JP3346182B2 - Method for estimating the remaining capacity of electric vehicle batteries - Google Patents

Method for estimating the remaining capacity of electric vehicle batteries

Info

Publication number
JP3346182B2
JP3346182B2 JP23537496A JP23537496A JP3346182B2 JP 3346182 B2 JP3346182 B2 JP 3346182B2 JP 23537496 A JP23537496 A JP 23537496A JP 23537496 A JP23537496 A JP 23537496A JP 3346182 B2 JP3346182 B2 JP 3346182B2
Authority
JP
Japan
Prior art keywords
discharge
battery
discharge power
remaining capacity
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23537496A
Other languages
Japanese (ja)
Other versions
JPH1082841A (en
Inventor
匡 辻
強 袖野
正人 折口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23537496A priority Critical patent/JP3346182B2/en
Publication of JPH1082841A publication Critical patent/JPH1082841A/en
Application granted granted Critical
Publication of JP3346182B2 publication Critical patent/JP3346182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車等の電
気車に用いられる電池の残存容量推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a state of charge of a battery used in an electric vehicle such as an electric vehicle.

【0002】[0002]

【従来の技術】従来、電気自動車等の電池の残存容量を
推定する場合には、次式(1)により算出される。
2. Description of the Related Art Conventionally, when estimating the remaining capacity of a battery of an electric vehicle or the like, it is calculated by the following equation (1).

【数1】 (残存容量)=(推定電池容量)−(放電電力量) …(1) ここで、式(1)の放電電力量の推定には、Wh−P特
性から算出するパワー演算方式を用いる場合と、放電電
力を実測し積算するWh積算方式を用いる場合とがあ
る。
(Remaining capacity) = (estimated battery capacity) − (discharge power amount) (1) Here, the power calculation method calculated from the Wh-P characteristic is used to estimate the discharge power amount in Expression (1). Is used, and the Wh integration method of actually measuring and integrating discharge power is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、いずれ
の方式を用いても放電電力量の推定誤差が生じる。図1
0は電池の放電深度(DOD)と放電電力量の推定誤差
との関係を定性的に示した図であり、L1はパワー演算
方式の場合を示し、L2はWh積算方式の場合を示して
いる。パワー演算方式の場合、電流,電圧測定時の誤差
がパワー演算誤差を生じ、そのパワー演算誤差が推定放
電電力量に反映されて推定誤差となる。この誤差は電池
の内部抵抗が小さい(電池性能が良い)ほど大きくなる
とともに、図10のように放電深度が浅いほど大きい。
一方、Wh積算方式の場合には、放電電力量が大きくな
るにつれて、すなわち放電深度が深くなるにつれて電
流,電圧測定時の誤差が累積するため、放電深度が深い
ほど誤差が大きくなる。その結果、パワー演算方式を用
いた場合には放電深度が浅い領域で、Wh積算方式を用
いた場合には放電深度が深い領域でそれぞれ所定の残存
容量指示精度より誤差が大きくなるという欠点があっ
た。
However, no matter which method is used, an estimation error of the discharge power amount occurs. FIG.
0 is a diagram qualitatively showing the relationship between the depth of discharge (DOD) of the battery and the estimation error of the amount of discharged electric power, L1 shows the case of the power calculation method, and L2 shows the case of the Wh integration method. . In the case of the power calculation method, an error at the time of measuring the current and the voltage causes a power calculation error, and the power calculation error is reflected in the estimated discharge power amount and becomes an estimation error. This error increases as the internal resistance of the battery decreases (battery performance improves), and increases as the depth of discharge decreases as shown in FIG.
On the other hand, in the case of the Wh integration method, errors in current and voltage measurement accumulate as the amount of discharge power increases, that is, as the depth of discharge increases, so that the error increases as the depth of discharge increases. As a result, there is a disadvantage that the error becomes larger than a predetermined remaining capacity indication accuracy in a region where the depth of discharge is shallow when the power calculation method is used, and in a region where the depth of discharge is deep when the Wh integration method is used. Was.

【0004】本発明の目的は、電池の残存容量を精度良
く算出することができる残存容量推定方法を提供するこ
とにある。
An object of the present invention is to provide a remaining capacity estimating method capable of accurately calculating the remaining capacity of a battery.

【0005】[0005]

