JP3340885B2 - Reflection measuring device - Google Patents

Reflection measuring device

Info

Publication number
JP3340885B2
JP3340885B2 JP16897395A JP16897395A JP3340885B2 JP 3340885 B2 JP3340885 B2 JP 3340885B2 JP 16897395 A JP16897395 A JP 16897395A JP 16897395 A JP16897395 A JP 16897395A JP 3340885 B2 JP3340885 B2 JP 3340885B2
Authority
JP
Japan
Prior art keywords
light
lens
light receiving
receiving
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16897395A
Other languages
Japanese (ja)
Other versions
JPH0921874A (en
Inventor
武和 照井
哲正 川口
文人 折井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Olympus Corp
Original Assignee
Denso Corp
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Olympus Optic Co Ltd filed Critical Denso Corp
Priority to JP16897395A priority Critical patent/JP3340885B2/en
Publication of JPH0921874A publication Critical patent/JPH0921874A/en
Application granted granted Critical
Publication of JP3340885B2 publication Critical patent/JP3340885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定物体と被測定
物体との距離、速度、角度等を測定する反射測定装置に
関するもので、例えば車両用の反射測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection measuring device for measuring a distance, a speed, an angle, and the like between a measured object and a measured object, and more particularly to a reflection measuring device for a vehicle.

【0002】[0002]

【従来の技術】従来の車両用反射測定装置に用いられる
出射光学系では、照射範囲を拡げていることから、照射
範囲内の多数の車両から測定対象車を正確に検出できな
いことやガードレール等の車両以外の障害物と測定対象
車との識別が正確にできないことがある。
2. Description of the Related Art In an emission optical system used in a conventional reflection measuring device for a vehicle, since an irradiation range is widened, a vehicle to be measured cannot be accurately detected from a large number of vehicles within the irradiation range, and a guardrail or the like is required. In some cases, an obstacle other than the vehicle cannot be accurately distinguished from the vehicle to be measured.

【0003】このような問題を解決するため、特開昭6
4−80894号公報に開示される反射測定装置は、受
光レンズにおいて充分に屈折しなかった非測定物体から
の反射光線をテーパ状の光導波路により数回反射させて
受光素子に集光し受光効率を向上させている。また、カ
メラ等に用いられる広角度レンズによって、広角度範囲
の反射光線を受光する方法も考えられる。
In order to solve such a problem, Japanese Patent Laid-Open Publication No.
The reflection measuring apparatus disclosed in Japanese Patent Application Laid-Open No. 4-80894 discloses a reflection measuring device that reflects a reflected light beam from a non-measurement object that is not sufficiently refracted by a light receiving lens by a tapered optical waveguide several times, condenses the light on a light receiving element, and receives light. Has been improved. A method of receiving reflected light rays in a wide angle range by a wide angle lens used for a camera or the like is also conceivable.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
64−80894号公報に開示されるものによると、光
導波路により反射光が反射する回数をn回とすると、反
射率のn乗に相当する光パワーまで減衰し、さらに光導
波路により光パワーがより減衰するという問題がある。
さらに、反射により光束が絞れる程度の研磨面を光導波
路に形成するには高精度の研磨工程を必要としコストの
増大を招くという問題がある。
However, according to Japanese Unexamined Patent Application Publication No. 64-80894, if the number of times of reflected light reflected by the optical waveguide is n, it corresponds to the nth power of the reflectance. There is a problem that the optical power is attenuated to the optical power and the optical power is further attenuated by the optical waveguide.
Further, there is a problem that a high-precision polishing step is required to form a polished surface on the optical waveguide to such an extent that a light beam can be narrowed by reflection, resulting in an increase in cost.

【0005】また、カメラ等に用いられる広角度レンズ
を使用する場合によると、少なくとも2枚以上のレンズ
が必要となることから、体格が大型化するとともに複雑
な光学系になるという問題がある。このような問題を解
決するため、小型、軽量かつ低コストで量産可能なフレ
ネルレンズを受光レンズに使用することが考えられる
が、フレネルレンズの特性上、受光性能が良好ではない
斜入射光に対して受光効率が著しく低下することから、
広角度範囲を走査するスキャニング方式の車両用反射測
定装置へのフレネルレンズの使用は適していない。
Further, when a wide-angle lens used for a camera or the like is used, at least two or more lenses are required, so that there is a problem that the physical size becomes large and a complicated optical system is formed. In order to solve such a problem, it is conceivable to use a small, lightweight, low-cost Fresnel lens that can be mass-produced as the light receiving lens. However, due to the characteristics of the Fresnel lens, light receiving performance is not good for oblique incident light. Light receiving efficiency is significantly reduced
The use of a Fresnel lens in a scanning type vehicle reflection measurement device that scans a wide angle range is not suitable.

【0006】本発明は、このような問題を解決するため
になされたもので、広角度範囲において、被測定物体と
の距離を正確に測定するとともに小型、軽量化された反
射測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and provides a small-sized and light-weight reflection measuring device which accurately measures the distance to an object to be measured in a wide angle range. The purpose is to:

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明による請求項1記載の反射測定装置は、光源
と、この光源から照射される光線をほぼ平行光線にする
出射レンズと、前記出射レンズを透過し被測定物体にお
いて反射した光線を集光する受光レンズであって、前記
受光レンズの外周部から中心部に向けて焦点距離が循環
して変化する受光レンズと、前記受光レンズにより集光
された光線を受光する受光部と、前記受光部での受光時
刻と前記光源から出射された光線の出射時刻との差から
前記被測定物体と前記光源との距離を算出する演算手段
とを備えたことを特徴とする。
According to a first aspect of the present invention, there is provided a reflection measuring apparatus, comprising: a light source; an emission lens for converting a light beam emitted from the light source into a substantially parallel light beam; A light-receiving lens that condenses a light beam transmitted through the exit lens and reflected by the object to be measured, a light-receiving lens whose focal length circulates and changes from an outer peripheral portion to a central portion of the light-receiving lens, and A light receiving unit that receives the condensed light beam, and a calculating unit that calculates a distance between the measured object and the light source from a difference between a light receiving time at the light receiving unit and an emission time of the light beam emitted from the light source. It is characterized by having.

