JP3345894B2 - Floating point multiplier - Google Patents

Floating point multiplier

Info

Publication number
JP3345894B2
JP3345894B2 JP10227891A JP10227891A JP3345894B2 JP 3345894 B2 JP3345894 B2 JP 3345894B2 JP 10227891 A JP10227891 A JP 10227891A JP 10227891 A JP10227891 A JP 10227891A JP 3345894 B2 JP3345894 B2 JP 3345894B2
Authority
JP
Japan
Prior art keywords
multiplier
floating
output
floating point
signed binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10227891A
Other languages
Japanese (ja)
Other versions
JPH04332036A (en
Inventor
靖彦 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10227891A priority Critical patent/JP3345894B2/en
Publication of JPH04332036A publication Critical patent/JPH04332036A/en
Application granted granted Critical
Publication of JP3345894B2 publication Critical patent/JP3345894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は浮動小数点乗算器とその
乗算方式に関し、特に符号付き二進数乗算器を用いた浮
動小数点乗算器とその乗算方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floating-point multiplier and its multiplication method, and more particularly to a floating-point multiplier using a signed binary multiplier and its multiplication method.

【0002】[0002]

【従来の技術】浮動小数点の乗算を行なうには、指数部
の加算と仮数部の乗算を行なった後に、丸めおよび桁合
わせを行なう必要がある。
2. Description of the Related Art Floating point multiplication requires rounding and digit alignment after addition of an exponent and multiplication of a mantissa.

【0003】従来の浮動小数点乗算器は、仮数部の乗算
にアレイ型乗算器やワレス(Wallace)型乗算器
を用いていた。図2に後者の浮動小数点乗算器の構成例
を示す。図2において、従来の浮動小数点乗算器は、指
数部加算器1と、ワレス型の乗算器5と、論理回路6
と、丸め桁合わせ器4とを備えて構成されていた。乗算
器5は、ワレス型ツリー51と加算器52とを有して構
成されていた。
Conventional floating point multipliers use an array type multiplier or a Wallace type multiplier for multiplication of a mantissa. FIG. 2 shows a configuration example of the latter floating-point multiplier. In FIG. 2, the conventional floating point multiplier includes an exponent part adder 1, a Wallace type multiplier 5, and a logic circuit 6.
And a rounding digit matching device 4. The multiplier 5 includes a Wallace tree 51 and an adder 52.

【0004】次に、動作について説明する。Next, the operation will be described.

【0005】まず、前処理段階で切出された浮動小数点
の指数部E1,E2を指数部加算器1により加算する。
また、浮動小数点のn(正の整数)ビットの仮数部M
1,M2をワレス型の乗算器5に入力し乗算を行なう。
乗算器5の出力のうち下位m(m≦n)ビットNの総論
理和Oを論理和回路6で求める。丸め桁合わせ器4は、
この総論理和Oを制御信号として指数部加算器1の出力
Aと乗算器5の出力の上位nビットLから浮動小数点乗
算器の出力Iを出力するというものであった。
First, the exponent parts E1 and E2 of the floating point extracted in the preprocessing stage are added by the exponent part adder 1.
A mantissa M of n (positive integer) bits of a floating point
1 and M2 are input to a Wallace type multiplier 5 to perform multiplication.
The total OR O of the lower m (m ≦ n) bits N in the output of the multiplier 5 is obtained by the OR circuit 6. The rounding digitizer 4 is
The total OR O is used as a control signal to output the output I of the floating-point multiplier from the output A of the exponent part adder 1 and the upper n bits L of the output of the multiplier 5.

【0006】乗算器5は、浮動小数点の仮数部のビット
長をnとすると、ビット長p(p>n)の二進数2個を
入力とし、ビット長(2p−1)を持った二進数を出力
する。丸め桁合わせ器4が必要とする乗算器5の出力
は、上位q(q>n)ビットと切捨てられた(2p−1
−q)ビットの総論理和Sすなわちステッキービットで
ある。この総論理和Sは、乗算が完全に終了してからで
ないと求められない。したがって、従来の浮動小数点乗
算器の全遅延時間は次のようになる。
[0006] Assuming that the bit length of the mantissa part of the floating point is n, the multiplier 5 receives two binary numbers having a bit length p (p> n) and outputs a binary number having a bit length (2p-1). Is output. The output of the multiplier 5 required by the rounding digit aligner 4 is truncated to upper q (q> n) bits (2p−1).
-Q) The total logical sum S of bits, that is, a sticky bit. This total logical sum S cannot be obtained until the multiplication is completely completed. Therefore, the total delay time of the conventional floating point multiplier is as follows.