【課題を解決するための手段】(1)請求項1の発明に
よる電気車用電池の残存容量推定方法では、電気車用電
池の充放電時の電流値および端子電圧値に基づいて最大
出力を算出し、放電電力量と最大出力との相関関係およ
び前記算出された最大出力に基づいて算出される第1の
放電電力量と、電流値および端子電圧値に基づいて積算
される第2の放電電力量とを電池の放電深度に応じて切
り換えて用いることにより電池の残存容量を算出するこ
とにより上述の目的を達成する。 (2)請求項2の発明による電気車用電池の残存容量推
定方法では、電気車用電池の充放電時の電流値および端
子電圧値に基づいて最大出力を算出し、放電電力量と最
大出力との相関関係および算出された最大出力に基づい
て算出される第1の放電電力量と、電流値および端子電
圧値に基づいて積算される第2の放電電力量とを演算
し、第2の放電電力量と電気車が走行可能な最低保証出
力が保証可能な電力容量との比を放電深度CAPDOD
とし、第1の放電電力量および第2の放電電力量とそれ
らに対する放電深度CAPDODに基づく重み付けとに
基づいて第3の放電電力量を算出し、この第3の放電電
力量に基づいて電池の残存容量を算出することにより上
述の目的を達成する。 (3)請求項3の発明は、請求項2に記載の電気車用電
池の残存容量推定方法において、第1の放電電力量をW
h1、第2の放電電力量をWh2、M(CAPDOD)を放電
深度CAPDODの関数としたとき、第3の放電電力量
Wh3をWh3=Wh1×M(CAPDOD)+Wh1×{1
−M(CAPDOD)}で求める。
(1) In the method for estimating the remaining capacity of an electric vehicle battery according to the first aspect of the present invention, a maximum output is obtained based on a current value and a terminal voltage value during charging / discharging of the electric vehicle battery. A second discharge integrated based on the calculated and correlated relationship between the discharge power and the maximum output and the first discharge power calculated based on the calculated maximum output, and the current value and the terminal voltage value The above object is achieved by calculating the remaining capacity of the battery by switching and using the electric energy according to the depth of discharge of the battery. (2) In the method for estimating the remaining capacity of an electric vehicle battery according to the second aspect of the present invention, a maximum output is calculated based on a current value and a terminal voltage value at the time of charging and discharging of the electric vehicle battery, and the discharge power amount and the maximum output And a second discharge power amount calculated based on the current value and the terminal voltage value, and a second discharge power amount calculated based on the correlation with The ratio of the amount of discharge power to the power capacity that can guarantee the minimum guaranteed output that the electric vehicle can run is determined by the depth of discharge CAPODOD.
A third discharge power amount is calculated based on the first discharge power amount and the second discharge power amount and a weighting based on the first and second discharge power amounts based on the discharge depth CAPODOD. The above object is achieved by calculating the remaining capacity. (3) According to a third aspect of the present invention, in the method for estimating a remaining capacity of an electric vehicle battery according to the second aspect, the first discharge power amount is W
h1, the second discharge power amount is Wh2, and M (CAPDOD) is a function of the discharge depth CAPODOD, and the third discharge power amount Wh3 is Wh3 = Wh1 × M (CAPDOD) + Wh1 × {1
-M (CAPDOD)}

【0006】[0006]

【発明の効果】(1)請求項1の発明によれば、放電深
度により第1および第2の放電電力量を切り換えていず
れか一方の放電電力量により残存容量を求めるようにし
たので、演算精度が向上するとともに演算が簡単にな
る。 (2)請求項2の発明によれば、残存容量を算出する際
に、第1および第2の放電電力量の誤差の小さい方に重
点を置いて第3の放電電力量を算出することができるた
め、算出される残存容量の誤差精度を向上させることが
できる。 (3)特に、請求項3の発明では、関数M(CAPDOD)を
変更することにより電池に応じた最適な第3の放電電力
量を算出することができる。
(1) According to the first aspect of the present invention, the first and second discharge powers are switched according to the depth of discharge, and the remaining capacity is obtained from one of the discharge powers. The accuracy is improved and the calculation is simplified. (2) According to the second aspect of the present invention, when calculating the remaining capacity, the third discharge power may be calculated with emphasis on the smaller error between the first and second discharge powers. Therefore, the accuracy of the calculated remaining capacity error can be improved. (3) In particular, in the invention of claim 3, by changing the function M (CAPDOD), it is possible to calculate the optimum third discharge power amount according to the battery.

【0007】[0007]

【発明の実施の形態】以下、図1〜図9を参照して本発
明の実施の形態を説明する。図3は放電電力演算値の誤
差を定性的に示す図であり、(a)はWh積算方式を用
いた場合、(b)はパワー演算方式を用いた場合を示
す。図では縦軸に放電電力演算値(Wh演算値)を、横
軸に放電電力Whの真値をそれぞれとり、a1,a2は誤
差範囲を示している。図3(a)に示すWh積算方式で
は、上述したように放電電力測定時の電流,電圧誤差の
累積が誤差の要因であるため、Wh演算値が大きくなる
につれて誤差がおおきくなる。図の例ではWh演算値が
大きいところ(放電深度がほぼ100%となったとこ
ろ)では誤差が±8%程度となる。通常、この演算精度
は±5%程度が要求される。そのため、放電深度が深い
ところ、すなわち放電末期では要求精度を満たすことが
できない。一方、図3(b)に示すパワー演算方式の場
合には、Wh演算値が小さい(放電深度が浅い)ところ
で誤差が大きく、Wh演算値が大きくなるにつれて誤差
が小さくなって行く。図の例ではWh演算値がほぼ零の
所では誤差が±10%程度となっており、放電深度の浅
いところでは要求精度を満たしていないことが分かる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIGS. 3A and 3B are diagrams qualitatively showing an error in the discharge power calculation value. FIG. 3A shows the case where the Wh integration method is used, and FIG. 3B shows the case where the power calculation method is used. In the figure, the vertical axis indicates the discharge power calculation value (Wh calculation value), and the horizontal axis indicates the true value of the discharge power Wh, and a1 and a2 indicate error ranges. In the Wh integration method shown in FIG. 3A, as described above, since the accumulation of the current and voltage errors during the measurement of the discharge power is a factor of the error, the error increases as the Wh operation value increases. In the example shown in the figure, the error is about ± 8% where the calculated Wh value is large (where the discharge depth is almost 100%). Usually, the calculation accuracy is required to be about ± 5%. Therefore, the required accuracy cannot be satisfied at a deep discharge depth, that is, at the end of discharge. On the other hand, in the case of the power calculation method shown in FIG. 3B, the error is large when the Wh calculation value is small (the depth of discharge is small), and the error decreases as the Wh calculation value increases. In the example shown in the figure, the error is about ± 10% when the calculated Wh value is almost zero, and it can be seen that the required accuracy is not satisfied at the shallow depth of discharge.