【0008】本発明による請求項2記載の反射測定装置
は、請求項1記載の反射測定装置において、前記受光レ
ンズはフレネルレンズであることを特徴とする。本発明
による請求項3記載の反射測定装置は、請求項1または
2記載の反射測定装置において、前記受光レンズと前記
受光部との間に前記受光レンズを透過した光線を前記受
光部に集光する集光ミラーを配設することを特徴とす
る。
According to a second aspect of the present invention, there is provided a reflection measuring apparatus according to the first aspect, wherein the light receiving lens is a Fresnel lens. According to a third aspect of the present invention, there is provided a reflection measuring apparatus according to the first or second aspect, wherein a light beam transmitted through the light receiving lens is condensed on the light receiving section between the light receiving lens and the light receiving section. A light collecting mirror is provided.

【0009】本発明による請求項4記載の反射測定装置
は、請求項3記載の反射測定装置において、前記集光ミ
ラーは縦断面を放物線形状に形成されていることを特徴
とする。本発明による請求項5記載の反射測定装置は、
請求項3記載の反射測定装置において、前記集光ミラー
は縦断面を双曲線形状に形成されていることを特徴とす
る。
According to a fourth aspect of the present invention, there is provided a reflection measuring apparatus according to the third aspect, wherein the converging mirror is formed in a parabolic vertical section. According to a fifth aspect of the present invention, there is provided a reflection measuring device comprising:
4. The reflection measuring device according to claim 3, wherein the converging mirror has a longitudinal section formed in a hyperbolic shape.

【0010】本発明による請求項6記載の反射測定装置
は、請求項1から5のいずれか一項記載の反射測定装置
において、前記受光レンズは、焦点距離の短かい受光レ
ンズ部ほど透過した光線を前記受光部の両端側に集光
し、焦点距離の長い受光レンズ部ほど透過した光線を受
光部の中央側に集光することを特徴とする。
According to a sixth aspect of the present invention, there is provided the reflection measuring device according to any one of the first to fifth aspects, wherein the light receiving lens is a light beam transmitted through a light receiving lens portion having a shorter focal length. Are condensed on both ends of the light receiving unit, and the transmitted light rays are condensed on the center side of the light receiving unit as the light receiving lens unit has a longer focal length.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。 (第1実施例)本発明の第1実施例による車両用反射測
定装置を図2および図3に示す。測定装置1はスキャニ
ング方式の車両用反射測定装置である。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIGS. 2 and 3 show a reflection measuring apparatus for a vehicle according to a first embodiment of the present invention. The measuring device 1 is a scanning type vehicle reflection measuring device.

【0012】図2および図3に示すように、測定装置1
のハウジング10内には、光線照射部20、光線反射部
30、コリメータレンズ40、受光レンズ51、受光部
である受光素子52、回路基板53、集光ミラー54等
が収容されている。光線照射部20は、半導体レーザ2
1、この半導体レーザ21の駆動回路を有する回路基板
22、半導体レーザ21から出射された光線を絞る絞り
板23から構成されている。半導体レーザ21は、10
W〜20Wの大出力が出力可能であり、回路基板22に
搭載された駆動回路により駆動され、波長λ:860nm
の赤外パルス光を出射する。半導体レーザ21の出射位
置に対応する絞り板23には間隙が設けられ、この間隙
を通して光線が光線反射部30に出射される。これ以外
の出射された光線は絞り板23により遮断される。
As shown in FIG. 2 and FIG.
In the housing 10, a light beam irradiation unit 20, a light beam reflection unit 30, a collimator lens 40, a light receiving lens 51, a light receiving element 52 as a light receiving unit, a circuit board 53, a light collecting mirror 54, and the like are housed. The light beam irradiating unit 20 includes the semiconductor laser 2
1. A circuit board 22 having a drive circuit for the semiconductor laser 21 and a diaphragm plate 23 for narrowing a light beam emitted from the semiconductor laser 21. The semiconductor laser 21 has 10
It can output a large output of W to 20 W, is driven by a drive circuit mounted on the circuit board 22, and has a wavelength λ: 860 nm.
Out of the infrared pulse light. A gap is provided in the diaphragm plate 23 corresponding to the emission position of the semiconductor laser 21, and a light beam is emitted to the light beam reflecting unit 30 through the gap. Other emitted light beams are blocked by the diaphragm plate 23.

【0013】光線反射部30は、ステップモータ31、
反射鏡33から構成されている。ステップモータ31は
図示しない電力供給部から駆動電流を供給され、反射鏡
33を所定の分散角度づつ回転させ、全角度のスキャン
が終了したら今度は反対方向に反射鏡33を反転させて
スキャンする。反射鏡33を構成する反射鏡本体35の
基材は、例えばガラス、プラスチックまたは金属からな
り、反射鏡本体35の一方の面にはアルミ密着ミラーが
形成され、他方の面にはこのアルミ密着ミラーよりも反
射率の低い誘電体多層膜ミラーが形成されている。反射
鏡33は、ステップモータ31を回動させることによ
り、アルミ密着ミラーまたは誘電体多層膜ミラーを半導
体レーザ21に対向させることができる。アルミ密着ミ
ラーの面上に反射鏡33の回転軸の仮想延長線が位置す
るとともに、アルミ密着ミラーの面上に位置する反射鏡
33の回転軸の仮想延長線上にコリメータレンズ40の
光軸が通るように反射鏡33が位置している。反射鏡3
3の回転軸の仮想延長線は誘電体多層膜ミラーの面上に
位置していないが、誘電体多層膜ミラーで光線を反射す
るのは至近距離の測定物体に対してだけであるので、そ
の至近距離範囲内での光量密度の不均一は実用上支障の
ない範囲内である。アルミ密着ミラーは、半導体レーザ
21の波長域における反射率が約90〜95%になるよ
うに形成されている。
The light reflecting section 30 includes a step motor 31,
It is composed of a reflecting mirror 33. The stepping motor 31 is supplied with a drive current from a power supply unit (not shown), rotates the reflecting mirror 33 by a predetermined dispersion angle, and after scanning all angles, turns the reflecting mirror 33 in the opposite direction for scanning. The base material of the reflecting mirror body 35 constituting the reflecting mirror 33 is made of, for example, glass, plastic, or metal. An aluminum close-contact mirror is formed on one surface of the reflecting mirror main body 35, and the aluminum close-contact mirror is formed on the other surface. A dielectric multilayer mirror having a lower reflectivity than that is formed. The reflecting mirror 33 can make the aluminum contact mirror or the dielectric multilayer mirror face the semiconductor laser 21 by rotating the step motor 31. A virtual extension line of the rotation axis of the reflection mirror 33 is located on the surface of the aluminum contact mirror, and an optical axis of the collimator lens 40 passes on a virtual extension line of the rotation axis of the reflection mirror 33 located on the surface of the aluminum contact mirror. Mirror 33 is positioned as shown. Reflecting mirror 3
Although the virtual extension line of the rotation axis 3 is not located on the surface of the dielectric multilayer mirror, the light is reflected by the dielectric multilayer mirror only for a measurement object at a close distance, so The non-uniformity of the light intensity density in the close range is within a range that does not hinder practical use. The aluminum contact mirror is formed such that the reflectance in the wavelength region of the semiconductor laser 21 is about 90 to 95%.

【0014】コリメータレンズ40は、例えば口径40
mm、中心部での焦点距離f1 :40mm(Fナバー1)の
プラスチックレンズである。反射鏡33で反射された光
線は、コリメータレンズ40により平行よりも僅かに開
く向きに角度を付け被測定物体に向けて照射される。こ
れは、僅かでも閉じ側に光線が収束されると、高い光量
密度の光線が外部に照射されることになり危険だからで
ある。コリメータレンズ40の材質は、可視光の透過率
をほぼゼロにカットするため、例えば顔料入りアクリル
またはポリカーボネート等が用いられている。本発明で
は顔料は混入しないでも構わない。コリメータレンズ4
0の材質に要求されるのは、屈折率nがn≧1.45と
高いこと、および面精度がλ/4と高いことである。
The collimator lens 40 has, for example, an aperture 40
mm, a plastic lens having a focal length f 1 at the center: 40 mm (F number 1). The light beam reflected by the reflecting mirror 33 is directed toward the measured object by the collimator lens 40 at an angle slightly wider than parallel. This is because even if the light beam is slightly converged to the closed side, a light beam with a high light intensity density is irradiated to the outside, which is dangerous. The material of the collimator lens 40 is, for example, pigment-containing acrylic or polycarbonate in order to cut the transmittance of visible light to almost zero. In the present invention, the pigment may not be mixed. Collimator lens 4
The material of 0 is required that the refractive index n is as high as n ≧ 1.45 and that the surface accuracy is as high as λ / 4.

【0015】受光レンズ51は、後述するような、広角
度域(±10°)において被測定物体から反射した反射
光線の集光効率が高い特殊形状のフレネルレンズであ
る。受光レンズ51の材質は、コリメータレンズ40と
同様、例えば可視光カット顔料入りアクリルもしくはポ
リカーボネイトである。受光素子52は、PINフォト
ダイオードである。本発明では、PINフォトダイオー
ドに代えてアバランシェフォトダイオードを用いること
も可能である。
The light receiving lens 51 is a Fresnel lens of a special shape having a high light-collecting efficiency of a light beam reflected from the object to be measured in a wide angle range (± 10 °) as described later. Similar to the collimator lens 40, the material of the light receiving lens 51 is, for example, acrylic or polycarbonate containing visible light cut pigment. The light receiving element 52 is a PIN photodiode. In the present invention, an avalanche photodiode can be used instead of the PIN photodiode.

【0016】回路基板53上に搭載された演算手段であ
る図示しない演算回路は、被測定物体において反射し、
受光レンズ51を介して受光素子52に入射した光線の
受光時刻と出射時刻との差から次式(1) により被測定物
体との距離を算出する。 測定距離=(受光した時刻−出射した時刻)×光速×1/2 ・・・(1) 集光ミラー54は、斜めに入射する光線を効率よく受光
素子52に集めるために設けられた平面ミラーであり、
受光素子52の約50%の幅内で受光素子52から外れ
た光線を1回反射させて受光素子52に集めることがで
きる。集光ミラー54は光線の反射率が90%以上であ
り、この値が高い方が望ましい。集光ミラー54は例え
ば樹脂の表面にアルミニウム等の金属を蒸着処理したも
の、アルミニウム等の金属をメッキ処理をしたもの、ま
たはアルミニウム等の金属を成形したもので構成され
る。図4に示すように、集光ミラー54は、軸方向長d
1 :13mm、受光素子52の受光面に対する傾斜角α:
64°、下部の穴径φ:13mmに設定されている。集光
ミラー54の下面から受光素子52までの距離lは3.
7mmである。
An arithmetic circuit (not shown), which is arithmetic means mounted on the circuit board 53, reflects off the object to be measured,
The distance from the measured object is calculated from the difference between the light receiving time and the light emitting time of the light beam incident on the light receiving element 52 via the light receiving lens 51 by the following equation (1). Measurement distance = (received time−emitted time) × light speed × 1 / (1) The condensing mirror 54 is a plane mirror provided to efficiently collect obliquely incident light rays on the light receiving element 52. And
Light rays deviating from the light receiving element 52 within about 50% of the width of the light receiving element 52 can be reflected once and collected on the light receiving element 52. The light collecting mirror 54 has a light reflectance of 90% or more, and it is desirable that this value be higher. The condensing mirror 54 is made of, for example, a material obtained by depositing a metal such as aluminum on the surface of a resin, a material obtained by plating a metal such as aluminum, or a material formed by molding a metal such as aluminum. As shown in FIG. 4, the focusing mirror 54 has an axial length d.
1 : 13 mm, inclination angle α of the light receiving element 52 with respect to the light receiving surface:
It is set to 64 ° and the lower hole diameter φ: 13 mm. The distance 1 from the lower surface of the condenser mirror 54 to the light receiving element 52 is 3.
7 mm.

【0017】次に、受光レンズ51の詳細について説明
する。図1に示すように、受光レンズ51はレンズ外周
部からレンズ中心部に向けてそれぞれ異なる焦点距離を
有する円環状の受光レンズ部としての短焦点部101、
中焦点部102、長焦点部103が繰り返し循環して刃
状に配置された循環焦点フレネルレンズである。レンズ
中心部は短焦点部101が占めている。短焦点部10
1、中焦点部102、長焦点部103はこの順番で焦点
距離が長くなっており、短焦点部101の焦点距離はf
1 :43mm、中焦点部102の焦点距離はf2 :55m
m、長焦点部103の焦点距離はf3 :71mmである。
短焦点部101、中焦点部102、長焦点部103を透
過した屈折光線をそれぞれ111、112、112で表
す。図4、図5および図6に示すように、短焦点部10
1は被測定物体からの反射光線の水平入射角度(以下、
「水平入射角度」を入射角度という)が0°のときに受
光素子52の中心部に受光レンズ51からの屈折光線1
11を集光し、中焦点部102は反射光線の入射角度が
4°のときに受光素子52の中心部に屈折光線112を
集光し、長焦点部103は反射光線の入射角度が8°の
ときに受光素子52の中心部に屈折光線113を集光す
る。ここで入射角度とは、受光レンズ52の光軸に対す
る入射光線の角度を意味する。
Next, the details of the light receiving lens 51 will be described. As shown in FIG. 1, the light receiving lens 51 includes a short focal point portion 101 as an annular light receiving lens portion having different focal lengths from the lens outer peripheral portion toward the lens central portion.
A middle focal point 102 and a long focal point 103 are circulating focal point Fresnel lenses that are repeatedly circulated and arranged in a blade shape. The short focal point 101 occupies the center of the lens. Short focus section 10
1, the focal length of the middle focal point section 102 and the focal length of the long focal point section 103 are increased in this order, and the focal length of the short focal point section 101 is f
1 : 43 mm, the focal length of the middle focal point section 102 is f 2 : 55 m
m, the focal length of the long focal point portion 103 is f 3 : 71 mm.
Refracted light beams transmitted through the short focus section 101, the middle focus section 102, and the long focus section 103 are represented by 111, 112, and 112, respectively. As shown in FIG. 4, FIG. 5 and FIG.
1 is the horizontal angle of incidence of the reflected light from the object to be measured
When the “horizontal incident angle” is referred to as “the incident angle” is 0 °, the refracted light 1 from the light receiving lens 51
When the incident angle of the reflected light beam is 4 °, the middle focal point portion 102 condenses the refracted light beam 112 at the center of the light receiving element 52, and the long focal point portion 103 has the reflected light incident angle of 8 °. At this time, the refracted light beam 113 is focused on the center of the light receiving element 52. Here, the incident angle means the angle of the incident light beam with respect to the optical axis of the light receiving lens 52.

【0018】三種類の焦点距離を有するレンズ部を焦点
距離を循環させて受光レンズ51を構成することによ
り、0°、4°、8°の入射角度を有する入射光線をそ
れぞれ受光素子52に集光させた理由を次に説明する。
図7に示す受光レンズ60は焦点距離f:43mmの単一
焦点フレネルレンズであり、受光素子52の長手方向長
は7mmである。フレネルレンズの集光性能、つまり集光
した光線のスポットサイズが理論上一点になると仮定す
ると、受光レンズ60に対する入射角度θが変化したと
きに受光素子52に集光される入射角度θの限界値は、
次式(1) よりθ≒4.65°である。
By forming the light receiving lens 51 by circulating the lens units having three kinds of focal lengths through the focal lengths, the incident light beams having the incident angles of 0 °, 4 °, and 8 ° are respectively collected on the light receiving element 52. Next, the reason for the lightening will be described.
The light receiving lens 60 shown in FIG. 7 is a single focus Fresnel lens with a focal length f: 43 mm, and the length of the light receiving element 52 in the longitudinal direction is 7 mm. Assuming that the condensing performance of the Fresnel lens, that is, the spot size of the condensed light beam is theoretically one point, the limit value of the incident angle θ condensed on the light receiving element 52 when the incident angle θ with respect to the light receiving lens 60 changes. Is
From the following equation (1), θ ≒ 4.65 °.

【0019】 θ=tan -1((d/2)/f) =tan -1(3.5/43)≒4.65° ・・・(1) しかし、実際のスポットサイズはフレネルレンズの各刃
のピッチ程度になり、約φ1mmである。このため、受光
素子52に集光可能な光線の入射角度の最大値θは、次
式(2) よりθ≒3.99°≒4°である。
Θ = tan −1 ((d / 2) / f) = tan −1 (3.5 / 43) ≒ 4.65 ° (1) However, the actual spot size depends on each Fresnel lens. It is about the pitch of the blade, about 1 mm. For this reason, the maximum value θ of the incident angle of the light beam that can be collected on the light receiving element 52 is θ ≒ 3.99 ° ≒ 4 ° according to the following equation (2).

【0020】 θ=tan -1(((d/2)−(1/2))/f) =tan -1(3/43)≒3,99° ・・・(2) スポットサイズを約φ1mmとしたときの入射角度θと受
光光量との関係を図8に示す。レンズ中心部からレンズ
外周部に向かっての受光効率の劣化分を考慮し、かつフ
レネルレンズの軸ずれ等の公差を見込むと、入射角度θ
に対する受光光量の特性をほぼ平坦にするためには、受
光レンズに対する反射光線の入射角度範囲を約±3°と
考えるのが妥当である。
Θ = tan −1 (((d / 2) − (1/2)) / f) = tan −1 (3/43) ≒ 3,99 ° (2) The spot size is about φ1 mm. FIG. 8 shows the relationship between the incident angle θ and the amount of received light when Considering the deterioration of the light receiving efficiency from the center of the lens toward the outer periphery of the lens, and considering tolerances such as axial deviation of the Fresnel lens, the incident angle θ
In order to make the characteristic of the amount of received light to be almost flat, it is appropriate to consider the incident angle range of the reflected light beam to the light receiving lens to be about ± 3 °.

【0021】高速道路のように比較的直線が多く車間距
離も長い道路において反射測定装置1を搭載した車両と
被測定物体である車両との距離を測定するためには、±
6°の角度範囲内を測定できれば十分であるが、一般道
のようにカーブが多く車間距離の短い道路では、±10
°の角度範囲内において一定の受光光量を保持しつつ平
坦な受光光量特性が要求される。図9に示すように、入
射角度0°、4°、8°のときに屈折光線が受光素子5
2に集光される焦点距離を有する受光レンズ部を組み合
わせることにより、±10°の範囲内において入射角度
に対する受光光量の特性がほぼ平坦になる。
In order to measure the distance between a vehicle equipped with the reflection measuring device 1 and a vehicle as an object to be measured on a road having a relatively straight line and a long inter-vehicle distance, such as an expressway, ± 1
It is sufficient to be able to measure within an angle range of 6 °, but on a road with many curves and short inter-vehicle distance such as a general road, ± 10
A flat received light amount characteristic is required while maintaining a constant received light amount within the angle range of °. As shown in FIG. 9, when the incident angles are 0 °, 4 °, and 8 °, the refracted light beam
By combining the light receiving lens units having a focal length focused on the light receiving unit 2, the characteristic of the amount of received light with respect to the incident angle becomes almost flat within a range of ± 10 °.