【0007】全遅延時間=前処理+乗算+総論理和Sの
算出+丸め桁合わせこの総論理和Sを求める時間が従来
の浮動小数点乗算器における最大遅延経路の一つとなっ
ていた。
Total delay time = preprocessing + multiplication + calculation of total logical sum S + rounding digit alignment The time for obtaining the total logical sum S has been one of the maximum delay paths in the conventional floating point multiplier.

【0008】[0008]

【発明が解決しようとする課題】上述した従来の浮動小
数点乗算器とその乗算方式は、丸め処理および桁合わせ
処理に必要な切捨てられた下位ビットの総論理和、すな
わち、ステッキービットは乗算が完全に終了してからで
ないと求められないために、浮動小数点乗算回路全体と
しての演算速度が低いというという欠点を有している。
The above-mentioned conventional floating-point multiplier and its multiplication method employ a total OR of truncated lower bits necessary for rounding and digit alignment, that is, a sticky bit in which multiplication is completely performed. Since the calculation cannot be performed until after the calculation, the operation speed of the whole floating point multiplication circuit is low.

【0009】[0009]

【課題を解決するための手段】第1の発明の浮動小数点
乗算器は、第一および第二の浮動小数点数の各々の指数
部を入力とする指数部加算器と、前記第一および第二の
浮動小数点数の各々のn(正の整数)ビットの仮数部を
入力とする符号付き二進数加算器ツリーと、前記符号付
き二進数加算器ツリーの2つの出力を入力とする減算器
と、前記符号付き二進数加算器ツリーの2つの出力のそ
れぞれ下位m(m≦n)ビットを入力とする論理和回路
と、前記符号付き二進数加算器ツリーの2つの出力と前
記指数部加算器の出力と前記論理和回路の出力とを入力
とし演算結果を出力する丸め桁合わせ回路とを備えて構
成されている。
According to a first aspect of the present invention, there is provided a floating-point multiplier comprising: an exponent part adder which receives exponent parts of first and second floating-point numbers; A signed binary adder tree that receives as input the mantissa of n (positive integer) bits of each floating point number, a subtractor that receives as inputs two outputs of the signed binary adder tree, An OR circuit that inputs the lower m (m ≦ n) bits of two outputs of the signed binary adder tree, and two outputs of the signed binary adder tree and the exponent part adder A rounding and digit matching circuit that receives an output and an output of the OR circuit as inputs and outputs an operation result is configured.

【0010】また、第2の発明の浮動小数点乗算方式
は、第一および第二の浮動小数点数の各々の指数部を加
算し、前記第一および第二の浮動小数点数の各々のn
(正の整数)ビットの仮数部を加算器ツリーを有する乗
算器で乗算して乗算出力を出力し、前記乗算出力の下位
m(m≦n)ビットの総論理和の数値により丸め処理お
よび桁合わせ処理を行なう浮動小数点乗算方式におい
て、前記数値を前記加算器ツリーの出力から求めるもの
である。
A floating point multiplication method according to a second aspect of the present invention is to add exponent parts of the first and second floating point numbers and to add n to each of the first and second floating point numbers.
The mantissa of (positive integer) bits is multiplied by a multiplier having an adder tree to output a multiplied output. In the floating-point multiplication method for performing a matching process, the numerical value is obtained from an output of the adder tree.

【0011】[0011]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0012】図1は本発明の浮動小数点乗算器の一実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a floating-point multiplier according to the present invention.

【0013】本実施例の浮動小数点乗算器は、図1に示
すように、指数部加算器1と、符号付き二進数型の乗算
器2と、論理回路3と、丸め桁合わせ器4とを備えて構
成されている。乗算器2は、符号付き二進数加算器ツリ
ー21と減算器22とを有して構成されている。
As shown in FIG. 1, the floating-point multiplier of this embodiment includes an exponent adder 1, a signed binary multiplier 2, a logic circuit 3, and a rounding digit aligner 4. It is provided with. The multiplier 2 includes a signed binary adder tree 21 and a subtractor 22.