【0008】よって、本発明による残存容量推定方法で
は、パワー演算方式とWh積算方式とを併用して放電電
力量を算出する。一例として、図4に示すように放電深
度(DOD)が50%を境にWh積算方式からパワー演
算方式に切り換える。すなわち、DODが0〜50%ま
でをWh積算方式で算出し、DODが50〜100%ま
ではパワー演算方式で算出する。図4のように算出方式
を切り換えることにより、Wh演算値の誤差を一番大き
いところでも目標とする±5%程度に抑えることができ
る。
Therefore, in the state of charge estimation method according to the present invention, the amount of discharge power is calculated by using both the power calculation method and the Wh integration method. As an example, as shown in FIG. 4, when the depth of discharge (DOD) is 50%, the system is switched from the Wh integration method to the power calculation method. That is, the DOD is calculated by the Wh integration method from 0 to 50%, and the DOD is calculated by the power calculation method from 50 to 100%. By switching the calculation method as shown in FIG. 4, the error in the Wh calculation value can be suppressed to the target ± 5% even at the largest position.

【0009】図4ではDOD50%を境にWh積算方式
からパワー演算方式に切り換えたが、この2つの方式を
併用する際のそれぞれの重み付けは、各方式の誤差の状
況に応じて選択される。このとき、切り換えの要因とし
て以下の2つの要因が考えられる。1つ目の要因はパワ
ー演算方式を用いた場合の誤差に関係しており、図5を
用いて説明する。パワー演算方式では、電池の電流変化
を捉えて電流Iおよび電圧Vを測定し、測定した複数の
I,Vから図5(a)に示すようにIV特性を一次回帰
演算してそのIV特性と放電終止電圧Vminとの交点か
らその時の電池の最大出力Pmaxを算出する。そのた
め、電圧Vに±ΔVの誤差が生じると図5(b)のよう
に回帰直線から得られる電流Imaxに誤差±ΔImaxが生
じることになり、その結果、最大出力Pmaxに誤差ΔP
=Vmin×ΔImaxが生じる。図5(b)において、直線
B1で示される電池の内部抵抗Rは、直線B2で示され
る電池の内部抵抗Rより小さく電池性能が良いが、図か
らもわかるように内部抵抗Rが小さいほど誤差±ΔIma
xが大きくなる。誤差±ΔImaxが生じると、図5(c)
に示すようにWh−P特性から得られる放電電力にもΔ
Pに応じて誤差ΔWhが生じる。ここで、放電深度DO
Dが浅い領域C1でとDODが深い領域C2とを比較す
ると、DODが浅い方が誤差ΔWhが大きいことが分か
る。
In FIG. 4, the Dh is switched from the Wh integration method to the power calculation method when the DOD is 50%. However, when these two methods are used together, the respective weights are selected according to the error situation of each method. At this time, the following two factors can be considered as switching factors. The first factor relates to an error when the power calculation method is used, and will be described with reference to FIG. In the power calculation method, the current I and the voltage V are measured by detecting the change in the battery current, and the IV characteristic is linearly regression-calculated from the plurality of measured I and V as shown in FIG. The maximum output Pmax of the battery at that time is calculated from the intersection with the discharge end voltage Vmin. Therefore, if an error of ± ΔV occurs in the voltage V, an error ± ΔImax occurs in the current Imax obtained from the regression line as shown in FIG. 5B, and as a result, an error ΔP occurs in the maximum output Pmax.
= Vmin × ΔImax. In FIG. 5B, the internal resistance R of the battery indicated by the straight line B1 is smaller than the internal resistance R of the battery indicated by the straight line B2, and the battery performance is better. ± ΔIma
x increases. When the error ± ΔImax occurs, FIG.
As shown in FIG.
An error ΔWh occurs according to P. Here, the depth of discharge DO
Comparing the region C1 where D is shallow with the region C2 where DOD is deep, it can be seen that the error ΔWh is larger when the DOD is shallower.

【0010】なお、上述した最大出力Pmaxとは車両に
おける放電可能パワー(パワー演算値)のことであり、
電池単独での最大出力P’maxとは同義ではない。すな
わち電池のパワーは、放電電流Iと放電電圧Vにより次
式で表される。
The above-mentioned maximum output Pmax is the dischargeable power (power calculation value) of the vehicle.
It is not synonymous with the maximum output P'max of the battery alone. That is, the power of the battery is expressed by the following equation using the discharge current I and the discharge voltage V.