【0022】また、フレネルレンズを含む通常のレンズ
ではレンズ中心部から外周部に向かうに従い受光光量が
低下する、つまりレンズ効率が劣化する。このレンズ径
方向におけるレンズ効率の不均一性を低減して平坦な受
光光量特性を得るため、第1実施例では、前述したよう
にレンズ外周部からレンズ中心部に向けてそれぞれ異な
る焦点距離を有する円環状の短焦点部101、中焦点部
102、長焦点部103が繰り返し循環して配置されて
いる。
In a normal lens including a Fresnel lens, the amount of received light decreases from the center to the outer periphery of the lens, that is, the lens efficiency deteriorates. In order to reduce the non-uniformity of the lens efficiency in the lens radial direction and obtain a flat received light amount characteristic, the first embodiment has different focal lengths from the lens outer periphery toward the lens center as described above. An annular short focus portion 101, a middle focus portion 102, and a long focus portion 103 are repeatedly circulated and arranged.

【0023】単一焦点フレネルレンズ、多重焦点(累進
焦点)フレネルレンズおよび本実施例の循環焦点フレネ
ルレンズにおける入射角度と相対検知距離との関係を比
較した結果を図10に示す。ここで多重焦点(累進焦
点)フレネルレンズとは、レンズ外周部からレンズ中心
部に向けて焦点距離が増加または減少するフレネルレン
ズを意味する。図10に示すように、本実施例の循環焦
点フレネルレンズによると、単一焦点フレネルレンズ、
多重焦点(累進焦点)フレネルレンズに比較し、±10
°の範囲内で良好な相対検知距離を保持しつつ入射角度
と相対検知距離との関係がより平坦になる。
FIG. 10 shows the result of comparing the relationship between the incident angle and the relative detection distance in the single focus Fresnel lens, the multi-focus (progressive focus) Fresnel lens, and the circulating focus Fresnel lens of this embodiment. Here, the multifocal (progressive focus) Fresnel lens means a Fresnel lens whose focal length increases or decreases from the outer periphery of the lens toward the center of the lens. As shown in FIG. 10, according to the circulating focus Fresnel lens of the present embodiment, a single focus Fresnel lens,
± 10 compared to multi-focus (progressive focus) Fresnel lens
The relationship between the incident angle and the relative detection distance becomes flatter while maintaining a good relative detection distance within the range of °.

【0024】次に、循環焦点の受光レンズ51を構成す
るフレネルレンズの製造法を単一焦点フレネルレンズを
例にして説明する。図11に示すように、焦点fの球面
レンズ61を同心円上に切出すことにより、屈折角の異
なった複数の円環状レンズ61a、61b、61c等が
形成される。これらの円環状レンズ61a、61b、6
1c等のうち、図11中の斜線で示した略三角形部分を
階段状に繋合わせ同心円上に寄せ集めたものがフレネル
レンズ62である。このフレネルレンズ62は、厳密に
はレンズではなく環状レンズ61a、61b、61c等
と同じ屈折角を有するプリズム62a、62b、62c
等を同心円上に集めたものである。
Next, a method of manufacturing a Fresnel lens constituting the light receiving lens 51 having a circulating focus will be described by taking a single focus Fresnel lens as an example. As shown in FIG. 11, a plurality of toric lenses 61a, 61b, 61c and the like having different refraction angles are formed by cutting the spherical lens 61 at the focal point f into concentric circles. These annular lenses 61a, 61b, 6
Of 1c and the like, a Fresnel lens 62 is obtained by connecting substantially triangular portions indicated by oblique lines in FIG. The Fresnel lens 62 is not strictly a lens but a prism 62a, 62b, 62c having the same refraction angle as the annular lenses 61a, 61b, 61c and the like.
Etc. are collected on concentric circles.

【0025】循環焦点フレネルレンズを製造する場合
は、三種類の異なる焦点距離を有するプリズムを同心円
上に焦点距離を循環させて構成すればよい。フレネルレ
ンズは、同じ焦点距離を有する球面レンズに較べ薄く軽
量化が可能であり、特に短焦点の場合、軽量化率を高く
することが可能である。第1実施例によると、循環焦点
フレネルレンズを受光レンズ51に用いることにより、
大型の走査鏡、広角度レンズ等を用いた場合と比較し車
両用反射測定装置を小型、軽量化することができる。
When a circulating focal Fresnel lens is manufactured, prisms having three different focal lengths may be formed by circulating the focal length on concentric circles. The Fresnel lens can be made thinner and lighter than a spherical lens having the same focal length. In particular, in the case of a short focus, the weight reduction rate can be increased. According to the first embodiment, by using the circulating focus Fresnel lens for the light receiving lens 51,
The vehicle reflection measuring device can be reduced in size and weight as compared with the case where a large scanning mirror, a wide angle lens, or the like is used.

【0026】(第2実施例)本発明の第2実施例による
車両用反射測定装置を図12および図13に示す。受光
レンズ51の構成は第1実施例と同一である。一般に、
入射角度が大きくなるほど、非点収差により受光レンズ
51を透過した光線のスポットサイズが大きくなり一部
の屈折光線が受光素子52から外れるので、入射角度に
対する受光光量の平坦特性を得るのが困難になる。図1
3に示す集光分布121は、集光ミラーが平面状のとき
の入射角度8°に対するスポットサイズを示し、集光分
布122は集光ミラーが凹曲面状のときの入射角度8°
に対するスポットサイズを示す。第2実施例では、集光
ミラー55の縦断面形状を放物線状に形成したことによ
り、入射角度の増加に伴うスポットサイズの増加を抑制
し、入射角度に対する受光光量特性を平坦に近づけてい
る。本発明では、集光ミラーの縦断面形状を双曲線状に
形成することも可能である。
(Second Embodiment) FIGS. 12 and 13 show a vehicle reflection measuring apparatus according to a second embodiment of the present invention. The configuration of the light receiving lens 51 is the same as that of the first embodiment. In general,
As the incident angle increases, the spot size of the light beam transmitted through the light receiving lens 51 increases due to astigmatism, and a part of the refracted light beam deviates from the light receiving element 52. Therefore, it is difficult to obtain a flat characteristic of the received light amount with respect to the incident angle. Become. FIG.
3 shows a spot size with respect to an incident angle of 8 ° when the condensing mirror is flat, and a condensing distribution 122 shows an incident angle of 8 ° when the condensing mirror has a concave curved surface.
Shows the spot size for. In the second embodiment, since the longitudinal sectional shape of the condenser mirror 55 is formed in a parabolic shape, an increase in spot size due to an increase in the incident angle is suppressed, and the received light amount characteristic with respect to the incident angle is made almost flat. In the present invention, it is also possible to form the vertical cross-sectional shape of the light collecting mirror into a hyperbolic shape.

【0027】(第3実施例)本発明の第3実施例による
車両用反射測定装置を図14および図15に示す。受光
レンズ70の焦点距離分布は第1実施例の受光レンズ5
1と同一である。第1実施例では、入射角度0°、4
°、8°に対して集光素子52のほぼ中央に屈折光線が
集光するように受光レンズ51を構成したが、第3実施
例では、図14および図15に示すように、焦点距離が
短い受光レンズ70の短焦点部を入射角度0°で透過し
た光線が受光素子52の両端部131に集光し、焦点距
離の長い受光レンズ70の長焦点部を入射角度8°で透
過した光線が受光素子52の中央部133に集光し、短
焦点部と長焦点部の中間の焦点距離を有する受光レンズ
70の中焦点部を入射角度4°で透過した光線が両端部
131と中央部133の中間部132に集光するように
受光レンズ70の各刃の角度が設定されている。
(Third Embodiment) FIGS. 14 and 15 show a vehicle reflection measuring apparatus according to a third embodiment of the present invention. The focal length distribution of the light receiving lens 70 is the light receiving lens 5 of the first embodiment.
Same as 1. In the first embodiment, the incident angles are 0 ° and 4 °.
Although the light receiving lens 51 is configured so that the refracted light beam is condensed substantially at the center of the condensing element 52 with respect to ° and 8 °, in the third embodiment, as shown in FIGS. A light beam transmitted through the short focal point of the short light receiving lens 70 at an incident angle of 0 ° is collected on both ends 131 of the light receiving element 52, and a light beam transmitted through a long focal point of the light receiving lens 70 having a long focal length at an incident angle of 8 °. Are condensed on the central portion 133 of the light receiving element 52, and light rays transmitted through the middle focal point portion of the light receiving lens 70 having an intermediate focal length between the short focal point portion and the long focal point portion at an incident angle of 4 ° are combined with both end portions 131 and the central portion. The angle of each blade of the light receiving lens 70 is set so as to converge on the intermediate portion 132 of the light 133.

【0028】第3実施例では、このような集光分布に受
光レンズ70を形成したことにより、入射角度が大きく
なってスポットサイズが増加するにしたがい受光素子5
2の中央部または中央部近傍で受光レンズ70を透過し
た光線が検知されることにより、入射角度に対する受光
光量特性がより平坦になる。以上説明した本発明の実施
例では、受光レンズの最外周側を焦点距離の一番短い短
焦点部で構成し、中焦点部、長焦点部の順番で受光レン
ズの中心部に向けて焦点距離を循環して受光レンズを構
成したが、本発明では、短焦点部、中焦点部、長焦点部
の配列はどのような組み合わせで循環させても良い。ま
た本発明では、焦点距離の分割は複数であれば三分割に
限るものではない。
In the third embodiment, since the light receiving lens 70 is formed in such a condensed light distribution, the light receiving element 5 increases as the incident angle increases and the spot size increases.
By detecting the light beam transmitted through the light receiving lens 70 at the central portion or near the central portion of No. 2, the received light amount characteristic with respect to the incident angle becomes flatter. In the embodiment of the present invention described above, the outermost peripheral side of the light receiving lens is constituted by the short focal length portion having the shortest focal length, and the focal length is shifted toward the central portion of the light receiving lens in the order of the middle focal length portion and the long focal length portion. Are circulated to form the light receiving lens. However, in the present invention, the arrangement of the short focal point, the middle focal point, and the long focal point may be circulated in any combination. In the present invention, the division of the focal length is not limited to three if it is plural.

【0029】[0029]

【発明の効果】本発明の請求項1記載の反射測定装置に
よると、被測定物体から反射した光線を集光する受光レ
ンズを、受光レンズの外周部から中心部に向けて焦点距
離が循環して変化するように設定されている。このた
め、受光レンズに入射する反射光線の入射角度が変化し
ても、焦点距離の異なる受光レンズ部を透過した光線が
ほぼ等しい光量で受光部に集光されるため、反射光線の
入射角度が広角度になっても比較的平坦な受光効率特性
を保持できる。
According to the reflection measuring device of the first aspect of the present invention, the focal length of the light receiving lens for condensing the light beam reflected from the object to be measured is circulated from the outer periphery to the center of the light receiving lens. Is set to change. For this reason, even if the incident angle of the reflected light beam incident on the light receiving lens changes, the light beam transmitted through the light receiving lens portions having different focal lengths is condensed on the light receiving portion with substantially the same amount of light. Even at a wide angle, relatively flat light receiving efficiency characteristics can be maintained.

【0030】本発明の請求項2記載の反射測定装置によ
ると、受光レンズをフレネルレンズで構成することによ
り、球面レンズに較べ薄く軽量化できるので装置を小型
化できる。本発明の請求項3記載の反射測定装置による
と、受光レンズと受光部との間に受光レンズを透過した
光線を受光部に集光する集光ミラーを配設することによ
り、受光部への集光率が向上するので検知信号の信頼性
が向上する。このため、検知信号の処理が簡単になると
ともに測定精度が向上する。
According to the reflection measuring device of the second aspect of the present invention, since the light receiving lens is composed of a Fresnel lens, it can be made thinner and lighter than a spherical lens, so that the device can be downsized. According to the reflection measuring device of the third aspect of the present invention, by providing a condensing mirror for condensing the light beam transmitted through the light receiving lens to the light receiving unit between the light receiving lens and the light receiving unit, Since the light collection rate is improved, the reliability of the detection signal is improved. Therefore, the processing of the detection signal is simplified and the measurement accuracy is improved.

【0031】本発明の請求項4または5記載の反射測定
装置によると、集光ミラーの縦断面形状を放物線形状ま
たは双曲線形状にすることにより、受光部における集光
率が平坦化される。本発明の請求項6記載の反射測定装
置によると、焦点距離の短かい受光レンズ部ほど透過し
た光線を受光部の両端部側に集光し、焦点距離の長い受
光レンズ部ほど透過した光線を受光部の中央部側に集光
することにより、受光レンズの径方向位置に左右される
ことなく受光部における集光率が平坦化される。
According to the reflection measuring device of the fourth or fifth aspect of the present invention, the converging rate in the light receiving section is flattened by making the longitudinal sectional shape of the converging mirror parabolic or hyperbolic. According to the reflection measuring device according to claim 6 of the present invention, the light beam transmitted through the light receiving lens portion having a shorter focal length is condensed on both ends of the light receiving portion, and the light beam transmitted through the light receiving lens portion having a longer focal length is transmitted. By condensing light on the center side of the light receiving unit, the light condensing rate in the light receiving unit is flattened regardless of the radial position of the light receiving lens.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による車両用反射測定装置
の受光レンズを示す断面図である。
FIG. 1 is a sectional view showing a light receiving lens of a vehicular reflection measuring device according to a first embodiment of the present invention.

【図2】本発明の第1実施例による車両用反射測定装置
を示す平面図である。
FIG. 2 is a plan view showing a vehicle reflection measuring device according to a first embodiment of the present invention.

【図3】図2のIII 方向矢視である。FIG. 3 is a view in the direction of arrow III in FIG. 2;

【図4】第1実施例の入射角度0°における屈折光線の
状態を示す模式的説明図である。
FIG. 4 is a schematic explanatory view showing a state of a refracted light beam at an incident angle of 0 ° in the first embodiment.

【図5】第1実施例の入射角度4°における屈折光線の
状態を示す模式的説明図である。
FIG. 5 is a schematic explanatory view showing a state of a refracted light beam at an incident angle of 4 ° in the first embodiment.

【図6】第1実施例の入射角度8°における屈折光線の
状態を示す模式的説明図である。
FIG. 6 is a schematic explanatory view showing a state of a refracted light beam at an incident angle of 8 ° in the first embodiment.

【図7】フレネルレンズの動作を示す模式的説明図であ
る。
FIG. 7 is a schematic explanatory view showing the operation of the Fresnel lens.

【図8】図7に示すフレネルレンズの入射角度と受光光
量との関係を示す特性図である。
8 is a characteristic diagram showing a relationship between an incident angle and a received light amount of the Fresnel lens shown in FIG.

【図9】第1実施例の受光レンズにおける入射角度と受
光光量との関係を示す特性図である。
FIG. 9 is a characteristic diagram showing a relationship between an incident angle and a received light amount in the light receiving lens of the first embodiment.

【図10】第1実施例の受光レンズにおける入射角度と
相対検知距離との関係を示す特性図である。
FIG. 10 is a characteristic diagram illustrating a relationship between an incident angle and a relative detection distance in the light receiving lens of the first example.

【図11】単一焦点フレネルレンズの製造方法を示す模
式的説明図である。
FIG. 11 is a schematic explanatory view showing a method for manufacturing a single focus Fresnel lens.

【図12】本発明の第2実施例による車両用反射測定装
置の受光レンズおよび集光ミラーを示す模式的説明図で
ある。
FIG. 12 is a schematic explanatory view showing a light receiving lens and a condenser mirror of a vehicle reflection measuring device according to a second embodiment of the present invention.

【図13】第2実施例の集光スポットサイズを示す模式
的説明図である。
FIG. 13 is a schematic explanatory view showing a condensed spot size according to the second embodiment.

【図14】本発明の第3実施例による車両用反射測定装
置の受光レンズおよび集光ミラーを示す模式的説明図で
ある。
FIG. 14 is a schematic explanatory view showing a light receiving lens and a light collecting mirror of a vehicle reflection measuring device according to a third embodiment of the present invention.

【図15】第3実施例の集光分布を示す模式的説明図で
ある。
FIG. 15 is a schematic explanatory view showing a light-converging distribution of the third embodiment.

【符号の説明】[Explanation of symbols]

1 測定装置 (反射測定装置) 10 ハウジング 20 光源照射部 21 半導体レーザ (光源) 40 コリメータレンズ(出射レンズ) 51 受光レンズ 52 受光素子 (受光部) 101 短焦点部 102 中焦点部 103 長焦点部 DESCRIPTION OF SYMBOLS 1 Measuring apparatus (reflection measuring apparatus) 10 Housing 20 Light source irradiation part 21 Semiconductor laser (Light source) 40 Collimator lens (Emission lens) 51 Light receiving lens 52 Light receiving element (Light receiving part) 101 Short focus part 102 Medium focus part 103 Long focus part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 折井 文人 東京都渋谷区幡ヶ谷2丁目43番2号 オ リンパス光学工業株式会社内 (56)参考文献 特開 平7−280939(JP,A) 特開 昭61−260178(JP,A) 特開 平8−82677(JP,A) 実開 平3−48787(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01S 7/48 - 7/51 G01S 17/00 - 17/95 G01C 3/00 - 3/32 G01B 11/00 - 11/30 G02B 3/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Fumito Orii 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (56) References JP-A-7-280939 (JP, A) 61-260178 (JP, A) JP-A-8-82677 (JP, A) JP-A-3-48787 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01S 7 / 48-7/51 G01S 17/00-17/95 G01C 3/00-3/32 G01B 11/00-11/30 G02B 3/10

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源と、 この光源から照射される光線をほぼ平行光線にする出射
レンズと、 前記出射レンズを透過し被測定物体において反射した光
線を集光する受光レンズであって、前記受光レンズの外
周部から中心部に向けて焦点距離が循環して変化する受
光レンズと、 前記受光レンズにより集光された光線を受光する受光部
と、 前記受光部での受光時刻と前記光源から出射された光線
の出射時刻との差から前記被測定物体と前記光源との距
離を算出する演算手段とを備えたことを特徴とする反射
測定装置。
1. A light source, an output lens for converting light emitted from the light source into substantially parallel light, and a light receiving lens for condensing light transmitted through the output lens and reflected on an object to be measured, A light-receiving lens whose focal length circulates and changes from the outer periphery to the center of the lens; a light-receiving unit that receives light beams condensed by the light-receiving lens; a light-receiving time at the light-receiving unit and emission from the light source A reflection measuring device comprising: calculating means for calculating a distance between the object to be measured and the light source from a difference between the obtained light emission time and the light emission time.
【請求項2】 前記受光レンズはフレネルレンズである
ことを特徴とする請求項1記載の反射測定装置。
2. The reflection measuring device according to claim 1, wherein said light receiving lens is a Fresnel lens.
【請求項3】 前記受光レンズと前記受光部との間に前
記受光レンズを透過した光線を前記受光部に集光する集
光ミラーを配設することを特徴とする請求項1または2
記載の反射測定装置。
3. The light-receiving lens according to claim 1, further comprising a light-condensing mirror disposed between the light-receiving lens and the light-receiving part for condensing a light beam transmitted through the light-receiving lens on the light-receiving part.
The reflection measuring device according to the above.
【請求項4】 前記集光ミラーは縦断面を放物線形状に
形成されていることを特徴とする請求項3記載の反射測
定装置。
4. The reflection measuring device according to claim 3, wherein the converging mirror has a parabolic vertical section.
【請求項5】 前記集光ミラーは縦断面を双曲線形状に
形成されていることを特徴とする請求項3記載の反射測
定装置。
5. The reflection measuring device according to claim 3, wherein the converging mirror has a longitudinal section formed in a hyperbolic shape.
【請求項6】 前記受光レンズは、焦点距離の短かい受
光レンズ部ほど透過した光線を前記受光部の両端側に集
光し、焦点距離の長い受光レンズ部ほど透過した光線を
受光部の中央側に集光することを特徴とする請求項1か
ら5のいずれか一項記載の反射測定装置。
6. The light-receiving lens converges light rays transmitted through the light-receiving lens portion having a shorter focal length to both ends of the light-receiving portion, and transmits light rays transmitted through the light-receiving lens portion having a longer focal length to the center of the light-receiving portion. The reflection measuring device according to claim 1, wherein the light is focused on a side.
JP16897395A 1995-07-04 1995-07-04 Reflection measuring device Expired - Lifetime JP3340885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16897395A JP3340885B2 (en) 1995-07-04 1995-07-04 Reflection measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16897395A JP3340885B2 (en) 1995-07-04 1995-07-04 Reflection measuring device

Publications (2)

Publication Number Publication Date
JPH0921874A JPH0921874A (en) 1997-01-21
JP3340885B2 true JP3340885B2 (en) 2002-11-05

Family

ID=15878006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16897395A Expired - Lifetime JP3340885B2 (en) 1995-07-04 1995-07-04 Reflection measuring device

Country Status (1)

Country Link
JP (1) JP3340885B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804059B4 (en) * 1998-02-03 2006-02-09 Robert Bosch Gmbh Device for optical distance measurement
DE10026625C1 (en) * 2000-05-29 2002-02-07 Omron Electronics Mfg Of Germa Triangulation sensor
JP2006258802A (en) * 2005-02-21 2006-09-28 Hokuyo Automatic Co Light receiving device and range finder
DE102005043418A1 (en) 2005-09-13 2007-03-22 Robert Bosch Gmbh Electro-optical measuring device
DE102006013292A1 (en) 2006-03-23 2007-09-27 Robert Bosch Gmbh Device for optical distance measurement
JP5452245B2 (en) * 2010-01-20 2014-03-26 株式会社トプコン Lightwave distance measuring device
JP2018077182A (en) * 2016-11-11 2018-05-17 リズム時計工業株式会社 Rotational position detector of clock hand
JP6810454B2 (en) * 2017-03-21 2021-01-06 ナルックス株式会社 Light receiving optical system
JP7308012B2 (en) * 2017-10-04 2023-07-13 富士フイルム株式会社 image display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260178A (en) * 1985-05-15 1986-11-18 Matsushita Electric Works Ltd Optical system for optical object detector
JP2522499Y2 (en) * 1989-09-19 1997-01-16 富士通テン株式会社 Laser radar receiver
JPH07280939A (en) * 1994-04-13 1995-10-27 Nippondenso Co Ltd Reflection measuring apparatus
JPH0882677A (en) * 1994-09-13 1996-03-26 Nippondenso Co Ltd Reflection measuring apparatus

Also Published As

Publication number Publication date
JPH0921874A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US7034282B2 (en) Optical rotary encoder
JP4929308B2 (en) Optical sensor device
JPH06338630A (en) Semiconductor light-emitting element, and optical detector, optical information processor, optical coupler and light-emitting device using the light-emitting element
US4838645A (en) Reflecting diffraction grating
JP3340885B2 (en) Reflection measuring device
JPH0815413A (en) Distance measuring apparatus
US6650401B2 (en) Optical distance sensor
JPH07270602A (en) Lens for receiving light, light receiving device, photoelectric sensor and laser radar using them and vehicle loading laser radar
JP2003202205A5 (en)
US5274491A (en) Dynamic laser diode aperture for optical scanners
JPH10325872A (en) Light radar device
EP2476017B1 (en) Meso-optic device
US5884995A (en) Lighting system with a micro-telescope integrated in a transparent plate
EP0061384B1 (en) Optical automatic focusing sensor
JPH0882677A (en) Reflection measuring apparatus
EP0658787B1 (en) Scanning lens and optical scanner using the same
JP2900648B2 (en) Super-resolution optical element and optical memory device
US20040240034A1 (en) Diffraction compensation using a patterned reflector
JPH0829542A (en) Optical apparatus and light receiving method
JP2001264551A (en) Optical waveguide for optical spectrometer whose incident aperture are integrally shaped
WO2022255187A1 (en) Ranging device
US7282729B2 (en) Fabry-Perot resonator apparatus and method for observing low reflectivity surfaces
WO2023286165A1 (en) Light receiving device
JP2531890Y2 (en) Optical sensor
JPH0886641A (en) Light emitting and receiving type focus detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020805

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term