【0014】次に、本実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0015】まず、前処理段階で切出された浮動小数点
の指数部E1,E2を指数部加算器1により加算する。
また、浮動小数点のn(正の整数)ビットの仮数部M
1,M2を符号付き二進数型の乗算器2に入力し乗算を
行なう。符号付き二進数加算器ツリー21の出力Bおよ
び出力のそれぞれ下位約nビットの出力D,Fの総論理
和Hを論理和回路3により求める。丸め桁合わせ器4
は、総論理和Hを制御信号として、指数加算器1の出力
Aと乗算器2の出力の上位ビットGから浮動小数点乗算
器の出力Iを出力する。
First, the exponent parts E1 and E2 of the floating point extracted in the preprocessing stage are added by the exponent part adder 1.
A mantissa M of n (positive integer) bits of a floating point
1 and M2 are input to a signed binary multiplier 2 for multiplication. The OR circuit 3 calculates the total OR H of the outputs D and F of the lower approximately n bits of the output B and the output of the signed binary adder tree 21, respectively. Rounding digit matching device 4
Outputs the output I of the floating-point multiplier from the output A of the exponent adder 1 and the upper bit G of the output of the multiplier 2 using the total OR H as a control signal.

【0016】以上述べたように、本発明の浮動小数点乗
算器は、乗算器としワレス型の乗算器と同等の演算速度
を有する符号付き二進数型の乗算器2を用いるので、こ
れを構成する符号付き二進数加算器の出力から切捨てビ
ットの総論理和Sを求めることができる。これにより、
浮動小数点乗算器全体の遅延時間は、次のようになる。
As described above, the floating-point multiplier of the present invention uses the signed binary-type multiplier 2 having the same operation speed as the Wallace-type multiplier as the multiplier, so that it is constituted. The total logical sum S of the truncated bits can be obtained from the output of the signed binary adder. This allows
The delay time of the entire floating point multiplier is as follows.

【0017】全遅延時間=前処理+乗算+丸め桁合わせ したがって、前述の従来の例に比較して総論理和Sの算
出に要していた時間の分が短縮できる。
Total delay time = preprocessing + multiplication + rounding digit alignment Therefore, the time required for calculating the total logical sum S can be reduced as compared with the above-described conventional example.

【0018】[0018]

【発明の効果】以上説明したように、本発明の浮動小数
点乗算器とその乗算方式は、符号付き二進数加算器ツリ
ーと、符号付き二進数加算器ツリーの2つの出力を入力
とする減算器と、符号付き二進数加算器ツリーの2つの
出力のそれぞれ下位ビットを入力とする論理和回路とを
備えることにより、丸め処理および桁合わせ処理に必要
な切捨てられた下位ビットの総論理和、すなわち、ステ
ッキービットは乗算が完全に終了していなくても生成で
きるので、浮動小数点乗算回路全体としての演算速度を
高速化できるという効果を有している。
As described above, the floating-point multiplier of the present invention and its multiplication method are provided with a signed binary adder tree and a subtractor having two outputs of the signed binary adder tree as inputs. And a logical sum circuit that receives the lower bits of each of the two outputs of the signed binary adder tree as inputs, so that the total logical sum of the truncated lower bits required for the rounding process and the digit alignment process, that is, Since the sticky bit can be generated even if the multiplication is not completely completed, the operation speed of the entire floating-point multiplication circuit can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の浮動小数点乗算器の一実施例を示すブ
ロック図である。
FIG. 1 is a block diagram showing one embodiment of a floating-point multiplier of the present invention.

【図2】従来の浮動小数点乗算器とその乗算方式の一例
を示すブロック図である。
FIG. 2 is a block diagram showing an example of a conventional floating-point multiplier and its multiplication method.

【符号の説明】 1 指数部加算器 2,5 乗算器 3,6 論理回路 4 丸め桁合わせ器 21 符号付き二進数加算器ツリー 22 減算器 51 ワレス型ツリー 52 加算器[Explanation of Signs] 1 Exponent part adder 2, 5 Multiplier 3, 6 Logic circuit 4 Rounding digit aligner 21 Signed binary adder tree 22 Subtractor 51 Wallace tree 52 Adder

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一および第二の浮動小数点数の各々の指
数部を入力とする指数部加算器と、 前記第一および第二の浮動小数点数の各々のn(正の整
数)ビットの仮数部を入力とする符号付き二進数加算器
ツリーと、 前記符号付き二進数加算器ツリーの2つの出力を入力と
する減算器と、 前記符号付き二進数加算器ツリーの2つの出力のそれぞ
れ下位m(m≦n)ビットを入力とする論理和回路と、 前記符号付き二進数加算器ツリーの2つの出力と前記指
数部加算器の出力と前記論理和回路の出力とを入力とし
演算結果を出力する丸め桁合わせ回路とを備えたことを
特徴とする浮動小数点乗算器。
An exponent adder that receives an exponent of each of the first and second floating point numbers; and an n (positive integer) bit of each of the first and second floating point numbers. A signed binary adder tree having a mantissa as an input; a subtractor having two outputs of the signed binary adder tree as inputs; and two lower outputs of the two outputs of the signed binary adder tree. an OR circuit having m (m ≦ n) bits as input; an output of the signed binary adder tree, an output of the exponent adder, and an output of the OR circuit, and calculating an operation result. A floating point multiplier comprising a rounding and digit matching circuit for outputting.
JP10227891A 1991-05-08 1991-05-08 Floating point multiplier Expired - Lifetime JP3345894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227891A JP3345894B2 (en) 1991-05-08 1991-05-08 Floating point multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227891A JP3345894B2 (en) 1991-05-08 1991-05-08 Floating point multiplier

Publications (2)

Publication Number Publication Date
JPH04332036A JPH04332036A (en) 1992-11-19
JP3345894B2 true JP3345894B2 (en) 2002-11-18

Family

ID=14323139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227891A Expired - Lifetime JP3345894B2 (en) 1991-05-08 1991-05-08 Floating point multiplier

Country Status (1)

Country Link
JP (1) JP3345894B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8266198B2 (en) * 2006-02-09 2012-09-11 Altera Corporation Specialized processing block for programmable logic device
US7930336B2 (en) 2006-12-05 2011-04-19 Altera Corporation Large multiplier for programmable logic device
US8386553B1 (en) 2006-12-05 2013-02-26 Altera Corporation Large multiplier for programmable logic device
US8959137B1 (en) 2008-02-20 2015-02-17 Altera Corporation Implementing large multipliers in a programmable integrated circuit device
US8862650B2 (en) 2010-06-25 2014-10-14 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US9600278B1 (en) 2011-05-09 2017-03-21 Altera Corporation Programmable device using fixed and configurable logic to implement recursive trees
US9053045B1 (en) 2011-09-16 2015-06-09 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US8949298B1 (en) 2011-09-16 2015-02-03 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US9098332B1 (en) 2012-06-01 2015-08-04 Altera Corporation Specialized processing block with fixed- and floating-point structures
US8996600B1 (en) 2012-08-03 2015-03-31 Altera Corporation Specialized processing block for implementing floating-point multiplier with subnormal operation support
US9207909B1 (en) 2012-11-26 2015-12-08 Altera Corporation Polynomial calculations optimized for programmable integrated circuit device structures
US9189200B1 (en) 2013-03-14 2015-11-17 Altera Corporation Multiple-precision processing block in a programmable integrated circuit device
US9348795B1 (en) 2013-07-03 2016-05-24 Altera Corporation Programmable device using fixed and configurable logic to implement floating-point rounding
US9684488B2 (en) 2015-03-26 2017-06-20 Altera Corporation Combined adder and pre-adder for high-radix multiplier circuit
US10942706B2 (en) 2017-05-05 2021-03-09 Intel Corporation Implementation of floating-point trigonometric functions in an integrated circuit device

Also Published As

Publication number Publication date
JPH04332036A (en) 1992-11-19

Similar Documents

Publication Publication Date Title
JP3345894B2 (en) Floating point multiplier
US4969118A (en) Floating point unit for calculating A=XY+Z having simultaneous multiply and add
US7921149B2 (en) Division and square root arithmetic unit
JPH0776911B2 (en) Floating point arithmetic unit
JP2002108606A (en) Sticky bit generating circuit and multiplier
EP0356153B1 (en) Radix-2**n divider method and apparatus using overlapped quotient bit selection and concurrent quotient rounding and correction
US5177703A (en) Division circuit using higher radices
US4677583A (en) Apparatus for decimal multiplication
JP2511527B2 (en) Floating point arithmetic unit
JPH07234778A (en) Arithmetic circuit
US5870322A (en) Multiplier to selectively perform unsigned magnitude multiplication or signed magnitude multiplication
JP3537378B2 (en) Adders and integrated circuits
US7444366B2 (en) Faster shift value calculation using modified carry-lookahead adder
JPS5966790A (en) Operating circuit
JP2629736B2 (en) Product-sum operation circuit
JPS62154029A (en) Multiplier circuit
JP3137131B2 (en) Floating point multiplier and multiplication method
JPS6259828B2 (en)
JP2901463B2 (en) Addition device
KR0154773B1 (en) Multiplier for numericals expressed by the difference of 2-numbers
JP3803653B2 (en) Multiplication processor
JPH0285922A (en) Arithmetic circuit
JPS60181833A (en) Digit matching circuit for adder of floating decimal point
JPH0286334A (en) Multiplication circuit in 2m galois field
JPH1115641A (en) Multiplier using redundant binary adder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9