【数2】 P=IV =I(E−V)/R =−(V2−EV)/R ={−I(V−E/2)2/R}+E2/4R …(2) ただし、Eは電池の開放電圧、Rは電池の内部抵抗であ
る。よって、電池単独の最大出力は、V=E/2におけ
るパワーP’max=E2/4Rで一義的に決定される。一
方、車両での電池の使用電圧範囲はV=E/2以上であ
って電池の最大出力P’maxを使用しない。しかし、車
両としての使用電圧の下限値Vminが以下の(a),
(b)の要因から決定されており、この電圧Vminに到
達するパワーが車両としての最大出力Pmax=Imax×V
minとなる。ただし、ImaxはVmin時の電流値である。 (a)電池の寿命を考慮した使用電圧範囲の下限電圧
(放電終止電圧) (b)車両搭載ユニットの性能,機能を保証可能な使用
電圧範囲の下限電圧
[Number 2] P = IV = I (E- V) / R = - (V 2 -EV) / R = {- I (V-E / 2) 2 / R} + E 2 / 4R ... (2) However , E is the open circuit voltage of the battery, and R is the internal resistance of the battery. Therefore, the maximum output of the battery alone is uniquely determined by the power P′max = E 2 / 4R at V = E / 2. On the other hand, the operating voltage range of the battery in the vehicle is V = E / 2 or more, and the maximum output P'max of the battery is not used. However, the lower limit value Vmin of the working voltage of the vehicle is as follows (a),
The power reaching this voltage Vmin is determined as the maximum output Pmax = Imax × V as a vehicle.
min. Here, Imax is a current value at the time of Vmin. (A) Lower limit voltage of operating voltage range considering battery life (discharge end voltage) (b) Lower limit voltage of operating voltage range capable of guaranteeing performance and function of vehicle mounted unit

【0011】次に、切り換えに関する2つ目の要因は、
電池種によって電池特性が異なることに関係している。
図6は図5(c)と同様のWh−P特性Wh(P)を示
す図であるが、(a)はリチウムイオン電池の場合、
(b)は鉛酸電池の場合を表したもである。なお、わか
りやすいように横軸をDODで示した。図6(a)のリ
チウムイオン電池の場合にはパワーPと放電深度DOD
(放電電力量Wh(P))とが一対一で対応している
が、図6(b)の鉛酸電池の場合には、図のようなパワ
ーPiでは二つの放電深度DOD(放電電力量Wh
(P))が対応している。そのため、リチウムイオン電
池のような特性を有する電池では放電深度DODの全域
でパワー演算方式が使用可能であるが、鉛酸電池のよう
に図6(b)のような特性を有する電池ではDODが図
のEより深くなったところ(Eより図示右側)でしかパ
ワー演算方式が使えない。
Next, the second factor relating to the switching is as follows.
This is related to the fact that battery characteristics differ depending on the battery type.
FIG. 6 is a diagram showing Wh-P characteristics Wh (P) similar to FIG. 5C, but FIG. 6A shows the case of a lithium ion battery.
(B) shows the case of a lead-acid battery. In addition, the horizontal axis is shown by DOD for easy understanding. In the case of the lithium ion battery of FIG. 6A, the power P and the depth of discharge DOD
(Discharge power Wh (P)) has a one-to-one correspondence. However, in the case of the lead-acid battery of FIG. 6B, two discharge depths DOD (discharge power Wh
(P)) corresponds. For this reason, in a battery having characteristics such as a lithium ion battery, the power calculation method can be used in the entire region of the depth of discharge DOD, but in a battery such as a lead-acid battery having the characteristics as shown in FIG. The power calculation method can be used only at a depth deeper than E in the figure (right side in the figure from E).

【0012】よって、パワー演算方式とWh積算方式を
併用する際には、放電深度が浅い領域ではパワー演算方
式による残存容量推定精度が要求される精度より悪くな
るため、放電電力量は両演算方式を用いる際にWh積算
方式の割合を大きくし、逆に、放電深度DODが深くな
る放電末期にはパワー演算方式の演算精度が十分得られ
るので、パワーによるEMPTY指示精度を重視してパ
ワー演算方式の割合を大きくする。
Therefore, when the power calculation method and the Wh integration method are used together, the accuracy of the remaining capacity estimation by the power calculation method is lower than the required accuracy in a region where the depth of discharge is shallow. When using the power calculation method, the ratio of the Wh integration method is increased, and conversely, the calculation accuracy of the power calculation method can be sufficiently obtained at the end of discharge when the depth of discharge DOD is deepened. Increase the proportion of

【0013】なお、ここで放電深度CAPDODを次式
(3)で定義し、以下の説明ではこの放電深度CAPD
ODを用いて説明する。
Here, the depth of discharge CAPDOD is defined by the following equation (3).
This will be described using OD.

【数3】 CAPDOD=WhR/Wh(Pmin) …(3) 式(3)において、WhRは放電電力積算量、Wh(P
min)は電池のフル容量であって車両として最低限必要
な最低保証出力Pminを保証できる絶対容量であり、W
h(Pmin)はWh−P特性を表す式Wh(P)にPmin
を代入した値である。図7は、このCAPDODと残存
容量計の原点(EMPTY)との関係を示す図である。
放電電力量WhRが大きくなるにつれてCAPDODは
0%から増加する。そして、CAPDODが100%に
なる前に残存容量計はEMPTYを表示する。この時点
で、車両は出力がPminとなるCAPDOD100%ま
で走行可能である。すなわち、残存容量計がEMPTY
を表示しても図に示すΔWhだけの余裕を備えている。
CAPODOD = WhR / Wh (Pmin) (3) In equation (3), WhR is the integrated discharge power, Wh (P
min) is the full capacity of the battery and is the absolute capacity that can guarantee the minimum guaranteed output Pmin required for the vehicle.
h (Pmin) is obtained by adding Pmin to the expression Wh (P) representing the Wh-P characteristic.
Is the value to which. FIG. 7 is a diagram showing the relationship between the CAPODOD and the origin (EMPTY) of the remaining capacity meter.
CAPODOD increases from 0% as the discharge power amount WhR increases. Then, the remaining capacity meter displays EMPTY before the CAPODOD becomes 100%. At this point, the vehicle can travel to 100% of the CAPODOD at which the output becomes Pmin. That is, the remaining capacity meter is EMPTY
Is also provided with a margin of ΔWh shown in the figure.

【0014】上述したように2つの方式へ加重した場
合、Wh積算方式で求められた放電電力量WhRとパワ
ー演算方式で算出されたWh(Pmax)とを併用して算
出される放電電力量WhEは次式(4)のように表され
る。
When the two methods are weighted as described above, the discharge power WhE calculated using the discharge power WhR calculated by the Wh integration method and Wh (Pmax) calculated by the power calculation method. Is represented by the following equation (4).

【数4】 WhE=WhR×M(CAPDOD)+Wh(Pmax)×{1−M(CAPDOD)} …(4) ここで、重みM(CAPDOD)は放電深度CAPDODの関
数であり、Wh(Pmax)はパワー演算方式で算出され
た現在までの放電電力量である。例えば、
WhE = WhR × M (CAPDOD) + Wh (Pmax) × {1−M (CAPDOD)} (4) where the weight M (CAPDOD) is a function of the depth of discharge CAPODOD, and Wh (Pmax) Is the discharge power amount up to the present calculated by the power calculation method. For example,

【数5】M(CAPDOD)=1−CAPDOD …(5) とすれば、図8(a)に示すように重みMは放電深度C
APDODが深くなるにつれて1から零へと小さくな
り、図8(b)のように放電電力量WhEはWhRから
Wh(Pmax)へと移行する。図8(b)において、縦
軸は放電電力量、横軸はパワーPである。また、図8
(c)は図4に示したように所定の放電深度CAPDO
DでWh積算方式からパワー演算方式に切り換えた場合
のCAPDODとM(CAPDOD)の関係を示している。
[Mathematical formula-see original document] If M (CAPDOD) = 1-CAPDOD (5), as shown in FIG.
As the APDOD becomes deeper, it decreases from 1 to zero, and the discharge power WhE shifts from WhR to Wh (Pmax) as shown in FIG. 8B. In FIG. 8B, the vertical axis represents the amount of discharge power, and the horizontal axis represents power P. FIG.
(C) shows a predetermined discharge depth CAPDO as shown in FIG.
D shows the relationship between CAPODOD and M (CAPDOD) when switching from the Wh integration method to the power calculation method.

【0015】図1はこのような残存容量演算を行って残
存容量計を駆動するための残存容量演算装置の機能ブロ
ック図、図2は残存容量計制御のフローチャートであ
り、これらの図を参照しながら上述した残存容量計の制
御について説明する。図1において、1は残存容量計制
御演算部で放電容量演算部11,電力積算容量演算部1
2,最低保証パワーPmin演算部13,フル容量Wh
(Pmin)演算部14,放電深度CAPDOD演算部1
5,残存容量演算部16を備えている。2はパワー演算
部、3は電圧検出部、4は電流検出部、5は温度検出部
であり、6は残存容量計制御演算部1の演算結果に基づ
いて出力制限制御やメーター出力制御等を行う制御部で
ある。
FIG. 1 is a functional block diagram of a state-of-charge calculating device for driving such a state-of-charge meter by performing such state-of-charge calculations, and FIG. 2 is a flowchart of the state-of-charge control. The control of the above-described remaining capacity meter will be described. In FIG. 1, reference numeral 1 denotes a remaining capacity meter control calculation unit, a discharge capacity calculation unit 11, and a power integrated capacity calculation unit 1.
2, minimum guaranteed power Pmin calculation unit 13, full capacity Wh
(Pmin) operation unit 14, discharge depth CAPDOD operation unit 1
5, a remaining capacity calculation unit 16 is provided. Reference numeral 2 denotes a power calculation unit, 3 denotes a voltage detection unit, 4 denotes a current detection unit, 5 denotes a temperature detection unit, and 6 denotes output limit control and meter output control based on the calculation result of the remaining capacity meter control calculation unit 1. It is a control unit to perform.

【0016】図2のフローチャートにおいて、ステップ
S1では電池の電流変化を捉えて電流Iおよび電圧Vを
サンプリングしてストックする。ステップS2では、サ
ンプリングしたI,Vから上述したように(図5(a)
参照)パワー演算部2によって電池の最大出力Pmaxを
算出する。ステップS3では、放電容量演算部11によ
り電池特性に応じて放電電力Whのパワー演算値Pmax
に対する特性式Wh(Pmax)が算出される。なお、特
性式Wh(Pmax)算出の際には、電池の劣化や温度T
に応じて特性式の補正が行われるが説明は省略する。ス
テップS4では、演算部13により最低保証パワーPmi
nが算出されるとともに、演算部14によりフル容量W
h(Pmin)が算出される。ステップS5では、演算部
16により残存容量計のEMPTYランプ点灯時の容量
WhCを次式(6)のように算出する。
In the flowchart of FIG. 2, in step S1, a change in the current of the battery is detected to sample and store the current I and the voltage V. In step S2, as described above (FIG. 5A)
The power calculation unit 2 calculates the maximum output Pmax of the battery. In step S3, the discharge capacity calculation unit 11 calculates the power calculation value Pmax of the discharge power Wh according to the battery characteristics.
Is calculated. When calculating the characteristic expression Wh (Pmax), the battery deterioration and the temperature T
, The characteristic equation is corrected, but the description is omitted. In step S4, the minimum guaranteed power Pmi is calculated by the arithmetic unit 13.
n is calculated, and the full capacity W
h (Pmin) is calculated. In step S5, the operation unit 16 calculates the capacity WhC of the remaining capacity meter when the EMPTY lamp is turned on as in the following equation (6).

【数6】WhC=Wh(Pmin)−ΔWh …(6) ΔWhは前述したようにEMPTY点灯後に保証する電
力量である。
[Mathematical formula-see original document] WhC = Wh (Pmin)-[Delta] Wh (6) [Delta] Wh is the amount of power guaranteed after EMPTY lighting as described above.

【0017】ステップS6では、演算部12により常時
IVを実測積算して現在までの放電電力量WhRを積算
する。ステップS7では、新たなPmax1が得られる毎に
特性式Wh(Pmax)に代入して現在までの放電電力量
Wh(Pmax1)を算出する。なお、放電電力量Wh(P
max)を算出する際には、電池の充電および回生充電の
場合を考慮して次式(7)により算出する。
In step S6, the calculation unit 12 constantly measures and integrates the IV to integrate the discharge power amount WhR up to the present. In step S7, each time a new Pmax1 is obtained, it is substituted into the characteristic formula Wh (Pmax) to calculate the discharge power amount Wh (Pmax1) up to the present. Note that the discharge power amount Wh (P
max) is calculated by the following equation (7) in consideration of battery charging and regenerative charging.

【数7】 すなわち、充電前の最新の放電電力量Wh(Pmax1)を
基準値として、充電分を減算する。式(7)において第
2項の積分は充電電流積算であってVecは放電電力換算
用電圧(放電深度に応じた定数)、φは充電効率(電流
に応じた定数)である。なお、充電時の放電電力量Wh
(Pmax)は暫定値であり、再度放電開始後パワー演算
が得られた時点で更新(リセット)される。また、満充
電条件を終了した場合には、Wh(Pmax)=0として
残存容量計をリセットする。
(Equation 7) That is, the charge amount is subtracted using the latest discharge power amount Wh (Pmax1) before charging as a reference value. In equation (7), the integral of the second term is the charging current integration, where Vec is the discharge power conversion voltage (a constant corresponding to the depth of discharge), and φ is the charging efficiency (a constant corresponding to the current). In addition, the discharge power amount Wh at the time of charging
(Pmax) is a provisional value, and is updated (reset) when the power calculation is obtained again after the start of discharge. When the full charge condition is completed, Wh (Pmax) = 0 and the remaining capacity meter is reset.

【0018】ステップS8では、上述した式(4)のよ
うに平均処理された放電電力量WhEが算出される。ス
テップS9では、演算部16により電池の残存容量を次
式(8)により算出する。
In step S8, the averaged discharge power amount WhE is calculated as in the above equation (4). In step S9, the remaining capacity of the battery is calculated by the calculation unit 16 using the following equation (8).

【数8】(残存容量)=WhC−WhE …(8) 図9は上述したフローで算出される量(WhC等)の関
係をパワー特性対放電電力量の図で示したものである。
なお、残存容量計の満充電ランプ点・消灯に関しては、
普通充電制御の正常終了条件成立時(これを満充電と定
義する)に放電電力量をWhR=0にして満充電ランプ
を点灯し、WhR>規定放電電力量となった時に消灯す
る。ここでWhRを用いる理由は、満充電に近い状態で
はパワー演算方式を用いるWh(Pmax)では分解能不
足だからである。
(Residual capacity) = WhC-WhE (8) FIG. 9 shows the relationship between the amounts (WhC and the like) calculated in the above-described flow in a graph of power characteristics versus discharge power amount.
Regarding the fully charged lamp point and extinguishing of the remaining capacity meter,
When the normal end condition of the normal charge control is satisfied (this is defined as full charge), the discharge power amount is set to WhR = 0, the full charge lamp is turned on, and when WhR> the specified discharge power amount, the lamp is turned off. Here, the reason why WhR is used is that the resolution is insufficient with Wh (Pmax) using the power calculation method in a state near full charge.

【0019】以上説明した実施の形態と特許請求の範囲
の要素との対応において、Wh(Pmax)は第1の放電
電力量Wh1を、WhRは第2の放電電力量Wh2を、
WhEは第3の放電電力量Wh3をそれぞれ構成する。
In the correspondence between the embodiment described above and the elements of the claims, Wh (Pmax) represents the first discharge power Wh1, WhR represents the second discharge power Wh2,
WhE constitutes the third discharge power amount Wh3.

【図面の簡単な説明】[Brief description of the drawings]

【図1】残存容量演算装置の機能ブロック図。FIG. 1 is a functional block diagram of a remaining capacity calculation device.

【図2】残存容量計制御のフローチャート。FIG. 2 is a flowchart of a remaining capacity meter control.

【図3】放電電力演算値の誤差を定性的に示す図であ
り、(a)はWh積算方式を用いた場合、(b)はパワ
ー演算方式を用いた場合を示す。
3A and 3B are diagrams qualitatively showing an error in a discharge power calculation value, where FIG. 3A shows a case where a Wh integration method is used, and FIG. 3B shows a case where a power calculation method is used.

【図4】パワー演算方式とWh積算方式とを併用した放
電電力量を説明する図。
FIG. 4 is a view for explaining a discharge power amount using both a power calculation method and a Wh integration method.

【図5】パワー演算方式の誤差要因を説明する図であ
り、(a)はIV特性の一次回帰直線を示す図、(b)
は誤差ΔPを説明する図、(c)は誤差ΔWhを説明す
る図。
5A and 5B are diagrams illustrating an error factor of a power calculation method, wherein FIG. 5A is a diagram illustrating a linear regression line of an IV characteristic, and FIG.
7 is a diagram illustrating an error ΔP, and FIG. 7C is a diagram illustrating an error ΔWh.

【図6】Wh−P特性を説明する図であり、(a)はリ
チウムイオン電池の場合を、(b)は鉛酸電池の場合を
示す。
6A and 6B are diagrams illustrating Wh-P characteristics, wherein FIG. 6A shows a case of a lithium ion battery, and FIG. 6B shows a case of a lead-acid battery.

【図7】放電深度CAPDODと残存容量計の原点(E
MPTY)との関係を示す図。
FIG. 7 shows the depth of discharge (CAPDOD) and the origin (E
MPTY).

【図8】平均処理を説明する図であり、(a)は放電深
度CAPDODと重みMとの関係を示し、(b)はWh
Eの変化を定性的に示す図、(c)は放電深度CAPD
ODと重みMとの関係の他の例を示す。
8A and 8B are diagrams for explaining an averaging process, in which FIG. 8A shows a relationship between a depth of discharge CAPDOD and a weight M, and FIG.
The figure which shows the change of E qualitatively, (c) is discharge depth CAPD.
Another example of the relationship between the OD and the weight M is shown.

【図9】パワー特性対放電電力量を示す図。FIG. 9 is a diagram showing power characteristics versus discharge power.

【図10】放電深度DODと誤差との関係を示す図。FIG. 10 is a diagram illustrating a relationship between a depth of discharge DOD and an error.

【符号の説明】[Explanation of symbols]

1 残存容量計制御演算部 2 パワー演算部 3 電圧検出部 4 電流検出部 5 温度検出部 6 制御部 11 放電容量演算部 12 電力積算容量演算部 13 最低保証パワーPmin演算部 14 フル容量Wh(Pmin)演算部 15 放電深度CAPDOD演算部 16 残存容量演算部 DESCRIPTION OF SYMBOLS 1 Remaining capacity meter control calculation part 2 Power calculation part 3 Voltage detection part 4 Current detection part 5 Temperature detection part 6 Control part 11 Discharge capacity calculation part 12 Power integrated capacity calculation part 13 Minimum guaranteed power Pmin calculation part 14 Full capacity Wh (Pmin ) Calculation unit 15 Discharge depth CAPDOD calculation unit 16 Remaining capacity calculation unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−191109(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/36 B60L 3/00 H02J 7/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-191109 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 31/36 B60L 3/00 H02J 7 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気車用電池の充放電時の電流値および
端子電圧値に基づいて最大出力を算出し、放電電力量と
最大出力との相関関係および前記算出された最大出力に
基づいて算出される第1の放電電力量と、前記電流値お
よび端子電圧値に基づいて積算される第2の放電電力量
とを前記電池の放電深度に応じて切り換えて用いること
により前記電池の残存容量を算出することを特徴とする
電気車用電池の残存容量推定方法。
1. A current value during charging and discharging of a battery for an electric vehicle, and
The maximum output is calculated based on the terminal voltage value, and the
The correlation with the maximum output and the calculated maximum output
A first discharge power amount calculated based on the current value,
Discharge electric energy integrated based on and the terminal voltage value
Rukoto used is switched depending bets on the depth of discharge of the battery
Charge estimating method for a battery electric vehicle, and calculates the remaining capacity of the battery by.
【請求項2】 電気車用電池の充放電時の電流値および
端子電圧値に基づいて最大出力を算出し、 放電電力量と最大出力との相関関係および前記算出され
た最大出力に基づいて算出される第1の放電電力量と、
前記電流値および端子電圧値に基づいて積算される第2
の放電電力量とを演算し、 前記第2の放電電力量と電気車が走行可能な最低保証出
力が保証可能な電力容量との比を放電深度CAPDOD
とし前記第1の放電電力量および前記第2の放電電力
量とそれらに対する前記放電深度CAPDODに基づく
重み付けとに基づいて第3の放電電力量を算出し、この
第3の放電電力量に基づいて前記電池の残存容量を算出
することを特徴とする電気車用電池の残存容量推定方
法。
2. The current value during charging and discharging of a battery for an electric vehicle, and
The maximum output is calculated based on the terminal voltage value, and the correlation between the discharge power amount and the maximum output and the calculated
A first discharge power amount calculated based on the maximum output,
A second integrated based on the current value and the terminal voltage value
And calculating the ratio of the second discharge power amount to the power capacity that can guarantee the minimum guaranteed output in which the electric vehicle can travel, by calculating the discharge depth CAPODOD.
And the first discharge power amount and the second discharge power
Based on the amount and the discharge depth CAPDOD for them
Calculating a third amount of electric power discharged on the basis of the weighting and the remaining capacity estimating process of the electrical for vehicle battery and calculates the remaining capacity of the battery based on the discharge power of the third.
【請求項3】 請求項2 に記載の残存容量推定方法にお
いて、 前記第1の放電電力量をWh1、前記第2の放電電力量
をWh2、M(CAPDOD)を前記放電深度CAPDODの
関数としたとき、前記第3の放電電力量Wh3をWh3
=Wh2×M(CAPDOD)+Wh1×{1−M(CAPDO
D)}で演算することを特徴とする電気車用電池の電気
車用電池の残存容量推定方法。
3. The remaining capacity estimating method according to claim 2 , wherein the first discharge power amount is Wh1, the second discharge power amount is Wh2, and M (CAPDOD) is a function of the discharge depth CAPDOD. When the third discharge power amount Wh3 is Wh3
= Wh2 × M (CAPDOD) + Wh1 × {1-M (CAPDO
D) A method for estimating the remaining capacity of an electric vehicle battery of an electric vehicle battery, wherein the calculation is performed in (1).
JP23537496A 1996-09-05 1996-09-05 Method for estimating the remaining capacity of electric vehicle batteries Expired - Lifetime JP3346182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23537496A JP3346182B2 (en) 1996-09-05 1996-09-05 Method for estimating the remaining capacity of electric vehicle batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23537496A JP3346182B2 (en) 1996-09-05 1996-09-05 Method for estimating the remaining capacity of electric vehicle batteries

Publications (2)

Publication Number Publication Date
JPH1082841A JPH1082841A (en) 1998-03-31
JP3346182B2 true JP3346182B2 (en) 2002-11-18

Family

ID=16985148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23537496A Expired - Lifetime JP3346182B2 (en) 1996-09-05 1996-09-05 Method for estimating the remaining capacity of electric vehicle batteries

Country Status (1)

Country Link
JP (1) JP3346182B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719764B2 (en) * 1995-07-14 1998-02-25 株式会社ニチフ端子工業 Method of manufacturing belt-shaped heating element
JP4517472B2 (en) * 2000-04-28 2010-08-04 ソニー株式会社 Electronics
KR101329915B1 (en) * 2011-10-28 2013-11-14 현대오트론 주식회사 Maximum available power estimation technique of the hev lithium battery during on line driving situation and the apparatus thereof
WO2013128811A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery pack and method for calculating electric energy of battery pack
CN104656029B (en) * 2014-12-25 2018-06-12 深圳中智科创机器人有限公司 A kind of system and method for estimating power battery residual capacity
US11300624B2 (en) 2017-07-28 2022-04-12 Northstar Battery Company, Llc System for utilizing battery operating data

Also Published As

Publication number Publication date
JPH1082841A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP4649101B2 (en) Secondary battery status detection device and status detection method
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
US6107779A (en) Apparatus for detecting remaining capacity of battery
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
EP1801604B1 (en) Method for compensating state of charge of battery and battery management system using the same
US6522148B2 (en) State of charge measuring apparatus for battery device
US8008891B2 (en) Simple method for accurately determining a state of charge of a battery, a battery management system using same, and a driving method thereof
US7652449B2 (en) Battery management system and driving method thereof
US7679329B2 (en) Method for compensating state of charge of battery, battery management system using the method, and hybrid vehicle having the battery management system
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
US7649338B2 (en) Method for compensating state of charge of battery and battery management system using the same
US7728598B2 (en) Method and apparatus for estimating the charge/discharge electricity amount of secondary batteries
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
US9428177B2 (en) Vehicle
EP1843164A1 (en) Secondary cell charge/discharge electricity amount estimation method and device, secondary cell polarization voltage estimation method and device, and secondary cell remaining capacity estimation method and device
US20060087291A1 (en) Method of controlling rechargeable battery power and a power source apparatus
JP2011220917A (en) Device and method for determining deterioration of lithium ion secondary battery
WO2007074614A1 (en) Charged state estimation device and charged state estimation method of secondary battery
WO2008068446A1 (en) Battery management system
CN111537901B (en) Battery power state measuring and calculating method, battery pack and vehicle
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP3104483B2 (en) Battery remaining capacity detection device for hybrid vehicles
JP2003243042A (en) Detecting method and device for degree of deterioration of lithium battery as component of package battery
JP3551767B2 (en) Battery discharge meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140906

Year of fee payment: 12

EXPY Cancellation because of completion of term