-B-38-7718 (JP, B1) JP-B-33-5629 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 31/00 C07C 29/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 アセトアルド−ルの液相水素還元法によ
って得られた反応混合物から、1,3-ブチレングリコ−ル
を蒸留精製するプロセスに於て、脱高沸物蒸留を行う際
に、苛性ソ−ダ、苛性カリ、水素化硼素ナトリウム及び
水素化硼素カリウムからなる群から選ばれる少なくとも
1種類の化合物を添加することを特徴とする1,3-ブチレ
ングリコ−ルの精製方法。
(57) [Claims 1] In a process of distilling and purifying 1,3-butylene glycol from a reaction mixture obtained by a liquid phase hydrogen reduction method of acetoaldole, dehydrogenation is performed. A process for adding at least one compound selected from the group consisting of caustic soda, caustic potash, sodium borohydride and potassium borohydride during the distillation of 1,3-butylene glycol; Purification method.
JP04738794A 1994-03-17 1994-03-17 Purification method of 1,3-butylene glycol Expired - Fee Related JP3369707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04738794A JP3369707B2 (en) 1994-03-17 1994-03-17 Purification method of 1,3-butylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04738794A JP3369707B2 (en) 1994-03-17 1994-03-17 Purification method of 1,3-butylene glycol

Publications (2)

Publication Number Publication Date
JPH07258129A JPH07258129A (en) 1995-10-09
JP3369707B2 true JP3369707B2 (en) 2003-01-20

Family

ID=12773702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04738794A Expired - Fee Related JP3369707B2 (en) 1994-03-17 1994-03-17 Purification method of 1,3-butylene glycol

Country Status (1)

Country Link
JP (1) JP3369707B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046628B1 (en) * 1998-08-07 2006-11-15 DAICEL CHEMICAL INDUSTRIES, Ltd. 1,3-butylene glycol of high purity and method for producing the same
DE10190479T1 (en) 2000-02-04 2002-05-08 Daicel Chem 1,3-butylene glycol of high purity, process for producing 1,3-butylene glycol and process for producing butanol as a by-product and butyl acetate
JP2001213825A (en) * 2000-02-04 2001-08-07 Daicel Chem Ind Ltd High-purity 1,3-butylene glycol
JP4530461B2 (en) * 2000-02-04 2010-08-25 ダイセル化学工業株式会社 Method for purifying 1,3-butylene glycol
JP2002047225A (en) * 2000-07-27 2002-02-12 Mitsubishi Gas Chem Co Inc Method for distilling polycyclic diol compounds
JP2003096006A (en) * 2001-09-26 2003-04-03 Kyowa Yuka Co Ltd 1,3-butylene glycol and its producing method
WO2004099110A1 (en) * 2003-05-08 2004-11-18 Mitsubishi Chemical Corporation Method for producing 1,3-propane diol
JP2004352713A (en) * 2003-05-08 2004-12-16 Mitsubishi Chemicals Corp Method for producing 1,3-propanediol
MY160374A (en) * 2007-07-30 2017-03-15 Dow Global Technologies Inc Process of refining c6-16 aliphatic diols
US8445733B1 (en) 2011-07-26 2013-05-21 Oxea Bishop Llc 1,3 butylene glycol with reduced odor
US9975829B2 (en) 2013-10-23 2018-05-22 Basf Se Method for the preparation of 1,4-butane diol having an APHA color index of less than 30
WO2018183628A1 (en) 2017-03-31 2018-10-04 Genomatica, Inc. Process and systems for obtaining 1,3-butanediol from fermentation broths
KR102278596B1 (en) * 2019-06-24 2021-07-15 한국화학연구원 The high pure refining method of dialkylene glycol compound
CN112390705B (en) * 2019-08-14 2022-11-01 中国科学院青岛生物能源与过程研究所 1,3-butanediol deodorization purification method
KR20220054406A (en) 2019-09-05 2022-05-02 주식회사 다이셀 1,3-Butylene glycol products
JPWO2021131752A1 (en) * 2019-12-24 2021-12-23 昭和電工株式会社 1,3-Butanediol
WO2021131751A1 (en) * 2019-12-24 2021-07-01 昭和電工株式会社 1,3-butanediol
US20230048638A1 (en) 2019-12-28 2023-02-16 Daicel Corporation Method for manufacturing 1,3-butylene glycol, and 1,3-butylene glycol product
JP7079874B1 (en) 2021-05-18 2022-06-02 Khネオケム株式会社 Product 1,3-butylene glycol
JP7086254B1 (en) * 2021-06-04 2022-06-17 Khネオケム株式会社 Product 1,3-butylene glycol
TW202328036A (en) 2021-09-02 2023-07-16 日商Kh新化股份有限公司 Method for producing product 1,3-butylene glycol
CN114890869B (en) * 2022-06-30 2024-04-09 中国天辰工程有限公司 Refining and deodorizing method for 1, 3-butanediol
CN115400706A (en) * 2022-08-29 2022-11-29 山东海科新源材料科技股份有限公司 Device and method for purifying and deodorizing cosmetics grade 1,3-butanediol

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819608B1 (en) * 1965-02-11 1973-06-14
JPS4810764B1 (en) * 1969-06-24 1973-04-07
JPS5118927B2 (en) * 1971-08-12 1976-06-14
JPS515366B2 (en) * 1972-04-20 1976-02-19
US4419189A (en) * 1982-01-11 1983-12-06 E. I. Du Pont De Nemours & Co. Distillation of 1,4-butanediol
JPS6165834A (en) * 1984-09-07 1986-04-04 Daicel Chem Ind Ltd Purification of 1,3-butylene glycol
JPS62246529A (en) * 1986-03-24 1987-10-27 Daicel Chem Ind Ltd Production of 1,3-butylene glycol
JPH07116081B2 (en) * 1986-12-22 1995-12-13 ダイセル化学工業株式会社 Method for purifying 1,3-butylene glycol
JPH05977A (en) * 1991-06-21 1993-01-08 Ube Ind Ltd Method for purifying mixture of cyclododecanol and cyclododecanone
JP3369639B2 (en) * 1993-06-24 2003-01-20 ダイセル化学工業株式会社 Purification method of 1,3-butylene glycol

Also Published As

Publication number Publication date
JPH07258129A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP3369707B2 (en) Purification method of 1,3-butylene glycol
JP4559625B2 (en) High purity 1,3-butylene glycol and process for producing the same
JPS6165834A (en) Purification of 1,3-butylene glycol
WO2021132360A1 (en) Method for producing 1,3-butylene glycol, and 1,3-butylene glycol product
BRPI0508693B1 (en) PROCESS FOR PRODUCTION OF PURIFIED ALCOHOLS
RU2338737C2 (en) Method of obtaining formaldehyde raw material with low water content
MXPA02006394A (en) Method for purifying trimethylolpropane, which is produced by hydrogenation, by means of continuous distillation.
JP2021038189A (en) 1,3-butylene glycol product
JP2001213825A (en) High-purity 1,3-butylene glycol
EP4026823A1 (en) 1, 3-butylene glycol product
JP6804602B1 (en) 1,3-butylene glycol products
JP3369639B2 (en) Purification method of 1,3-butylene glycol
JPH07116081B2 (en) Method for purifying 1,3-butylene glycol
JP6890709B2 (en) 1,3-butylene glycol products
JP6890708B2 (en) 1,3-butylene glycol products
US4205188A (en) Process for the production of hydroxybenzyl alcohols
US5072058A (en) Process for the preparation of 2,2-dimethylpropane-1,3-diol
US5637774A (en) Process for the production of vinyl carbonyls
JP2001213824A (en) Method of producing purified 1,3-butylene glycol
JPH04282338A (en) Preparation of hydroxyketones
CN117700302A (en) Method for producing 1, 3-butanediol
JPH038326B2 (en)
CN103402962A (en) Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution
JPH03279337A (en) Alicyclic compound and production thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees