JP3367293B2 - Gas chromatograph sample introduction method - Google Patents

Gas chromatograph sample introduction method

Info

Publication number
JP3367293B2
JP3367293B2 JP21518395A JP21518395A JP3367293B2 JP 3367293 B2 JP3367293 B2 JP 3367293B2 JP 21518395 A JP21518395 A JP 21518395A JP 21518395 A JP21518395 A JP 21518395A JP 3367293 B2 JP3367293 B2 JP 3367293B2
Authority
JP
Japan
Prior art keywords
sample
temperature
column
vaporization chamber
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21518395A
Other languages
Japanese (ja)
Other versions
JPH0943214A (en
Inventor
治彦 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP21518395A priority Critical patent/JP3367293B2/en
Publication of JPH0943214A publication Critical patent/JPH0943214A/en
Application granted granted Critical
Publication of JP3367293B2 publication Critical patent/JP3367293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/10Preparation using a splitter

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はガスクロマトグラフ
又はガスクロマトグラフ質量分析計において、PTV
(Programed Temperature Vaporizer)注入法によりガ
スクロマトグラフに試料を導入する方法に関するもので
ある。 【0002】 【従来の技術】溶媒に試料成分を溶解した試料溶液をガ
スクロマトグラフの試料気化室に大量に注入し、溶媒か
ら分離された試料成分の全量をカラムに導入するため
に、注入された試料をいったん吸収させて保持する石英
ウール充填物をガスクロマトグラフの試料気化室に備
え、その試料気化室にキャリアガス流路、試料注入口、
カラムを接続するカラム接続口、圧力センサ、スプリッ
ト流路、及び加熱機構が設けられ、キャリアガス流路に
は流量センサ及び流量制御弁が設けられ、スプリット流
路にはカラム入口圧を一定に制御する圧力制御弁が設け
られている試料導入装置が使用されている。 【0003】このような試料導入装置でPTV注入法を
行なうには、試料気化室の温度を注入された試料の溶媒
の沸点以下に保ってキャリアガスの流れにより溶媒を気
化させてスプリット流路から又はカラムを経て排出させ
た後、スプリット流路を閉じた状態にして注入された試
料の分析目的成分を気化させ、高沸点夾雑物は気化させ
ない試料導入温度まで試料気化室の温度を上昇させて、
全分析目的成分をカラムに導入する。その後、スプリッ
ト比を所定の値に保ってキャリアガスを流し、分析を行
なう。このようなPTV注入法によれば、高沸点挾殺物
は石英ウール充填物に捉えられてカラムに導入されない
ため、カラムを傷めないという利点がある。 【0004】 【発明が解決しようとする課題】試料気化室の石英ウー
ル充填物は、試料に含まれていた高沸点夾雑物を捕捉し
て汚れる。夾雑物が多く含まれている試料を分析する場
合には石英ウール充填物を頻繁に交換しなければならな
くなる。そこで、本発明は石英ウール充填物を頻繁に交
換するのを抑え、充填物に補足された高沸点夾雑物がカ
ラムに入るのも抑える方法を提供することを目的とする
ものである。 【0005】 【課題を解決するための手段】本発明の試料導入方法
は、試料気化室の温度を注入された試料の溶媒の沸点以
下に保ってキャリアガスの流れにより溶媒を気化させて
排出させる工程と、その後、注入された試料の分析目的
成分を気化させ、分析目的成分以外の高沸点成分は気化
させない試料導入温度まで試料気化室の温度を上昇させ
て全分析目的成分をカラムに導入する工程と、その後、
分析を行なう工程と、全分析目的成分がカラムに導入さ
れた後、次の試料の注入が行われるまでの適当な時間に
設定され、試料気化室の温度を試料導入温度よりも高
く、高沸点夾雑物を気化させる温度まで上昇させるとと
もに、スプリット比を大きくして、気化した高沸点夾雑
物をスプリット流路から排出させる工程とを備えてい
る。 【0006】前回の試料の測定で試料に含まれていて石
英ウール充填物に捕捉された高沸点夾雑物は、次の試料
が注入されるまでにスプリット流路から排出される。そ
のため、石英ウール充填物の寿命が延びて交換の手間を
少なくできるとともに、高沸点夾雑物がカラムに入るの
も防ぐことができる。 【0007】 【実施例】図1に本発明が適用される試料導入装置の一
例をカラムとともに示す 試料気化室2にはキャリアガス流路4から流量制御弁6
を経てキャリアガスが供給される。8はキャリアガス流
路4に設けられた流量センサであり、キャリアガスの流
量は、流量センサ8の検出値をもとにして所定の流量に
なるように、制御部(図示略)により流量制御弁6が制
御される。試料気化室2は試料を注入する試料注入口1
0にセプタムを備えており、試料はセプタムを通してマ
イクロシリンジにより試料気化室2に注入される。 【0008】試料気化室2内にはガラスインサート12
が収納されており、そのガラスインサート12内の上部
付近には石英ウール充填物14が充填され、試料注入口
10から注入された液体試料を一端吸収して捕捉する。
試料は石英ウール充填物14に捕捉された状態で気化
し、カラムへ導入される。 【0009】試料気化室2の外側には加熱コイル16が
巻かれており、試料気化室2の温度は温度制御部(図示
略)により制御される。試料気化室2の温度は、注入さ
れた試料の溶媒は気化させるが分析目的成分を気化させ
ないための、溶媒の沸点以下の第1の温度と、注入され
た試料の分析目的成分を気化させ高沸点夾雑物は気化さ
せない試料導入温度である第2の温度、及び高沸点夾雑
物まで気化させる第3の温度に切り替えるように制御さ
れる。 【0010】試料気化室2の下端部につながるカラム接
続口18にはカラム20が接続され、カラム20の溶出
口は熱伝導度検出器(TCD)や水素炎イオン化検出器
(FID)などのガスクロマトグラフに固有の検出器、
又は質量分析計に導かれる。試料気化室2の上端部には
セプタムから発生するガスやセプタムから流入する空気
などを排出するためのパージ流路22が設けられてい
る。パージ流路22からの流量を調節するためにパージ
流路22にはニードル弁24が設けられ、さらに試料気
化室2の圧力を検出するための圧力センサ26がパージ
流路22に設けられている。 【0011】試料気化室2にはさらにスプリット流路2
8が設けられ、三方電磁弁30を経てその下流には試料
気化室2の圧力を一定に保つ圧力制御弁32が設けられ
ている。三方電磁弁30は圧力制御弁32をスプリット
流路28を経て試料気化室2に接続するか、又はバイパ
ス流路34からパージ流路22を経て試料気化室2に接
続するものである。 【0012】次に、この実施例において、試料を導入す
る動作を図2のタイミングチャートも参照して説明す
る。試料気化室2の温度が注入される試料の溶媒の沸点
以下の第1の温度T0に保たれ、三方電磁弁30が図の
ように圧力制御弁32をバイパス流路34からパージ流
路22を経て試料気化室2に接続するように設定されて
スプリット流路28が閉じられた状態にして、試料をマ
イクロシリンジにより試料注入口10からセプタムを通
して試料気化室2に注入する。注入された試料中の溶媒
はキャリアガスの流れで気化され、カラム20を経て排
出される。なお、スプリット流路28を開け、スプリッ
ト比を大きくして溶媒をスプリット流路28から排出す
るようにしてもよい。 【0013】溶媒が全て排出されたことを検出器により
検出した後、又は予め行なった予備実験により時間を求
めておいたときはその時間経過後、試料気化室2の温度
を分析目的成分が気化するが高沸点夾雑物は気化しない
第2の温度T1まで昇温させる。この時はまだスプリッ
ト流路28は閉じられており、気化した試料の分析目的
成分の全量がカラム20に導入される。分析目的成分の
全量がカラムに導入されたことを予め時間で求めてお
き、その時間(t1)経過後に三方電磁弁30をスプリ
ット流路28が開かれて圧力制御弁32とつながれる方
向に切り替え、キャリアガスの流量を大きくしてスプリ
ット比を大きくし、試料気化室2の温度を高沸点夾雑物
が気化する第3の温度T2まで昇温させる(図2中の期
間A)。これにより石英ウール充填物14に捕捉されて
いた高沸点夾雑物のうち、温度T1からT2までの沸点の
ものはほとんどスプリット流路28から排出され、カラ
ムに導入される量も少なくてすむ。高沸点夾雑物が排出
されたことを予め時間で定めておき、その時間(t2
経過後、試料気化室2の温度を試料を気化させたときの
第2の温度T1まで下げるとともに、キャリアガス流量
も減少させてスプリット比を小さくし、キャリアガスの
使用量を少なくする。分析目的成分がカラムに導入され
た時点(t1)からカラム20での分離が始まってお
り、カラム温度は所定のプログラムに従って昇温させら
れていく。 【0014】本発明では図2で記号Aで示されたよう
に、温度T1よりも高温でスプリット比が大きく設定さ
れている期間を分析目的成分がカラムに導入された後に
設けることが特徴である。この期間Aは図2の実施例の
ように分析目的成分がカラムに導入された直後である必
要はなく、その試料の分析目的成分の全てが溶出された
後に設けてもよく、あるいは分析途中の任意の時間に設
けてもよい。試料気化室2の温度の切換え、三方電磁弁
30の切換え及びスプリット比の切換えは、オペレータ
が手動で行なってもよく、または制御装置にプログラム
しておき自動的に行なわせてもよい。 【0015】 【発明の効果】本発明は石英ウール充填物に捕捉されて
いた試料中の高沸点夾雑物を、スプリット比を大きくし
試料気化室温度を上げることによってスプリット流路か
ら排出するようにしたので、試料中の高沸点夾雑物の影
響を受けずに安定した繰返し分析を行なうことが可能と
なる。また、石英ウール充填物の交換のためのメンテナ
ンス作業の頻度も少なくなるため、作業時間の短縮とな
り、より多数の分析を連続して行なうことができるよう
になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas chromatograph or a gas chromatograph mass spectrometer for a PTV.
(Programmed Temperature Vaporizer) This relates to a method for introducing a sample into a gas chromatograph by an injection method. 2. Description of the Related Art A large amount of a sample solution in which a sample component is dissolved in a solvent is injected into a sample vaporization chamber of a gas chromatograph, and the entire amount of the sample component separated from the solvent is injected into a column. A quartz wool filling material for temporarily absorbing and holding a sample is provided in a sample vaporization chamber of a gas chromatograph, and a carrier gas flow path, a sample injection port,
A column connection port for connecting the column, a pressure sensor, a split channel, and a heating mechanism are provided.A flow sensor and a flow control valve are provided in the carrier gas channel, and the column inlet pressure is controlled to be constant in the split channel. A sample introduction device provided with a pressure control valve is used. In order to carry out the PTV injection method with such a sample introduction device, the temperature of the sample vaporization chamber is kept below the boiling point of the solvent of the injected sample, the solvent is vaporized by the flow of the carrier gas, and the solvent is vaporized from the split flow path. Or, after discharging through the column, the split flow path is closed, and the analysis target component of the injected sample is vaporized, and the high-boiling-point impurities are raised to a sample introduction temperature at which the vaporization impurities are not vaporized. ,
Introduce all components of interest into the column. Thereafter, the carrier gas is supplied while maintaining the split ratio at a predetermined value, and the analysis is performed. According to such a PTV injection method, there is an advantage that the column is not damaged because the high-boiling point trapped matter is caught by the quartz wool packing and is not introduced into the column. [0004] The quartz wool filling in the sample vaporization chamber captures and contaminates the high boiling point impurities contained in the sample. When analyzing a sample containing a large amount of impurities, the quartz wool packing must be frequently replaced. Accordingly, an object of the present invention is to provide a method for suppressing frequent replacement of a quartz wool packing and suppressing high-boiling impurities trapped in the packing from entering a column. In a sample introduction method according to the present invention, a solvent is vaporized and discharged by a flow of a carrier gas while maintaining the temperature of a sample vaporization chamber at a temperature not higher than the boiling point of the solvent of the injected sample. The process and thereafter, the analysis target components of the injected sample are vaporized, and the temperature of the sample vaporization chamber is raised to a sample introduction temperature at which high-boiling components other than the analysis target components are not vaporized, and all the analysis target components are introduced into the column. Process and then
After the analysis process and all the target components are introduced into the column, the time is set to an appropriate time until the next sample injection is performed.The temperature of the sample vaporization chamber is higher than the sample introduction temperature, and the high boiling point A step of increasing the temperature to a temperature at which the impurities are vaporized, increasing the split ratio, and discharging the vaporized high-boiling impurities from the split flow path. [0006] The high-boiling contaminants contained in the sample in the previous measurement of the sample and captured by the quartz wool filling are discharged from the split channel before the next sample is injected. Therefore, the life of the quartz wool packing is prolonged, and the time and effort for replacement can be reduced. In addition, high boiling impurities can be prevented from entering the column. FIG. 1 shows an example of a sample introducing apparatus to which the present invention is applied. A sample vaporizing chamber 2 is shown together with a column.
The carrier gas is supplied through Reference numeral 8 denotes a flow rate sensor provided in the carrier gas flow path 4. The flow rate of the carrier gas is controlled by a control unit (not shown) so as to be a predetermined flow rate based on the detection value of the flow rate sensor 8. The valve 6 is controlled. The sample vaporization chamber 2 has a sample inlet 1 for injecting a sample.
0 is provided with a septum, and the sample is injected into the sample vaporization chamber 2 by a microsyringe through the septum. A glass insert 12 is provided in the sample vaporizing chamber 2.
The upper portion of the glass insert 12 is filled with a quartz wool filler 14, and absorbs and captures the liquid sample injected from the sample inlet 10 once.
The sample is vaporized while being captured by the quartz wool packing 14, and is introduced into the column. A heating coil 16 is wound around the outside of the sample vaporizing chamber 2, and the temperature of the sample vaporizing chamber 2 is controlled by a temperature controller (not shown). The temperature of the sample vaporization chamber 2 is set to a first temperature equal to or lower than the boiling point of the solvent to vaporize the solvent of the injected sample but not to vaporize the analysis target component, and to evaporate the analysis target component of the injected sample. Control is performed so as to switch to a second temperature, which is a sample introduction temperature at which the boiling impurities are not vaporized, and a third temperature, which vaporizes even the high boiling impurities. A column 20 is connected to a column connection port 18 connected to the lower end of the sample vaporization chamber 2. An elution port of the column 20 has a gas chromatograph such as a thermal conductivity detector (TCD) or a flame ionization detector (FID). Detectors specific to
Or it is led to a mass spectrometer. At an upper end of the sample vaporization chamber 2, a purge flow path 22 for discharging gas generated from the septum, air flowing from the septum, and the like is provided. A needle valve 24 is provided in the purge passage 22 to adjust the flow rate from the purge passage 22, and a pressure sensor 26 for detecting the pressure in the sample vaporization chamber 2 is provided in the purge passage 22. . The sample vaporization chamber 2 further includes a split flow path 2
8 is provided, and a pressure control valve 32 for keeping the pressure of the sample vaporization chamber 2 constant is provided downstream through a three-way solenoid valve 30. The three-way solenoid valve 30 connects the pressure control valve 32 to the sample vaporization chamber 2 through the split flow path 28 or connects the bypass flow path 34 to the sample vaporization chamber 2 through the purge flow path 22. Next, in this embodiment, the operation of introducing a sample will be described with reference to the timing chart of FIG. The temperature of the sample vaporization chamber 2 is maintained at a first temperature T 0 below the boiling point of the solvent of the sample to be injected, and the three-way solenoid valve 30 moves the pressure control valve 32 from the bypass flow path 34 to the purge flow path 22 as shown in the figure. The sample is injected into the sample vaporization chamber 2 through the sample injection port 10 through the septum from the sample injection port 10 by using a micro syringe to set the split flow path 28 in a closed state. The solvent in the injected sample is vaporized by the flow of the carrier gas and discharged through the column 20. Note that the split channel 28 may be opened, the split ratio may be increased, and the solvent may be discharged from the split channel 28. After detecting that all the solvent has been discharged by the detector, or when the time has been determined by a preliminary experiment conducted in advance, after the lapse of the time, the temperature of the sample vaporization chamber 2 is determined by the vaporization of the analysis target component. Suruga high boiling contaminants is heated to a second temperature T 1 of the unvaporized. At this time, the split channel 28 is still closed, and the entire amount of the analysis target component of the vaporized sample is introduced into the column 20. It is previously determined in time that the entire amount of the analysis target component has been introduced into the column, and after the lapse of the time (t 1 ), the three-way solenoid valve 30 is moved in the direction in which the split flow path 28 is opened and connected to the pressure control valve 32. switching, by increasing the flow rate of the carrier gas to increase the split ratio, the temperature of the sample vaporizing chamber 2 is a high-boiling impurities is heated to a third temperature T 2 for vaporizing (period a in FIG. 2). Thus among the high-boiling impurities that had been trapped in the quartz wool packing 14, those having a boiling point of from temperatures T 1 to T 2 is discharged from almost split channel 28, only a small amount is introduced into the column . It is determined in advance that the high-boiling-point impurities have been discharged, and the time (t 2 )
After, with lowering the temperature of the sample evaporation chamber 2 to a second temperature T 1 of the time vaporizing the sample, a carrier gas flow rate is also reduced by reducing the split ratio, to reduce the amount of carrier gas. Separation in the column 20 has started at the time (t 1 ) when the analysis target component is introduced into the column, and the column temperature is increased according to a predetermined program. The present invention is characterized in that, as indicated by symbol A in FIG. 2, a period in which the split ratio is set higher than the temperature T 1 is provided after the analysis target component is introduced into the column. is there. This period A does not need to be immediately after the analysis target component is introduced into the column as in the embodiment of FIG. 2, but may be provided after all the analysis target components of the sample have been eluted, or may be provided during the analysis. It may be provided at any time. The switching of the temperature of the sample vaporization chamber 2, the switching of the three-way solenoid valve 30, and the switching of the split ratio may be performed manually by an operator, or may be performed automatically by programming a control device. According to the present invention, the high boiling impurities in the sample trapped in the quartz wool packing are discharged from the split channel by increasing the split ratio and raising the temperature of the sample vaporization chamber. Therefore, it is possible to perform a stable and repetitive analysis without being affected by the high boiling point impurities in the sample. In addition, since the frequency of maintenance work for replacing the quartz wool filler is reduced, the work time is shortened, and a larger number of analyzes can be continuously performed.

【図面の簡単な説明】 【図1】本発明が適用される試料導入装置付近を示す断
面図である。 【図2】動作の一例を示すタイミングチャートである。 【符号の説明】 2 試料気化室 4 キャリアガス流路 6 流量制御弁 8 流量センサ 10 試料注入口 12 ガラスインサート 14 石英ウール充填物 16 加熱コイル 20 カラム 22 パージガス流路 26 圧力センサ 28 スプリット流路 30 三方電磁弁 32 圧力制御弁
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing the vicinity of a sample introduction device to which the present invention is applied. FIG. 2 is a timing chart showing an example of an operation. [Description of Signs] 2 Sample vaporization chamber 4 Carrier gas flow path 6 Flow control valve 8 Flow rate sensor 10 Sample injection port 12 Glass insert 14 Quartz wool filling 16 Heating coil 20 Column 22 Purge gas flow path 26 Pressure sensor 28 Split flow path 30 Three-way solenoid valve 32 Pressure control valve

Claims (1)

(57)【特許請求の範囲】 【請求項1】 注入された試料をいったん吸収させて保
持する充填物をガスクロマトグラフの試料気化室に備
え、その試料気化室にはキャリアガス流路、試料注入
口、カラムを接続するカラム接続口、圧力センサ、スプ
リット流路、及び加熱機構が設けられ、前記キャリアガ
ス流路には流量センサ及び流量制御弁が設けられ、前記
スプリット流路にはカラム入口圧を一定に保つように制
御する圧力制御弁が設けられている試料導入装置を用い
てガスクロマトグラフに試料を導入する方法において、 試料気化室の温度を注入された試料の溶媒の沸点以下に
保ってキャリアガスの流れにより溶媒を気化させて排出
させる工程と、 その後、注入された試料の分析目的成分を気化させ高沸
点夾雑物は気化させない試料導入温度まで試料気化室の
温度を上昇させて全分析目的成分をカラムに導入する工
程と、 その後、分析を行なう工程と、 全分析目的成分がカラムに導入された後、次の試料の注
入が行われるまでの適当な時間に設定され、試料気化室
の温度を試料導入温度よりも高く、高沸点夾雑物を気化
させる温度まで上昇させるとともに、スプリット比を大
きくして、気化した高沸点夾雑物をスプリット流路から
排出させる工程と、を備えたことを特徴とするガスクロ
マトグラフの試料導入方法。
(57) [Claim 1] A packing for absorbing and retaining an injected sample is provided in a sample vaporization chamber of a gas chromatograph, and the sample vaporization chamber has a carrier gas flow path and a sample injection chamber. An inlet, a column connection port for connecting a column, a pressure sensor, a split flow path, and a heating mechanism are provided, a flow rate sensor and a flow rate control valve are provided in the carrier gas flow path, and a column inlet pressure is provided in the split flow path. In a method for introducing a sample into a gas chromatograph using a sample introduction device provided with a pressure control valve for controlling the temperature of the sample to be kept constant, the temperature of the sample vaporization chamber is kept below the boiling point of the solvent of the injected sample. A step of vaporizing and discharging the solvent by the flow of the carrier gas; and a sample introduction temperature at which the analysis target component of the injected sample is vaporized and high-boiling impurities are not vaporized. Step of raising the temperature of the sample vaporization chamber to introduce all the analysis target components into the column, and then performing the analysis. After all the analysis target components are introduced into the column, the next sample is injected. The temperature of the sample vaporization chamber is set higher than the sample introduction temperature and raised to a temperature at which high-boiling impurities are vaporized, and the split ratio is increased to split the vaporized high-boiling impurities Discharging a sample from a flow channel.
JP21518395A 1995-07-31 1995-07-31 Gas chromatograph sample introduction method Expired - Fee Related JP3367293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21518395A JP3367293B2 (en) 1995-07-31 1995-07-31 Gas chromatograph sample introduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21518395A JP3367293B2 (en) 1995-07-31 1995-07-31 Gas chromatograph sample introduction method

Publications (2)

Publication Number Publication Date
JPH0943214A JPH0943214A (en) 1997-02-14
JP3367293B2 true JP3367293B2 (en) 2003-01-14

Family

ID=16668050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21518395A Expired - Fee Related JP3367293B2 (en) 1995-07-31 1995-07-31 Gas chromatograph sample introduction method

Country Status (1)

Country Link
JP (1) JP3367293B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036130A2 (en) * 2003-10-08 2005-04-21 Smiths Detection Inc. Method and system for introducing an analyte into an ion mobility spectrometer
JP4699005B2 (en) * 2004-11-01 2011-06-08 三菱重工業株式会社 Gas chromatograph and gas chromatograph analysis method
WO2006077912A1 (en) * 2005-01-19 2006-07-27 Saika Technological Institute Foundation Method of analysis with gas chromatograph through large-amount injection thereinto and apparatus therefor
JP4824983B2 (en) * 2005-09-29 2011-11-30 財団法人電力中央研究所 PCB analysis method, PCB analysis sample introduction device, and PCB analysis device

Also Published As

Publication number Publication date
JPH0943214A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
US5347844A (en) Process and device for vaporization injections in equipments for gas chromatographic analysis
EP0661537B1 (en) Apparatus for gas chromatography
EP1585586B1 (en) Analyte pre-concentrator for gas chromatography
CA2569728C (en) Interface from a thermal desorption unit to a chromatographic column
US4732046A (en) Method and apparatus for the introduction of a vaporizable sample into an analytical test apparatus
JP2759238B2 (en) Gas chromatography equipment
JPH05180815A (en) Apparatus and method for gas chromatography
JPH0933502A (en) Gas chromatograph
JP3669402B2 (en) Gas chromatograph sample introduction method and sample introduction apparatus
US6203597B1 (en) Method and apparatus for mass injection of sample
JP3367293B2 (en) Gas chromatograph sample introduction method
WO2006077912A1 (en) Method of analysis with gas chromatograph through large-amount injection thereinto and apparatus therefor
JP5542157B2 (en) Apparatus and method for the preparation of samples for gas chromatography
JPS59120956A (en) Gas chromatograph
EP0699303B1 (en) Process and device for gas chromatographic analysis of large volume samples
JP3724131B2 (en) Gas chromatograph
JP3290893B2 (en) Gas phase component analyzer
JP3743127B2 (en) Gas chromatograph
JP2007024781A (en) Gas chromatograph device
JP3102441B2 (en) Gas chromatograph
JP7142374B2 (en) Gas phase component analyzer and gas phase component analysis method
JP2000002695A (en) Method and apparatus for injection of sample in large quantity
JP2001343374A (en) Liquid sample introduction device
JPH11352120A (en) Analytical device for polymer material
US10989697B2 (en) Breath analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees