JP3350080B2 - Artificial vertebral body spacer - Google Patents

Artificial vertebral body spacer

Info

Publication number
JP3350080B2
JP3350080B2 JP01675592A JP1675592A JP3350080B2 JP 3350080 B2 JP3350080 B2 JP 3350080B2 JP 01675592 A JP01675592 A JP 01675592A JP 1675592 A JP1675592 A JP 1675592A JP 3350080 B2 JP3350080 B2 JP 3350080B2
Authority
JP
Japan
Prior art keywords
spacer
vertebral body
angle
artificial
vertebral bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP01675592A
Other languages
Japanese (ja)
Other versions
JPH05208029A (en
Inventor
正一 国分
茂基 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11925061&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3350080(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01675592A priority Critical patent/JP3350080B2/en
Publication of JPH05208029A publication Critical patent/JPH05208029A/en
Application granted granted Critical
Publication of JP3350080B2 publication Critical patent/JP3350080B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • A61F2002/30266Three-dimensional shapes parallelepipedal wedge-shaped parallelepipeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0082Three-dimensional shapes parallelepipedal

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は歩行障害など起臥の運動
に支障をきたす脊椎彎曲変形を矯正するため椎体間に装
填する人工椎体スペーサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial vertebral body spacer to be loaded between vertebral bodies to correct a vertebral curve deformation which hinders the prone movement such as a walking disorder.

【0002】[0002]

【従来の技術】脊椎が後方に彎曲して前方に臥した姿勢
となる脊椎後彎変形や側方に彎曲して側方に臥した姿勢
となる脊椎側彎変形などの脊椎彎曲変形は、腰をかがめ
て仕事をする機会の多い農業に従事する婦人にしばしば
見られ、腰曲がりと、その特異的な腰痛により、びっこ
などの歩行障害など日常生活に支障をきたす障害が多
い。
2. Description of the Related Art Spine kyphosis, in which the spine curves backward and lays forward, and scoliosis, in which the spine curves laterally and lie down, are caused by lumbar spine deformation. It is often seen in women engaged in agriculture who often bend down and work, and there are many obstacles that hinder daily life, such as gait disturbances such as locomotion due to hip bending and its specific back pain.

【0003】このような症例に対して、従来は椎体間に
できるだけ大きな自家骨の骨片を打ち込んだり、さらに
この骨片の打ち込みに加えて特開平2−215461号
公報が提案しているようなゴムを表面に付着せしめた金
属製のプレート又はロッドを使用した矯正術を行ってい
た。
For such a case, Japanese Patent Application Laid-Open No. 2-215461 proposes hitherto driving a bone fragment of an autogenous bone as large as possible between vertebral bodies and further driving the bone fragment. Orthodontic surgery has been performed using a metal plate or rod on which a rubber is adhered to the surface.

【0004】[0004]

【従来技術の課題】しかしながら、上記の脊椎彎曲変形
矯正術は以下のような問題を有していた。自家骨の骨片
を椎体間に打ち込む場合には、採取した骨を移植するこ
とから椎体の海綿骨との癒合性は良好であるものの、荷
重が加わる方向に骨吸収を起こしやすく、移植矯正をし
た効果が次第に薄れてくるという不具合があった。ま
た、椎体間に打ち込む自家骨はほとんどの場合、腸骨あ
るいは腓骨から採骨しているが、十分な大きさの移植骨
を採取するために中殿筋や腸筋を広範囲に剥離する必要
がある。このため手術が長時間に渡ったり、出血量が増
加したり、術後の安静期間が長期化するなど、自家骨移
植であるゆえの多くの不具合があった。さらに、移植後
も骨片の脱転が発生する例も少なからずあった。
2. Description of the Related Art However, the above-described spinal curvature correction has the following problems. When bone fragments of autogenous bone are implanted between the vertebral bodies, the bones are implanted and the fusion of the vertebral bodies with the cancellous bone is good, but bone resorption is likely to occur in the direction in which the load is applied. There was a problem that the effect of the correction gradually diminished. In most cases, autogenous bones implanted between the vertebral bodies are collected from the iliac or fibula, but it is necessary to exfoliate the gluteus maximus and iliac muscle extensively in order to obtain a sufficiently large bone graft. There is. For this reason, there have been many inconveniences due to autologous bone transplantation, such as a long operation, an increased amount of bleeding, and a prolonged rest period after the operation. In addition, there were not a few cases in which the bone fragments came off even after the transplantation.

【0005】一方、上記の金属製プレート又はロッドを
使用した矯正術では、複数の椎体間を矯正できないた
め、無理な荷重をかけた状態のまま矯正が行われること
があり、プレート、ロッド自体が脱転、破損、又は変形
したり、さらには脊椎に損傷を与えてしまっていた。
On the other hand, in the above-described correction using a metal plate or rod, correction between a plurality of vertebral bodies cannot be performed, so that correction may be performed while an excessive load is applied. Had fallen, broken, or deformed, and even damaged the spine.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め、本発明は脊椎湾曲変形を矯正するため任意の椎体間
に装着するべく、上下の椎体に当接する少なくとも上面
と下面とを備えた多面体の人工椎体スペーサであって、
前記上面と下面とのなす角度が14°〜40°であると
ともに、該角度が生体内で受ける荷重下で実質的に不変
であることを特徴とする人工椎体スペーサを提供するも
のである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has at least an upper surface and a lower surface which contact upper and lower vertebral bodies so as to be mounted between arbitrary vertebral bodies to correct a spinal curvature deformation. A polyhedral artificial vertebral body spacer comprising:
An artificial vertebral body spacer characterized in that the angle between the upper surface and the lower surface is 14 ° to 40 °, and the angle is substantially unchanged under a load received in a living body.

【0007】[0007]

【実施例】以下、図によって本発明の実施例を具体的に
説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention.

【0008】図1には、人工椎体スペーサ(以下、スペ
ーサと略称する)1を示し、このスペーサ1は、図1
(ロ)に断面図を示す如く、脊椎湾曲変形を矯正するた
め任意の椎体間に装着するべく、上下の椎体に当接する
少なくとも上面1aと下面1bとを備えた多面体であ
り、この上面1aと下面1bとのなす角度θが14°〜
40°であるとともに、該角度が生体内で受ける荷重下
で実質的に不変である。上記のスペーサ1は、図2に示
す如く彎曲した脊椎Mを正常位に復帰させた状態で、脊
椎Mの椎間板Lを除去した椎体T、T間に装填するが、
上述のように上面1aと下面1bとのなす角度θが14
°〜40°の角度で形成されているので、彎曲した脊椎
Mを正常位に矯正することができる。また、スペーサ1
による脊椎彎曲変形の矯正を補助するため、正常位に矯
正した脊椎Mを支持するよう、脊椎Mの後方部分にロッ
ドRを打ち込むことも行なわれる。
FIG. 1 shows an artificial vertebral body spacer (hereinafter, abbreviated as a spacer) 1.
(B) As shown in the cross-sectional view, it is a polyhedron having at least an upper surface 1a and a lower surface 1b that contact upper and lower vertebral bodies so as to be attached between arbitrary vertebral bodies to correct spinal curvature deformation. The angle θ between the lower surface 1a and the lower surface 1b is 14 ° or more.
40 °, and the angle is substantially unchanged under the load received in vivo. The spacer 1 is loaded between the vertebral bodies T, T from which the intervertebral disc L of the spine M is removed in a state where the curved spine M is returned to the normal position as shown in FIG.
As described above, the angle θ between the upper surface 1a and the lower surface 1b is 14
Since it is formed at an angle of 40 °, the curved spine M can be corrected to the normal position. Spacer 1
In order to assist in the correction of the spinal deformity caused by the spine M, a rod R is driven into a posterior portion of the spine M so as to support the spine M corrected to the normal position.

【0009】特に、脊椎Mの湾曲の度合いが大きい場合
には、例えば、矯正術の実施が容易である箇所を選択す
るとか、脊椎Mやその周囲の神経に損傷を与えずに済む
場所等で任意、最適な箇所を複数選択し、そこに上記の
スペーサ1を装填することによって、脊椎Mの一部分の
みに無理な荷重がかかってしまうことや、スペーサ1の
脱転などを防止することができる。
[0009] In particular, when the degree of curvature of the spine M is large, for example, a place where correction can be easily performed is selected, or a place where damage to the spine M and surrounding nerves can be avoided. By arbitrarily selecting a plurality of optimal portions and loading the spacer 1 therein, it is possible to prevent an unreasonable load from being applied to only a part of the spine M and to prevent the spacer 1 from falling off. .

【0010】このようなスペーサ1の材質としては、ア
ルミナ、ジルコニア、アパタイトなどのセラミック材、
ステンレス、コバルトクロム合金、純チタン、チタン合
金などの生体為害性のない金属材料、ポリエチレンなど
の超高分子材料、または上記のような材質よりなるスペ
ーサ1の上面1aまたは下面1bの少なくとも一方に、
ハイドロキシアパタイト等の生体親和性に優れた材料よ
りなるポーラス層(不図示)を設けたものであっても良
い。
Examples of the material of the spacer 1 include ceramic materials such as alumina, zirconia, and apatite;
At least one of the upper surface 1a or the lower surface 1b of the spacer 1 made of stainless steel, a cobalt chromium alloy, pure titanium, a metal material having no harm to the living body such as a titanium alloy, an ultra-high polymer material such as polyethylene, or the above-described material,
A porous layer (not shown) made of a material having excellent biocompatibility such as hydroxyapatite may be provided.

【0011】このスペーサ1を装填する矯正術において
は、骨を採骨する必要がなく、もし必要な場合であって
も少量の採骨で良く、自家骨のみを移植する場合の如く
多量に採骨する必要はなく、患者に多大な肉体的および
精神的苦痛、さらには様々な不具合を与えなくてすむ。
In the orthopedic surgery in which the spacer 1 is loaded, it is not necessary to extract bone, and even if necessary, a small amount of bone can be collected, and a large amount of bone can be collected as in the case where only autologous bone is transplanted. It does not need to be boned, and does not cause significant physical and mental distress to the patient and various inconveniences.

【0012】上述のようにスペーサ1の上面1aと下面
1bがθ=14〜40°という角度で形成されているの
は、以下のような理由による。脊椎彎曲変形は手術適応
となる場合、脊椎Mの矯正のために少なくとも25°の
矯正が必要であり、また、手術を行う椎体間の数は3つ
の椎体間までが安全であって、無理に4つの椎体間を手
術するのは大きな危険を伴う。スペーサ1が椎体Tの海
綿骨内に沈みこんで矯正角度を5°程度ロスすることを
予め考慮すると、スペーサ1の上面1aと下面1bが互
いにθ<14°の角度で形成されている時は、仮に3つ
の椎体間に脊椎後彎変形を持つ患者の3つの椎体間にス
ペーサ1を装填しても必要な矯正角度は得られず、腰痛
は多少緩和されるものの腰曲がりを完全には矯正するこ
とができない。また、スペーサ1の上面1aと下面1b
が互いにθ>40°の角度で形成されている時は、手術
後、スペーサ1が身体の前方に滑って脱転してしまう恐
れがある。
As described above, the upper surface 1a and the lower surface 1b of the spacer 1 are formed at an angle of θ = 14 to 40 ° for the following reason. If spinal curvature deformity is an indication for surgery, at least 25 ° correction is required to correct the spine M, and the number of vertebral bodies on which surgery is performed is safe up to three vertebral bodies, Forcibly operating between the four vertebral bodies is very dangerous. Considering in advance that the spacer 1 sinks into the cancellous bone of the vertebral body T and loses the correction angle by about 5 °, when the upper surface 1a and the lower surface 1b of the spacer 1 are formed at an angle of θ <14 ° with each other. If the spacer 1 is inserted between the three vertebral bodies of a patient who has kyphosis in three vertebral bodies, the necessary correction angle cannot be obtained, and the lower back pain is somewhat alleviated, but the lower back is completely bent. Cannot be corrected. Also, the upper surface 1a and the lower surface 1b of the spacer 1
Are formed at an angle of θ> 40 ° with respect to each other, the spacer 1 may slide forward of the body and fall off after the operation.

【0013】以下の実施例においては実施例1と相違す
ることのみを説明する。
In the following embodiment, only differences from the first embodiment will be described.

【0014】実施例2 図3及び図4には、椎体Tの海綿骨内に圧入され脱転防
止のためのストッパーとして作用する突起2または2a
を上面1aおよび下面1bに備えたスペーサ1、1を示
し、図3に示すアルミナ製のスペーサ1は梁状の突起
2、2を上面1aと下面1bに一体的に設けており、ま
た図4に示すポリエチレン製のスペーサ1は、スパイク
状でチタン合金よりなり上面1aと下面1bより螺着す
るべく大径部分がネジ状となっている突起2aを上面1
aの側と下面1bの側にそれぞれ3個づつ備えている。
Embodiment 2 FIGS. 3 and 4 show a projection 2 or 2a which is pressed into the cancellous bone of a vertebral body T and acts as a stopper for preventing its fall-off.
4 shows spacers 1 and 1 provided on the upper surface 1a and the lower surface 1b. The spacer 1 made of alumina shown in FIG. 3 has beam-shaped projections 2 and 2 integrally provided on the upper surface 1a and the lower surface 1b. A spacer 1 made of polyethylene shown in FIG. 1 is made of a spike-like titanium alloy and has a protrusion 2a having a large diameter portion formed into a screw shape to be screwed from the upper surface 1a and the lower surface 1b.
3 are provided on each of the side a and the side of the lower surface 1b.

【0015】なお、突起2(2a)の形状、大きさ、
数、配置等は各々の症例に応じて決めれば良い。
The shape and size of the projection 2 (2a)
The number, arrangement, etc. may be determined according to each case.

【0016】実施例3 図5には気孔率50%程度の純チタン製またはチタン合
金製のファイバーメッシュよりなるスペーサ1を示し、
このようなファイバーメッシュは多孔質であるので、椎
体Tの海綿骨がその孔内に増殖生成し、その結果、椎体
Tとの強固な結合が達成できる。さらに、その弾性率は
純チタンのバルクで構成したスペーサ1で約110,0
00MPa、アルミナよりなるスペーサ1で390,0
00MPaであるのに対して、純チタンまたはチタン合
金のファイバーメッシュよりなる上記のスペーサ1は弾
性率が約900MPaと良好な負荷緩衝作用を持つ。
Embodiment 3 FIG. 5 shows a spacer 1 made of a pure titanium or titanium alloy fiber mesh having a porosity of about 50%.
Since such a fiber mesh is porous, the cancellous bone of the vertebral body T grows and grows in the pores, and as a result, a strong connection with the vertebral body T can be achieved. Further, the elastic modulus of the spacer 1 made of pure titanium bulk is about 110,0.
390,0 for spacer 1 made of 00 MPa and alumina
In contrast to 00 MPa, the spacer 1 made of pure titanium or a titanium alloy fiber mesh has an elastic modulus of about 900 MPa and has a good load buffering action.

【0017】実施例4 図6には純チタン製またはチタン合金製のファイバーメ
ッシュF、Fの間にポリビニールアルコール(以下、P
VAと略称する)のハイドロゲルから成るブロック体P
を合体して成るスペーサ1を示し、このスペーサ1にお
いては、上記のファイバーメッシュF、FとPVAハイ
ドロゲルのブロック体Pとの隣接部F1、F1 の微細孔
内にはPVAハイドロゲルが保持されており、これによ
って、ファイバーメッシュF、Fと上記ブロック体Pが
合体せしめてある。
Embodiment 4 FIG. 6 shows that polyvinyl alcohol (hereinafter referred to as P) is interposed between fiber meshes F and F made of pure titanium or titanium alloy.
VA), which is made of a hydrogel
In this spacer 1, a PVA hydrogel is contained in the micropores of the adjacent portions F 1 and F 1 between the fiber meshes F and F and the block body P of the PVA hydrogel. Thus, the fiber meshes F, F and the block body P are combined.

【0018】上記のようなスペーサ1を作製するにあた
っては、ケン化度が95モル%以上、好ましくは97モ
ル以上で平均重合度が粘土平均で1700以上、好まし
くは5000以上のPVAを水又はジメチルスルホキシ
ド(DMOS)等の水和性の有機溶媒と水との混合溶媒
に加え加熱溶解することにより、PVAを2〜30wt%
含むペーストを調製する。
In preparing the spacer 1 as described above, PVA having a degree of saponification of 95 mol% or more, preferably 97 mol or more and an average degree of polymerization of 1700 or more, preferably 5000 or more on the average of clay is prepared by adding water or dimethyl. PVA is added to a mixed solvent of water and a hydratable organic solvent such as sulfoxide (DMOS) by heating and dissolving to make 2 to 30% by weight of PVA.
A paste containing is prepared.

【0019】次に、予め用意した気孔率50%程度の2
個のファイバーメッシュF、Fのうち1個を金属製金型
の底に設置し、その上から調整したPVAのペーストを
注入し、さらにその上から残りの1個を金型に入れプレ
ス成形機にて上から圧力を加えて後、金型より中身を取
り出し、直ちに瞬間冷却スプレーを用いてPVAのペー
ストの温度を下げ、上下のファイバーメッシュF、Fの
隣接部F1 、F1 の微細孔内にのみPVAを保持させて
ファイバーメッシュF、Fの間にPVAハイドロゲルか
ら成るブロック体Pを合体する。
Next, a previously prepared porosity of about 50% 2
One of the fiber meshes F, F is placed at the bottom of a metal mold, the adjusted PVA paste is poured from above, and the other is placed in the mold from above, and a press molding machine is placed. After applying pressure from above, the contents are taken out of the mold, and the temperature of the PVA paste is immediately lowered using instantaneous cooling spray, and the fine holes in the upper and lower fiber meshes F, adjacent portions F 1 , F 1 The block body P made of PVA hydrogel is united between the fiber meshes F while holding the PVA only inside.

【0020】さらにこれを、エチルアルコール中に浸漬
し、加熱して攪拌しながら約1週間洗浄した後、室温で
風乾して、さらに真空乾燥にて約3日間乾燥する。続い
て、100〜180℃の温度のシリコーンオイル中にて
1〜72時間熱処理を施し、さらに水中に浸漬した後、
最後に室温にて風乾する。
Further, this is immersed in ethyl alcohol, washed with heating and stirring for about one week, air-dried at room temperature, and further dried by vacuum drying for about three days. Subsequently, heat treatment is performed in silicone oil at a temperature of 100 to 180 ° C. for 1 to 72 hours, and after further immersion in water,
Finally, air dry at room temperature.

【0021】このように製作されたスペーサ1は、上面
1aと下面1bが多孔質となっておりここに椎体Tの海
綿骨が増殖生成することによって椎体Tと強固に結合
し、椎体間より脱転することを防止するのに加え、ファ
ーバーメッシュF、Fと合体したPVAハイドロゲルの
ブロック体Pによって理想的な柔軟性と負荷緩衝作用を
有していた。
The spacer 1 manufactured in this manner is porous on the upper surface 1a and the lower surface 1b. The cancellous bone of the vertebral body T grows and grows on the upper surface 1a and the lower surface 1b. In addition to preventing falling out of the space, the blocker P of PVA hydrogel combined with the fiber mesh F, F had ideal flexibility and load buffering action.

【0022】実施例5 図7及び図8には椎体Tの海綿骨が内部に成長してきて
椎体Tとの固定が強化されるよう上面1aと下面1bを
貫通する貫通孔3を有するスペーサ1を示し、図8に示
すチタン合金製のスペーサ1は上記の貫通孔3内に50
%程度の気孔率を有するチタン合金製のファイバーメッ
シュ3aを装填して、該ファイバーメッシュ3a内へ椎
体Tの海綿骨が増殖生成していくことを促進するように
なっている。なお、スペーサ1の材質はチタン合金のみ
に限られるものではなく、ステンレス、コバルトクロム
合金、純チタンなどの生体い為害性のない金属材料、ア
ルミナ、ジルコニア、アパタイトなどのセラミック材、
あるいはポリエチレンなどの超高分子材料などでも良
い。
Embodiment 5 FIGS. 7 and 8 show a spacer having a through-hole 3 penetrating the upper surface 1a and the lower surface 1b so that the cancellous bone of the vertebral body T grows inside and the fixation to the vertebral body T is strengthened. The spacer 1 made of a titanium alloy shown in FIG.
% Of the porosity of the vertebral body T is promoted into the fiber mesh 3a. In addition, the material of the spacer 1 is not limited to the titanium alloy alone, but is a metal material which is not harmful to living bodies such as stainless steel, cobalt chrome alloy, pure titanium, ceramic material such as alumina, zirconia, apatite,
Alternatively, a super-polymer material such as polyethylene may be used.

【0023】実施例6 図9及び図10には椎体Tの海綿骨が成長してきて椎体
Tとの固定が強化されるよう上面1aと下面1bのそれ
ぞれに深さ0.5〜2mm程度の凹部4を備えたスペー
サ1を示し、図10に示すスペーサ1は上記凹部4にア
ルミナビーズ4aをシリカ系ガラス(不図示)で接合し
ており、上記凹部4内へ椎体Tの海綿骨が増殖生成して
いくことを促進するようになっている。
Embodiment 6 FIGS. 9 and 10 show that each of the upper surface 1a and the lower surface 1b has a depth of about 0.5 to 2 mm so that the cancellous bone of the vertebral body T grows and the fixation to the vertebral body T is strengthened. The spacer 1 shown in FIG. 10 has an alumina bead 4a bonded to the recess 4 with silica-based glass (not shown), and the cancellous bone of the vertebral body T is inserted into the recess 4. To promote the growth and production.

【0024】なお、スペーサ1の形状は上述のようなも
のに限られるわけではなく、図11に示す如く、例えば
水平面形状が馬蹄形、円形、楕円形、などをしたもので
もよく、それぞれの症例に応じて適当な形状、寸法を有
したものを使用すれば良い。また、図12に示すよう
に、スペーサ1は上面1aと1bが互いに2方向に
θ1、θ2 =14〜40°の角度で形成されたものでも
良く、このようなスペーサ1は例えば、脊椎後彎症と脊
椎側彎症の両方を持つ患者に適応することができる。
The shape of the spacer 1 is not limited to the one described above, but may be, for example, a horseshoe shape, a circle, an ellipse, etc. as shown in FIG. What is necessary is just to use what had a suitable shape and dimension according to it. As shown in FIG. 12, the upper surface 1a and the upper surface 1b of the spacer 1 may be formed in two directions at an angle of [theta] 1 , [theta] 2 = 14 to 40 [deg.]. It can be adapted to patients with both kyphosis and scoliosis.

【0025】[0025]

【発明の効果】本発明の人工股関節によれば、脊椎湾曲
変形を矯正するため任意の椎体間に装着するべく、上下
の椎体に当接する少なくとも上面と下面とを備えた多面
体の人工椎体スペーサであって、前記上面と下面とのな
す角度が14°〜40°であるとともに、該角度が生体
内で受ける荷重下で実質的に不変であるようにしたこと
により、彎曲した脊椎を無理なく矯正することができ
る。
According to the artificial hip joint of the present invention, a polyhedral artificial vertebra having at least an upper surface and a lower surface abutting on upper and lower vertebral bodies to be mounted between arbitrary vertebral bodies for correcting spinal curvature deformation. A body spacer, wherein the angle between the upper surface and the lower surface is 14 ° to 40 °, and the angle is substantially invariant under a load received in a living body, so that the curved spine can be formed. It can be corrected without difficulty.

【図面の簡単な説明】[Brief description of the drawings]

【図1】人工椎体スペーサを示す図であって、(イ)は
斜視図、(ロ)は本図(イ)のv−v線断面図である。
1A and 1B are diagrams showing an artificial vertebral body spacer, wherein FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view taken along line vv of FIG.

【図2】人工椎体スペーサを椎体間に装填した様子を示
す側面図である。
FIG. 2 is a side view showing a state where an artificial vertebral body spacer is loaded between vertebral bodies.

【図3】上下面に梁状の突起を備える人工椎体スペーサ
を示す図であって、(イ)は斜視図、(ロ)は側面図で
ある。
FIGS. 3A and 3B are views showing an artificial vertebral body spacer having upper and lower beam-like projections, wherein FIG. 3A is a perspective view and FIG. 3B is a side view.

【図4】上下面にスパイク状の突起を備える人工椎体ス
ペーサ示す図であって、(イ)は斜視図、(ロ)は本図
(イ)のw−w線断面図である。
4A and 4B are diagrams showing an artificial vertebral body spacer having spike-shaped projections on upper and lower surfaces, wherein FIG. 4A is a perspective view, and FIG. 4B is a sectional view taken along line ww of FIG.

【図5】純チタン製又はチタン合金製のファイバーメッ
シュよりなる人工椎体スペーサを示す斜視図である。
FIG. 5 is a perspective view showing an artificial vertebral body spacer made of pure titanium or a titanium alloy fiber mesh.

【図6】純チタンまたはチタン合金よりなる上下のファ
イバーメッシュの間にポリビニールアルコールハイドロ
ゲルのブロック体を合体してなる人工椎体スペーサを示
す斜視図である。
FIG. 6 is a perspective view showing an artificial vertebral body spacer formed by combining a block body of polyvinyl alcohol hydrogel between upper and lower fiber meshes made of pure titanium or a titanium alloy.

【図7】上下方向に貫通孔を備える人工椎体スペーサを
示す図であって、(イ)は斜視図、(ロ)は本図(イ)
のx−x線断面図である。
FIGS. 7A and 7B are views showing an artificial vertebral body spacer having a through hole in a vertical direction, wherein FIG. 7A is a perspective view, and FIG.
3 is a sectional view taken along line xx of FIG.

【図8】貫通孔内にファイバーメッシュのブロック体を
挿着した人工椎体スペーサを示す図であって、(イ)は
斜視図、(ロ)は本図(イ)のy−y線断面図である。
FIG. 8 is a view showing an artificial vertebral body spacer in which a fiber mesh block is inserted into a through-hole, wherein (a) is a perspective view and (b) is a cross-sectional view taken along the line yy of FIG. FIG.

【図9】上下面に凹部を備える人工椎体スペーサを示す
図であって、(イ)は斜視図、(ロ)は本図(イ)のz
−z線断面図である。
FIG. 9 is a view showing an artificial vertebral body spacer having concave portions on upper and lower surfaces, where (A) is a perspective view and (B) is z in FIG.
It is a -z line sectional view.

【図10】上下面の凹部にアルミナビーズを備える人工
椎体スペーサを示す図であって、(イ)は斜視図、
(ロ)は本図(イ)のu−u線断面図である。
FIG. 10 is a diagram showing an artificial vertebral body spacer including alumina beads in concave portions on upper and lower surfaces, (a) is a perspective view,
(B) is a sectional view taken along the line uu in FIG.

【図11】人工椎体スペーサの形態のバリエーションを
示す斜視図であって、(イ)は水平断面形状が馬蹄形を
したもの、(ロ)は円形をしたもの、(ハ)は楕円形を
したものを示す。
11 is a perspective view showing a variation of the form of the artificial vertebral body spacer, wherein (a) is a horseshoe-shaped horizontal cross-sectional shape, (b) is a circular shape, and (c) is an elliptical shape. Show things.

【図12】上面1aと1bが互いに2方向にθ1 、θ2
=14〜40°の角度で形成されたスペーサ1を示す斜
視図である。
FIG. 12 shows that upper surfaces 1a and 1b are connected to each other in two directions θ 1 , θ 2
FIG. 4 is a perspective view showing a spacer 1 formed at an angle of 14 to 40 °.

【符号の説明】[Explanation of symbols]

1 人工椎体スペーサ 2 突起 3 貫通孔 4 凹部 5 ガラス 1a 上面 1b 下面 F ファイバーメッシュ P ブロック体 4a アルミナビーズ θ 角度 DESCRIPTION OF SYMBOLS 1 Artificial vertebral body spacer 2 Projection 3 Through hole 4 Depression 5 Glass 1a Upper surface 1b Lower surface F Fiber mesh P Block 4a Alumina beads θ Angle

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 米国特許5071437(US,A) 米国特許5047055(US,A) 米国特許4863477(US,A) 米国特許4714469(US,A) 米国特許4911718(US,A) 米国特許4946378(US,A) 米国特許4759769(US,A) 国際公開91/5521(WO,A1) (58)調査した分野(Int.Cl.7,DB名) A61F 2/44 WPI(DIALOG)────────────────────────────────────────────────── (5) References US Patent 5071437 (US, A) US Patent 5047055 (US, A) US Patent 4834777 (US, A) US Patent 4714469 (US, A) US Patent 4911718 (US, A) A) U.S. Pat. No. 4,946,378 (US, A) U.S. Pat. No. 4,579,769 (US, A) WO 91/5521 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) A61F 2/44 WPI ( DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脊椎湾曲変形を矯正するため任意の椎体
間に装着するべく、上下の椎体に当接する少なくとも上
面と下面とを備えた多面体の人工椎体スペーサであっ
て、前記上面と下面とのなす角度が14°〜40°であ
るとともに、該角度が生体内で受ける荷重下で実質的に
不変であることを特徴とする人工椎体スペーサ。
1. A polyhedral artificial vertebral body spacer having at least an upper surface and a lower surface abutting upper and lower vertebral bodies for mounting between arbitrary vertebral bodies to correct spinal curvature deformation. An artificial vertebral body spacer, wherein an angle between the lower surface and the lower surface is 14 ° to 40 °, and the angle is substantially unchanged under a load received in a living body.
JP01675592A 1992-01-31 1992-01-31 Artificial vertebral body spacer Ceased JP3350080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01675592A JP3350080B2 (en) 1992-01-31 1992-01-31 Artificial vertebral body spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01675592A JP3350080B2 (en) 1992-01-31 1992-01-31 Artificial vertebral body spacer

Publications (2)

Publication Number Publication Date
JPH05208029A JPH05208029A (en) 1993-08-20
JP3350080B2 true JP3350080B2 (en) 2002-11-25

Family

ID=11925061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01675592A Ceased JP3350080B2 (en) 1992-01-31 1992-01-31 Artificial vertebral body spacer

Country Status (1)

Country Link
JP (1) JP3350080B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
JP3692169B2 (en) * 1995-10-31 2005-09-07 京セラ株式会社 Artificial intervertebral spacer
DE20004693U1 (en) * 2000-03-14 2001-08-30 Sofamor Danek Gmbh Vertebral implant for insertion in an intervertebral space
US6579318B2 (en) * 2000-06-12 2003-06-17 Ortho Development Corporation Intervertebral spacer
JP4608121B2 (en) * 2001-03-26 2011-01-05 敏且 侭田 Spinous process spacer
FR2828398B1 (en) 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
US8388690B2 (en) * 2003-10-03 2013-03-05 Linvatec Corporation Osteotomy system
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
AU2012296522B2 (en) 2011-08-16 2016-12-22 Stryker European Holdings I, Llc Expandable implant
JPWO2021070904A1 (en) * 2019-10-10 2021-04-15

Also Published As

Publication number Publication date
JPH05208029A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US20210361442A1 (en) 3d printed osteogenesis scaffold
EP1613240B1 (en) Craniofacial implant
AU2003258526B2 (en) Surgical implant
JPH0119935Y2 (en)
JP3350080B2 (en) Artificial vertebral body spacer
KR20080010406A (en) Spinal implant
JP2008541852A (en) Osteoconductive spinal fixation system
JP2008504870A (en) Ceramic intervertebral disc prosthesis
CN108514465B (en) Intervertebral fusion device filled with artificial bone
JP2012523921A (en) Minimally invasive expandable spinal implant and method
Waite et al. Reconstruction of cranial defects with porous hydroxylapatite blocks
JP2004337277A (en) Intervertebral spacer
US20180008415A1 (en) Shapeable porous metal implant
CN110123492B (en) Fusion system for inducing bone to grow into spine
KR20170035895A (en) Biocompatible material in granules made of metal material or metal alloys and use of said granules for vertebroplasty
EP3349686B1 (en) Adjustable, implantable spinal disc device for deformity correction in intervertebral fusion procedures
CN210962260U (en) Cervical vertebra posterior nail plate fixing device
RU2117463C1 (en) Vertebral column segment fixation apparatus
RU2284788C1 (en) Method for setting hip joint endoprosthesis pedicle
CN217448144U (en) 3D prints trabecular bone self-locking type interbody fusion cage
CN104939901A (en) Cervical anterior fixation system and manufacturing method thereof
CN219480480U (en) 3D prints porous tantalum cervical vertebra interbody fusion cage
CN107669376B (en) Posterior spinal device
JP2004089326A (en) Member for artificial vertebral arch and member for artificial corpus vertebrae
KR100498755B1 (en) Intervertebral fusion cage

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition