JP3340012B2 - Storage battery capacity judgment and charge management system - Google Patents

Storage battery capacity judgment and charge management system

Info

Publication number
JP3340012B2
JP3340012B2 JP34799195A JP34799195A JP3340012B2 JP 3340012 B2 JP3340012 B2 JP 3340012B2 JP 34799195 A JP34799195 A JP 34799195A JP 34799195 A JP34799195 A JP 34799195A JP 3340012 B2 JP3340012 B2 JP 3340012B2
Authority
JP
Japan
Prior art keywords
storage battery
secondary battery
charge
battery cell
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34799195A
Other languages
Japanese (ja)
Other versions
JPH09172744A (en
Inventor
公芳 狩野
義雄 長坂
幹夫 山▲崎▼
一彦 竹野
亨 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Origin Electric Co Ltd
Priority to JP34799195A priority Critical patent/JP3340012B2/en
Publication of JPH09172744A publication Critical patent/JPH09172744A/en
Application granted granted Critical
Publication of JP3340012B2 publication Critical patent/JP3340012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蓄電池の容量判定と充電
管理システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery capacity determination and charge management system.

【0002】[0002]

【従来技術】通信機用の直流電源装置は,常に安定に継
続して電力を供給する高信頼性を必要とされるため,商
用交流電源からの電力とバックアップ用の蓄電池とを並
列にして構成し,商用交流電源の停電時に備えている。
このバックアップ用蓄電池については,高信頼性を実現
するため,常にその性能と容量を確認しておく必要があ
る。既に出願された,この目的のものとしては,特開平
7−43438号公報に記載された「組電池の放電容量
試験方法」がある。この発明は,1つの2次電池セルで
構成される2次電池セル列,または互いに直列接続され
た複数の2次電池セルで構成される2次電池セル列が,
複数並列接続されることによって組電池が構成され,こ
の組電池に蓄積された電力によって,電源の持続性を保
証する停電バックアップ電源において,2次電池セル列
を1つ以上冗長に具備するように組電池を構成し,この
組電池を充電した後,組電池内の冗長な数の2次電池セ
ル列を選択し,この選択された2次電池セル列を放電し
たときの放電電力量を計測することによって,2次電池
セル列の保有電力量を求めることを特徴とする組電池の
放電容量試験方法である。またこの試験方法の後,放電
した2次電池セル列を再充電し,他の2次電池セル列に
ついて放電試験と再充電の一連の動作を順次実行するこ
とにより組電池全体の試験を行うことも記載されてい
る。
2. Description of the Related Art A DC power supply for a communication device is required to have a high reliability to supply power stably and continuously. Therefore, a power supply from a commercial AC power supply and a backup storage battery are configured in parallel. In addition, it is prepared in case of a commercial AC power failure.
The performance and capacity of this backup storage battery must be checked at all times to achieve high reliability. An application for this purpose, which has already been filed, is "Method for Testing Discharge Capacity of Assembled Battery" described in Japanese Patent Application Laid-Open No. 7-43438. According to the present invention, a secondary battery cell row composed of one secondary battery cell or a secondary battery cell row composed of a plurality of secondary battery cells connected in series to each other,
A battery pack is formed by connecting a plurality of batteries in parallel, and the power stored in the battery pack is used to provide one or more secondary battery cell rows redundantly in a power failure backup power supply that guarantees the continuity of the power supply. After a battery pack is constructed and this battery pack is charged, a redundant number of secondary battery cell rows in the battery pack are selected, and the amount of discharge power when the selected secondary battery cell row is discharged is measured. The present invention provides a method for testing the discharge capacity of a battery pack, wherein the power capacity of a secondary battery cell row is obtained by performing the above operation. After this test method, the discharged secondary battery cell row is recharged, and a test of the entire assembled battery is performed by sequentially performing a series of operations of the discharge test and the recharging on the other secondary battery cell rows. Are also described.

【0003】[0003]

【発明が解決しようとする課題】本発明は,この方法を
さらに具体的にシステム化し,的確な検出と演算制御を
行い,蓄電池の種別とそれぞれの充電特性,放電特性に
対応できるよう自動化し,電源装置の信頼性を高めるこ
とができるような蓄電池の容量判定と充電管理システム
を得ることを課題とする。
SUMMARY OF THE INVENTION The present invention provides a more concrete system of this method, performs accurate detection and arithmetic control, and automates the method to correspond to the type of storage battery and its respective charging and discharging characteristics. It is an object to obtain a storage battery capacity determination and charge management system that can enhance the reliability of a power supply device.

【0004】[0004]

【課題を解決するための手段】 この課題を解決するた
め,第1の手段として以下の手段を提案するものであ
る。すなわち,1つの2次電池セルで,または互いに直
列接続された複数の2次電池セルで構成される2次電池
セル列を1つ以上冗長に備えるよう複数並列接続される
ことによって蓄電池ユニットを構成し,蓄電池ユニット
を充電した後,蓄電池ユニット内の冗長な2次電池セル
列を選択し,この選択された2次電池セル列を放電した
ときの放電電力量を計測することによって,この2次電
池セル列の保有電力量を求め,この放電した2次電池セ
ル列を再充電した後,保有電力量を求めたこの2次電池
セル列以外の2次電池セル列のそれぞれについて,放
電,放電電力量の計測,再充電の一連の動作を,順次実
行することによって,蓄電池ユニットの放電容量試験を
行う蓄電池の容量判定及び充電管理システムにおいて,
電源装置と; 放電制御手段と; 前記電源装置と前記
蓄電池ユニットとの間に接続され,前記2次電池セル列
の総数に対応した数の充電制御手段であって,電流検出
手段及び第1の演算増幅器及び第1の基準電圧源からな
る定電流制御回路と,電圧検出手段及び第2の演算増幅
器及び第2の基準電圧源からなる定電圧制御回路と,定
電流/定電圧モード切り換え手段と,充電/放電切り換
え手段と,から構成されている充電制御手段と; マイ
クロコンピュータであって,前記充電制御手段の電流検
出手段及び電圧検出手段からの信号を受信して演算し,
充電制御時には前記充電制御手段へ前記定電圧/定電流
モード切り換え手段の制御信号と前記充電/放電切り換
え手段の制御信号と充電レベルの制御信号とを送出し,
放電制御時には前記放電制御手段へ前記充電/放電切り
換え手段の制御信号と放電レベルの制御信号とを送出
し,前記2次電池セル列の容量判定結果が否のとき蓄電
池劣化信号を出力するマイクロコンピュータと; から
なる蓄電池の容量判定及び充電管理システムを提案す
る。なお,本明細書で述べている「蓄電池」と「2次電
池セル列」とは同義である。
Means for Solving the Problems In order to solve this problem, the following means are proposed as first means. That is, the storage battery unit is configured by being connected in parallel with one secondary battery cell or a plurality of secondary battery cell rows composed of a plurality of secondary battery cells connected in series with each other in a redundant manner. Then, after charging the storage battery unit, a redundant secondary battery cell row in the storage battery unit is selected, and the amount of discharge power when the selected secondary battery cell row is discharged is measured. After calculating the retained electric energy of the battery cell row and recharging the discharged secondary battery cell row, discharging and discharging are performed for each of the secondary battery cell rows other than the secondary battery cell row for which the retained electric power quantity is determined. By sequentially executing a series of operations of the measurement and recharging of the electric energy, in the storage battery capacity determination and charge management system for performing the discharge capacity test of the storage battery unit,
A power supply unit; a discharge control unit; a charge control unit connected between the power supply unit and the storage battery unit, the charge control unit having a number corresponding to the total number of the secondary battery cell rows, A constant current control circuit including an operational amplifier and a first reference voltage source, a voltage detection unit, a constant voltage control circuit including a second operational amplifier and a second reference voltage source, and a constant current / constant voltage mode switching unit; Charge control means comprising: charge / discharge switching means; and a microcomputer, which receives and calculates signals from current detection means and voltage detection means of the charge control means,
At the time of charge control, a control signal of the constant voltage / constant current mode switching means, a control signal of the charge / discharge switching means, and a charge level control signal are sent to the charge control means,
A microcomputer which sends a control signal of the charge / discharge switching means and a control signal of a discharge level to the discharge control means at the time of discharge control, and outputs a storage battery deterioration signal when the result of capacity judgment of the secondary battery cell row is negative; And; a storage battery capacity determination and charge management system comprising: It should be noted that “storage battery” and “secondary battery cell row” described in this specification are synonymous.

【0005】 この課題を解決するため,第2の手段と
して,請求項1の発明において,蓄電池ユニット内の予
備の2次電池セル列に対して放電と放電電力量の計測と
再充電をして容量判定を行い,つづけて,この予備の対
象2次電池セル列を順次交換してすべての2次電池セル
列の容量判定を行う動作を,所定の一定間隔で自動的に
繰り返す機能をマイクロコンピュータ内に備えることを
特徴とする蓄電池の容量判定及び充電管理システム。を
提案する。
In order to solve this problem, as a second means, according to the first aspect of the present invention, a discharge, a measurement of a discharge power amount, and a recharge to a spare secondary battery cell row in the storage battery unit are performed. The microcomputer has a function of performing a capacity determination, and continuously repeating the operation of sequentially replacing the spare target secondary battery cell row and determining the capacity of all the secondary battery cell rows at predetermined regular intervals. A capacity determination and charge management system for a storage battery, comprising: Suggest.

【0006】 この課題を解決するため,第3の手段と
して,請求項1または請求項2の発明において,前記定
電流制御回路と前記定電圧制御回路に代えて,電流検出
手段と,該電流検出手段の信号を増幅する第1の増幅手
段と,演算増幅器と,前記マイクロコンピュータからの
基準電圧源と,からなる定電流制御回路と; 前記演算
増幅器と前記マイクロコンピュータからの基準電圧源と
を共用し,電圧検出手段と,該電圧検出手段の信号を増
幅する第2の増幅手段と,からなる定電圧制御回路と;
を備え,前記第1の増幅手段の増幅率と前記第2の増
幅手段の増幅率とをそれぞれ選定することにより,前記
定電流/定電圧モードの切り換えがあっても一つの前記
演算増幅器で作動させることを特徴とする蓄電池の容量
判定及び充電管理システムを提案する。
In order to solve this problem, as a third means, in the invention according to claim 1 or claim 2, current detecting means, instead of the constant current control circuit and the constant voltage control circuit, A constant current control circuit comprising first amplifying means for amplifying the signal of the means, an operational amplifier, and a reference voltage source from the microcomputer; and sharing the operational amplifier and a reference voltage source from the microcomputer. A constant voltage control circuit comprising: voltage detecting means; and second amplifying means for amplifying a signal of the voltage detecting means;
And by selecting an amplification factor of the first amplification device and an amplification factor of the second amplification device, the operation can be performed by one operational amplifier even when the constant current / constant voltage mode is switched. The present invention proposes a storage battery capacity determination and charge management system that is characterized in that the storage capacity is determined.

【0007】 この課題を解決するため,第4の手段と
して,請求項1ないし請求項3のいずれかに記載の発明
において,蓄電池ユニットに,この蓄電池ユニットを構
成する2次電池の種別識別用の端子を備えるとともに,
マイクロコンピュータとの間でこの種別識別用の端子に
対応した種別識別信号を授受することを特徴とする蓄電
池の容量判定及び充電管理システムを提案する。
In order to solve this problem, as a fourth means, in the invention according to any one of claims 1 to 3, the storage battery unit is provided with a type for identifying the type of the secondary battery constituting the storage battery unit. With terminals
The present invention proposes a storage battery capacity determination and charge management system that transmits and receives a type identification signal corresponding to this type identification terminal to and from a microcomputer.

【0008】[0008]

【実施例】 図1は本発明にかかる蓄電池の容量判定及
び充電管理システムの一実施例である。図において,ま
ず商用交流を受けて直流出力を発生する電源装置1を設
ける。この電源装置1は複数の充電制御回路2を経て複
数の蓄電池301からなる蓄電池ユニット3を充電する。
これら複数の蓄電池301 からそれぞれダイオード4を経
て図示しない負荷に直流電力供給する。
FIG. 1 is an embodiment of a storage battery capacity determination and charge management system according to the present invention. In the figure, first, a power supply device 1 for receiving a commercial AC and generating a DC output is provided. The power supply device 1 charges a storage battery unit 3 including a plurality of storage batteries 301 via a plurality of charge control circuits 2.
DC power is supplied from these plurality of storage batteries 301 to loads (not shown) via the diodes 4 respectively.

【0009】 蓄電池ユニット3の中の複数の蓄電池30
1 の個数については,負荷電流に対応する必要個数に予
備の数を加えるものである。この実施例のニッケルカド
ミウム蓄電池の場合は必要蓄電池数5個に対して予備1
個を備える。また鉛蓄電池の場合は必要数4個に対して
1個の予備を備える。これらの予備の蓄電池が容量判定
の対象となって,残りの蓄電池が負荷に必要な電力を常
時供給できる用意をする。そして予備の蓄電池の対象を
循環的に入れ換えることにより,容量判定と電力供給を
同時に,かつ円滑に運用されるものである。なお,予備
の蓄電池は1個が適当ではあるが,複数の予備を設けて
も本発明は実施できる。また,蓄電池の並列数について
も,この実施例の数に制限されるものでなく,任意の並
列数を選定できる。
The plurality of storage batteries 30 in the storage battery unit 3
Regarding the number of 1, the spare number is added to the required number corresponding to the load current. In the case of the nickel cadmium storage battery of this embodiment, a spare 1
With individual. In the case of a lead storage battery, one spare is provided for the required number of four batteries. These spare batteries are subject to capacity determination, and the remaining batteries are prepared to be able to constantly supply the power required for the load. Then, the capacity determination and the power supply are simultaneously and smoothly operated by cyclically changing the target of the spare storage battery. Although one spare battery is appropriate, the present invention can be implemented even if a plurality of spare batteries are provided. Also, the number of parallel storage batteries is not limited to the number in this embodiment, and an arbitrary number of parallel storage batteries can be selected.

【0010】 充電制御回路2の+入力端子217 はトラ
ンジスタ201 のコレクタに接続され,そのエミッタは電
流検出器203 を経てリレー205 の端子bに接続される。
そしてリレー205 の端子cは,この充電制御回路の+出
力端子229 に接続される。また−入力端子226 は回路の
内部の共通線となり,−出力端子233に接続される。リ
レー205 のコイルは端子227 に接続されて,マイクロコ
ンピュータ5からの信号によって充電/放電のための制
御が行われる。トランジスタ201 については,定電流制
御と定電圧制御の二つの充電モードを備えている。
The positive input terminal 217 of the charge control circuit 2 is connected to the collector of the transistor 201, and the emitter is connected to the terminal b of the relay 205 via the current detector 203.
The terminal c of the relay 205 is connected to the + output terminal 229 of the charging control circuit. The -input terminal 226 is a common line inside the circuit, and is connected to the -output terminal 233. The coil of the relay 205 is connected to a terminal 227, and control for charging / discharging is performed by a signal from the microcomputer 5. The transistor 201 has two charging modes: constant current control and constant voltage control.

【0011】 定電流制御について説明すると,電流検
出器203 で検出した電流信号を演算増幅器209 で所定の
率で増幅する。この電流信号を端子221 に送ると共に,
充電モード切り換え用のリレー215 の端子b,cを経
て,演算増幅器207 の−入力に接続される。この演算増
幅器207 の+入力端子は端子219 を経てマイクロコンピ
ュータ5から供給され,そのレベルに応じた定電流制御
が行われる。
To explain the constant current control, the current signal detected by the current detector 203 is amplified by the operational amplifier 209 at a predetermined rate. This current signal is sent to terminal 221 and
It is connected to the minus input of the operational amplifier 207 via the terminals b and c of the charging mode switching relay 215. The + input terminal of the operational amplifier 207 is supplied from the microcomputer 5 via a terminal 219, and constant current control according to the level is performed.

【0012】 また定電圧制御については,電圧検出器
213 で検出した電圧信号を演算増幅器211 で所定の率で
増幅する。この電圧信号を端子223 に送ると共に,充電
モード切り換え用のリレー215 の端子e,dを経て,演
算増幅器207の−入力に接続される。この演算増幅器207
の+入力端子は端子219 を経てマイクロコンピュータ
5から供給され,そのレベルに応じた定電圧制御がされ
る。
[0012] For constant voltage control, a voltage detector
The voltage signal detected by 213 is amplified by an operational amplifier 211 at a predetermined rate. This voltage signal is sent to a terminal 223 and is connected to a negative input of an operational amplifier 207 via terminals e and d of a relay 215 for switching a charging mode. This operational amplifier 207
Is supplied from the microcomputer 5 via a terminal 219, and a constant voltage control corresponding to the level is performed.

【0013】 上記の定電流制御と定電圧制御について
は,それぞれの検出信号を増幅する演算増幅器209 と21
1 の増幅率を選定することにより,いずれの制御モード
においても,同一のレベルで制御することができる。こ
のことは,マイクロコンピュータ5からの送出信号に関
して,単一共通のD/Aコンバータで済むため,経済的
である。
In the above-described constant current control and constant voltage control, the operational amplifiers 209 and 21 amplify the respective detection signals.
By selecting an amplification factor of 1, control can be performed at the same level in any control mode. This is economical because a single common D / A converter is sufficient for the transmission signal from the microcomputer 5.

【0014】 蓄電池ユニット3は,前述のとおり蓄電
池301 を複数備えており,蓄電池の種別については,鉛
蓄電池とニッケルカドミニウム蓄電池とを交換しても,
蓄電池の性質の相違に対応できるように制御するための
識別用の端子311,312,313 を設けてある。鉛蓄電池の場
合には端子311 と312 とを短絡させておく。またニッケ
ルカドミニウム蓄電池の場合には端子312 と313 とを短
絡させておく。この短絡状況をマイクロコンピュータ5
において感知して,それぞれの場合に適合する制御をし
ようとするものである。
The storage battery unit 3 includes a plurality of storage batteries 301 as described above. Regarding the type of storage battery, even when the lead storage battery and the nickel cadmium storage battery are exchanged,
Identification terminals 311, 312, and 313 are provided for controlling so as to cope with the difference in the characteristics of the storage batteries. In the case of a lead storage battery, terminals 311 and 312 are short-circuited. In the case of a nickel cadmium storage battery, terminals 312 and 313 are short-circuited. This short-circuit situation is indicated by the microcomputer 5
And attempts to perform control suitable for each case.

【0015】 つぎに放電制御回路6と蓄電池の放電モ
ードについて説明する。充電制御回路2の内部のリレー
205 の接点c がa 接点と導通するときには,蓄電池301
の+端子は,充電制御回路2の端子229 と231 を経て放
電制御回路6の端子615 に導通する。放電制御回路6の
端子615 と617 との間は抵抗器611 とトランジスタ609
と抵抗器607 との直列回路が接続される。抵抗器611 は
放電電流を流す負荷の役割を果たし,抵抗器607 は電流
検出器の役割をするものである。トランジスタ609 のベ
ースには演算増幅器601 の出力端子が接続され,この演
算増幅器601 の+入力端子は端子613 に接続され,マイ
クロコンピュータ5から信号を受ける。
Next, the discharge control circuit 6 and the discharge mode of the storage battery will be described. Relay inside charge control circuit 2
When contact c of 205 becomes conductive with contact a,
The terminal (+) conducts to the terminal 615 of the discharge control circuit 6 via the terminals 229 and 231 of the charge control circuit 2. A resistor 611 and a transistor 609 are connected between terminals 615 and 617 of the discharge control circuit 6.
And a resistor 607 are connected in series. The resistor 611 serves as a load for flowing a discharge current, and the resistor 607 serves as a current detector. The output terminal of the operational amplifier 601 is connected to the base of the transistor 609, and the + input terminal of the operational amplifier 601 is connected to the terminal 613 to receive a signal from the microcomputer 5.

【0016】 これらの充電制御回路2と放電制御回路
6の動作はマイクロコンピュータ5により制御される。
その主な機能は,各蓄電池301 を完全充電する。そ
のうちの1個の蓄電池301 を電流放出させ,所定量放電
させたときの電圧を測定して容量判定する。良品のと
きは,これを再充電する。 以上の動作を対象の蓄電
池を入れ換えて,判定と再充電を繰り返す。蓄電池の容
量を確認測定すると同時に充電するものである。 さ
らに,これら〜の動作を長期一定間隔で繰り返し
て,全ての構成蓄電池の容量判定と充電を繰り返す。
The operations of the charge control circuit 2 and the discharge control circuit 6 are controlled by the microcomputer 5.
Its main function is to fully charge each storage battery 301. The current is discharged from one of the storage batteries 301, and the voltage when a predetermined amount is discharged is measured to determine the capacity. If it is good, recharge it. The above operation is repeated by replacing the target storage battery, and the determination and recharging are repeated. The battery is charged while confirming and measuring the capacity of the storage battery. Further, these operations (1) to (4) are repeated at regular intervals for a long period of time, and the capacity judgment and charging of all the constituent storage batteries are repeated.

【0017】 マイクロコンピュータ5の構成はCPU
501 と,入力ポート503 とA/Dコンバータ505 等とD
/Aコンバータ513,515 と出力ポート517 等からなり,
充電制御回路2と,蓄電池ユニット3からは検出信号等
を受けて,マイクロコンピュータ5の演算処理をし,そ
の出力信号を充電制御回路2と放電制御回路6とに制御
信号を与える。また蓄電池ユニット3を構成する各蓄電
池301の容量を判定して劣化が判明したものについて
は,劣化表示器7に表示出力する。
The configuration of the microcomputer 5 is a CPU
501, input port 503, A / D converter 505, etc. and D
/ A converter 513,515 and output port 517 etc.
The microcomputer 5 receives a detection signal and the like from the charge control circuit 2 and the storage battery unit 3, performs an arithmetic process on the microcomputer 5, and provides an output signal thereof to the charge control circuit 2 and the discharge control circuit 6. In addition, when the capacity of each storage battery 301 constituting the storage battery unit 3 is determined and the deterioration is found, the deterioration is displayed on the deterioration indicator 7.

【0018】 蓄電池ユニット3からの識別信号につい
ては,その端子311,312,313 の何れか短絡されたもの
が,このマイクロコンピュータ5の端子527 に接続さ
れ,入力ポート503 を経てCPU501 に接続されて,蓄
電池ユニット3の蓄電池種別がCPU501 で識別され
る。
Regarding the identification signal from the storage battery unit 3, one of the terminals 311, 312, 313 which is short-circuited is connected to the terminal 527 of the microcomputer 5, connected to the CPU 501 via the input port 503, and connected to the CPU 501. The storage battery type is identified by the CPU 501.

【0019】 充電制御回路2からの信号入力について
は,まず電流検出信号を端子221 より引き出してマイク
ロコンピュータ5の端子529 に送り,A/Dコンバータ
505 を経てCPU501 に接続す。電圧検出信号は端子22
3 より引き出して端子531 に送り,A/Dコンバータ50
7 を経てCPU501 に接続される。以下他の充電制御回
路2からの信号についても同様である。
Regarding the signal input from the charge control circuit 2, first, a current detection signal is extracted from the terminal 221 and sent to the terminal 529 of the microcomputer 5, and the A / D converter
505 is connected to CPU501. The voltage detection signal is connected to terminal 22
3 Pull out from terminal 3 and send it to terminal 531.
7, and is connected to the CPU 501. Hereinafter, the same applies to signals from other charge control circuits 2.

【0020】 次にマイクロコンピュータ5の出力信号
について説明する。充電レベルの指令信号は,CPU50
1 からD/Aコンバータ513,端子537 を経て,充電制御
回路2の端子219 に接続される。充電モードの指令信号
についは,CPU501 から出力ポート517,端子541 を経
て,充電制御回路2の端子225 に接続され,リレー215
のコイルRY2 を駆動する。充電/放電の指令信号につい
は,CPU501 から出力ポート519,端子543 を経て,充
電制御回路2の端子227 に接続され,リレー205 のコイ
ルRY1 を駆動する。放電レベルの指令信号は,CPU50
1 からD/Aコンバータ515,端子539 を経て,放電制御
回路6の端子613 に接続され,演算増幅器601 の+入力
端子に送られる。蓄電池の劣化判定信号については,C
PU501 から出力ポート525,端子549 を経て,劣化表示
器7に接続される。
Next, an output signal of the microcomputer 5 will be described. The command signal of the charge level is
1 is connected to a terminal 219 of the charge control circuit 2 via a D / A converter 513 and a terminal 537. The command signal of the charging mode is connected from the CPU 501 to the terminal 225 of the charging control circuit 2 through the output port 517 and the terminal 541, and is connected to the relay 215.
Drive coil RY2. The charge / discharge command signal is connected from the CPU 501 to the terminal 227 of the charge control circuit 2 via the output port 519 and the terminal 543, and drives the coil RY1 of the relay 205. The command signal of the discharge level is
From 1 through D / A converter 515 and terminal 539, it is connected to terminal 613 of discharge control circuit 6 and sent to the + input terminal of operational amplifier 601. Regarding the deterioration judgment signal of the storage battery, C
It is connected to the deterioration indicator 7 from the PU 501 via the output port 525 and the terminal 549.

【0021】 次に,この蓄電池の容量判定及び充電管
理システムの動作について図2のフローチャートを参照
して詳細に説明する。先ずステップS1で蓄電池ユニッ
トの構成蓄電池の種別が,ニッケルカドミニウム蓄電池
か鉛蓄電池かを判定し,制御動作を分岐する。ニッケル
カドミニウム蓄電池の場合には,ステップS2へと進
む。
Next, the operation of the storage battery capacity determination and charge management system will be described in detail with reference to the flowchart of FIG. First, in step S1, it is determined whether the type of storage battery constituting the storage battery unit is a nickel cadmium storage battery or a lead storage battery, and the control operation is branched. If the battery is a nickel cadmium storage battery, the process proceeds to step S2.

【0022】 ステップS2では,その蓄電池が初充電
か否かを判断し,否定Nの場合にはステップS6に飛
び,肯定Yの場合にはステップS3に進む。ステップS
3では第1番の蓄電池について,0.03C の時間率で充電
する信号を発する。そしてステップS4でt1(数十時
間)継続する。この充電動作を第1番から第6番まで順
次切り換えて行う。そしてステップS5で蓄電池ユニッ
ト3の全ての蓄電池が充電されたことを判断した後に,
ステップS6とステップS14へと進む。
In step S2, it is determined whether or not the storage battery is initially charged. If the determination is negative N, the process jumps to step S6, and if the determination is affirmative Y, the process advances to step S3. Step S
At 3, the signal for charging the first storage battery at a rate of 0.03C is issued. Then, in step S4, t1 (several tens of hours) is continued. This charging operation is performed by sequentially switching from the first to the sixth. Then, after determining that all the storage batteries of the storage battery unit 3 have been charged in step S5,
The process proceeds to step S6 and step S14.

【0023】 ステップS6では,第1番の蓄電池を時
間率0.1Cで放電させる信号を発する。ステップ7で所定
時間t2放電を継続させる。その後ステップS8で,当該
蓄電池の端子電圧を測定して所定電圧を保っているか否
かで容量判定する。判定Nの場合にはステップS9で劣
化表示し,判定Yの場合にはステップS10に進む。ステ
ップS10では,ニッケルカドミニウム蓄電池ではメモリ
ー効果が顕著なので, このメモリー効果を消去するため
完全放電する。完全放電して端子電圧が規定値より低く
なったことをステップS11で判定して,次のステップS
12に進める。ステップS12では蓄電池内の化学作用が安
定するまでの10分間程,動作を休止して,ステップS13
では再び0.03C の時間率で充電する信号を発する。そし
てステップS14でt3(数十時間程度)充電継続し,ステ
ップS15で第1番の蓄電池について容量判定合格と充電
完了の状態にする。このステップS6からステップS15
までの間に,第2番以降の他の蓄電池については,ステ
ップS16にて0.03C の時間率で充電する信号を発する。
ここで,ステップS6〜ステップS16の動作を,蓄電池
の該当番号を順次入れ換えて,容量判定と充電とを並行
して行い,第6番まで完了してステップS17となる。な
お,このステップS6〜ステップS16の動作について
は,図3に示すタイムチャートを参照すると,より良く
理解できる。
In step S6, a signal for discharging the first storage battery at a rate of 0.1 C is issued. In step 7, the discharge for t2 is continued for a predetermined time. Thereafter, in step S8, the terminal voltage of the storage battery is measured, and the capacity is determined based on whether or not the predetermined voltage is maintained. If the determination is N, deterioration display is performed in step S9, and if the determination is Y, the process proceeds to step S10. In step S10, since the memory effect is remarkable in the nickel cadmium storage battery, the battery is completely discharged to eliminate the memory effect. It is determined in step S11 that the terminal voltage has become lower than the specified value due to the complete discharge, and in the next step S11
Proceed to 12. In step S12, the operation is suspended for about 10 minutes until the chemical action in the storage battery is stabilized.
Then again emits a signal to charge at a rate of 0.03C. Then, in step S14, charging is continued for t3 (about several tens of hours), and in step S15, the first storage battery is set to a state where the capacity determination is passed and the charging is completed. Steps S6 to S15
In the meantime, for the other storage batteries after the second, a signal for charging at a time rate of 0.03C is issued in step S16.
Here, the operations of Steps S6 to S16 are performed by sequentially changing the corresponding numbers of the storage batteries, and the capacity determination and the charging are performed in parallel. The operations in steps S6 to S16 can be better understood by referring to the time chart shown in FIG.

【0024】 次にステップS18〜ステップS19に
て,月単位の時間経過t4の間全ての蓄電池を充電して終
了Bとなる。終了Bの状態から再びスタートAに戻っ
て,以上の各ステップを繰り返す。
Next, in steps S18 to S19, all the storage batteries are charged during the time t4 in units of months, and the process ends. Returning from the state of the end B to the start A again, the above steps are repeated.

【0025】 ステップS1で蓄電池種別が鉛蓄電池で
あると判断された場合について,以下説明する。このと
きはステップS20で第1番の蓄電池を定電流充電し,単
位セル当たりの所定電圧値vになったときにステップS
21で次のステップS22に進める。ここで単位セル当たり
の所定電圧値vとは段落0026の(1)式に表される
電圧値であって,この値は温度の関数となっており,図
示しない温度検出器からの信号によりこの関数が作り出
される。このように温度補正する理由は,鉛蓄電池には
熱暴走しやすい特性があるため,それを防止するためで
ある。
The case where it is determined in step S1 that the storage battery type is a lead storage battery will be described below. At this time, the first storage battery is charged at a constant current in step S20, and when a predetermined voltage value v per unit cell is reached, step S20 is performed.
At 21, the process proceeds to the next step S22. Here, the predetermined voltage value v per unit cell is a voltage value represented by the equation (1) in paragraph 0026, and this value is a function of the temperature, and is determined by a signal from a temperature detector (not shown). A function is created. The reason for performing the temperature correction in this manner is to prevent the lead storage battery from having a characteristic that is likely to cause thermal runaway, so that it is prevented.

【0026】v=2.275V−3.3mV ×(t−25 )℃ ……
(1)
V = 2.275V−3.3mV × (t−25) ° C.
(1)

【0027】 ステップS22では定電圧充電する指令信
号を発して,ステップS23で所定時間t5(数時間から数
十時間)継続する。このステップS20〜ステップS23の
動作について,全ての蓄電池に行いステップS24で次の
ステップS25に進める。
In step S22, a command signal for constant voltage charging is issued, and in step S23, a predetermined time t5 (several hours to several tens of hours) is continued. This operation from step S20 to step S23 is performed for all the storage batteries, and the process proceeds to step S25 in step S24.

【0028】 ステップS25では,第1番の蓄電池を時
間率0.1Cで放電させる。ステップ26で所定時間t6放電を
継続させる。その後ステップS27で,当該蓄電池の端子
電圧を測定して所定電圧を保っているか否かで容量判定
する。判定Nの場合にはステップS28で劣化表示し,判
定Yの場合にはステップS29に進む。ステップS29では
10分間程動作を休止して,ステップS30では再び0.03C
の時間率で充電する信号を発する。次にステップS31で
蓄電池の端子電圧を測定して所定電圧値vになったとき
に次のステップS32に進める。ステップS32では定電圧
充電する指令信号を発して,ステップS33で所定時間t7
(数十時間程度)充電継続する。これで第1番の蓄電池
が容量測定合格で再充電完了(ステップS34)となる。
このステップS25からステップS34までの間に,第2番
以降の他の蓄電池については,ステップS35にて0.01C
の時間率で充電する信号を発する。
In step S25, the first storage battery is discharged at a rate of 0.1 C. In step 26, the discharge for t6 is continued for a predetermined time. Thereafter, in step S27, the terminal voltage of the storage battery is measured, and the capacity is determined based on whether or not the predetermined voltage is maintained. If the determination is N, deterioration is displayed in step S28, and if the determination is Y, the process proceeds to step S29. In step S29
The operation is paused for about 10 minutes, and 0.03C is returned again in step S30.
It emits a signal to charge at a time rate of Next, at step S31, when the terminal voltage of the storage battery is measured and reaches a predetermined voltage value v, the process proceeds to the next step S32. In step S32, a command signal for constant voltage charging is issued, and in step S33, a predetermined time t7 is set.
Continue charging (about several tens of hours). This completes the recharge of the first storage battery when the capacity measurement is passed (step S34).
During the period from step S25 to step S34, the other storage batteries from the second onward are set to 0.01 C at step S35.
It emits a signal to charge at a time rate of

【0029】 ここで,蓄電池の該当番号を順次入れ換
えた上で,ステップS25〜ステップS35の動作を,容量
判定と充電とを並行して行い,第5番まで完了してステ
ップS36となる。次にステップS37〜ステップS38に
て,月単位の時間経過t8の間全ての蓄電池を充電して終
了Cとなる。終了Cの状態から再びスタートAに戻っ
て,以上の各ステップを繰り返す。
Here, after the corresponding numbers of the storage batteries are sequentially changed, the operations of steps S25 to S35 are performed in parallel with the capacity determination and the charging, and the operation is completed up to the fifth step, and step S36 is performed. Next, in steps S37 to S38, all the storage batteries are charged during the time lapse t8 on a monthly basis, and the process ends. From the state of the end C, the process returns to the start A again, and the above steps are repeated.

【0030】 なお,鉛蓄電池では,メモリー効果は問
題にならないので,そのためのステップは省かれる。
In the case of a lead-acid battery, the memory effect is not a problem, and the step for that is omitted.

【0031】 以上述べた実施例において,マイクロコ
ンピュータの内部構成については,一つのチップ内に多
くの回路を包含するものを利用することもできる。リレ
ーについては電子的切り換え手段を利用することもでき
る。半導体部品についても,バイポーラトランジスタに
限らず,FETやIGBTを利用することができる。ま
た各部品の極性については,N形とP形を必要に応じて
入れ換えることができる。
In the above-described embodiment, as the internal configuration of the microcomputer, one including many circuits in one chip can be used. For the relay, electronic switching means can be used. As for semiconductor components, not only bipolar transistors but also FETs and IGBTs can be used. As for the polarity of each part, the N-type and the P-type can be switched as required.

【0032】 以上の実施例において説明した各ステッ
プにおける時間設定や充電率の値は一例であって,対象
とする蓄電池の種別や容量に応じて,自由に適した値に
設定することができる。
The time settings and the values of the charging rates in the respective steps described in the above-described embodiments are merely examples, and can be freely set to appropriate values according to the type and capacity of the target storage battery.

【0033】[0033]

【発明の効果】 本発明は以上述べたような特徴を有し
ており,複数の蓄電池を並列に接続して構成された蓄電
池を備える装置において,的確な検出と演算制御を行
い,蓄電池の種別とそれぞれの充電特性,放電特性に対
応できるよう自動化し,負荷に電力供給しつつ蓄電池の
容量を確実に判定し充電ができるので,信頼性を高める
ことができる。
The present invention has the above-described features, and in a device including a storage battery configured by connecting a plurality of storage batteries in parallel, it performs accurate detection and arithmetic control to determine the type of storage battery. And the charging and discharging characteristics of each battery can be automated so that the capacity of the storage battery can be reliably determined and charged while supplying power to the load, thereby improving the reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる蓄電池の容量判定及び充電管
理システムの一実施例の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an embodiment of a storage battery capacity determination and charge management system according to the present invention.

【図2】 本発明にかかる蓄電池の容量判定及び充電管
理システムの一実施例のフローチャートを示す図であ
る。
FIG. 2 is a diagram showing a flowchart of an embodiment of a storage battery capacity determination and charge management system according to the present invention.

【図3】 本発明にかかる蓄電池の容量判定及び充電管
理システムの一実施例のタイムチャートを示す部分図で
ある。
FIG. 3 is a partial diagram showing a time chart of an embodiment of the storage battery capacity determination and charge management system according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹野 一彦 東京都新宿区西新宿3丁目19番2号 日 本電信電話株式会社内 (72)発明者 鈴木 亨 東京都新宿区西新宿3丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平7−43438(JP,A) 特開 平6−30528(JP,A) 特開 平3−15232(JP,A) 特開 昭63−107426(JP,A) 特開 平7−264769(JP,A) 特開 昭57−211945(JP,A) 特開 平6−253460(JP,A) 特開 昭64−12826(JP,A) 特開 平4−75434(JP,A) 特開 平5−172914(JP,A) 特開 平7−308029(JP,A) 特開 平6−343202(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/10 H01M 10/48 G01R 31/36 H02J 9/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuhiko Takeno 3-19-2 Nishi Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Tohru Suzuki 3-19 Nishi Shinjuku, Shinjuku-ku, Tokyo No. 2 Within Nippon Telegraph and Telephone Corporation (56) References JP-A-7-43438 (JP, A) JP-A-6-30528 (JP, A) JP-A-3-15232 (JP, A) JP-A Sho 63-107426 (JP, A) JP-A-7-264769 (JP, A) JP-A-57-211945 (JP, A) JP-A-6-253460 (JP, A) JP-A 64-12826 (JP, A A) JP-A-4-75434 (JP, A) JP-A-5-172914 (JP, A) JP-A-7-308029 (JP, A) JP-A-6-343202 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) H02J 7/ 00-7/10 H01M 10/48 G01R 31/36 H02J 9/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1つの2次電池セルで,または互いに直
列接続された複数の2次電池セルで構成される2次電池
セル列を1つ以上冗長に備えるよう複数並列接続される
ことによって蓄電池ユニットを構成し, 前記蓄電池ユニットを充電した後,前記蓄電池ユニット
内の冗長な2次電池セル列を選択し,この選択された2
次電池セル列を放電したときの放電電力量を計測するこ
とによって,この2次電池セル列の保有電力量を求め,
この放電した2次電池セル列を再充電した後,前記保有
電力量を求めたこの2次電池セル列以外の2次電池セル
列のそれぞれについて,前記放電,前記放電電力量の計
測,前記再充電の一連の動作を,順次実行することによ
って,蓄電池ユニットの放電容量試験を行う蓄電池の容
量判定及び充電管理システムにおいて, 電源装置と; 放電制御手段と; 前記電源装置と前記蓄電池ユニットとの間に接続され,
前記2次電池セル列の総数に対応した数の充電制御手段
であって,電流検出手段及び第1の演算増幅器及び第1
の基準電圧源からなる定電流制御回路と,電圧検出手段
及び第2の演算増幅器及び第2の基準電圧源からなる定
電圧制御回路と,定電流/定電圧モード切り換え手段
と,充電/放電切り換え手段と,から構成されている充
電制御手段と; マイクロコンピュータであって,前記充電制御手段の電
流検出手段及び電圧検出手段からの信号を受信して演算
し,充電制御時には前記充電制御手段へ前記定電圧/定
電流モード切り換え手段の制御信号と前記充電/放電切
り換え手段の制御信号と充電レベルの制御信号とを送出
し,放電制御時には前記放電制御手段へ前記充電/放電
切り換え手段の制御信号と放電レベルの制御信号とを送
出し,前記2次電池セル列の容量判定結果が否のとき蓄
電池劣化信号を出力するマイクロコンピュータと; からなる蓄電池の容量判定及び充電管理システム。
1. A storage battery which is connected in parallel with one secondary battery cell or a plurality of secondary battery cell rows composed of a plurality of secondary battery cells connected in series with each other in a redundant manner. A unit is configured, and after charging the storage battery unit, a redundant secondary battery cell row in the storage battery unit is selected.
By measuring the amount of discharge power when the secondary battery cell row is discharged, the retained power amount of this secondary battery cell row is obtained,
After recharging the discharged secondary battery cell row, for each of the secondary battery cell rows other than the secondary battery cell row from which the retained power amount was obtained, the discharging, the measurement of the discharged power amount, and the recharging are performed. In a storage battery capacity determination and charge management system for performing a discharge capacity test of a storage battery unit by sequentially executing a series of charging operations, a power supply unit; discharge control means; Connected to
A charge control unit having a number corresponding to the total number of the secondary battery cell rows, comprising a current detection unit, a first operational amplifier, and a first operation amplifier.
A constant current control circuit comprising a reference voltage source, a constant voltage control circuit comprising a voltage detecting means, a second operational amplifier, and a second reference voltage source; a constant current / constant voltage mode switching means; Charge control means comprising: means for receiving and calculating signals from the current detection means and the voltage detection means of the charge control means, and providing the charge control means with the charge control means during charge control. A control signal of the constant voltage / constant current mode switching means, a control signal of the charge / discharge switching means, and a control signal of the charge level are sent out, and the control signal of the charge / discharge switching means is transmitted to the discharge control means during the discharge control. A microcomputer for transmitting a control signal of a discharge level and outputting a storage battery deterioration signal when the capacity determination result of the secondary battery cell row is negative. Battery capacity determination and charging management system of.
【請求項2】 請求項1に記載の蓄電池の容量判定及び
充電管理システムにおいて, 前記蓄電池ユニット内の予備の前記2次電池セル列に対
して放電と放電電力量の計測と再充電をして容量判定を
行い,つづけて,この予備の対象2次電池セル列を順次
交換してすべての前記2次電池セル列の容量判定を行う
動作を,所定の一定間隔で自動的に繰り返す機能を前記
マイクロコンピュータ内に備えることを特徴とする蓄電
池の容量判定及び充電管理システム。
2. The storage battery capacity determination and charge management system according to claim 1, wherein the secondary battery cell array in the storage battery unit is discharged, measured for discharge electric energy, and recharged. The function of performing the capacity determination, and then continuously replacing the spare target secondary battery cell row to determine the capacity of all the secondary battery cell rows automatically at predetermined fixed intervals, is a function of automatically repeating the above operation. A storage battery capacity determination and charge management system provided in a microcomputer.
【請求項3】 請求項1または請求項2に記載の蓄電池
の容量判定及び充電管理システムにおいて, 前記定電流制御回路と前記定電圧制御回路に代えて, 電流検出手段と,該電流検出手段の信号を増幅する第1
の増幅手段と,演算増幅器と,前記マイクロコンピュー
タからの基準電圧源と,からなる定電流制御回路と; 前記演算増幅器と前記マイクロコンピュータからの基準
電圧源とを共用し,電圧検出手段と,該電圧検出手段の
信号を増幅する第2の増幅手段と,からなる定電圧制御
回路と; を備え, 前記第1の増幅手段の増幅率と前記第2の増幅手段の増
幅率とをそれぞれ選定することにより,前記定電流/定
電圧モードの切り換えがあっても一つの前記演算増幅器
で作動させることを特徴とする蓄電池の容量判定及び充
電管理システム。
3. The storage battery capacity determination and charge management system according to claim 1, wherein said constant current control circuit and said constant voltage control circuit are replaced by current detection means, and said current detection means. The first to amplify the signal
A constant current control circuit comprising: amplifying means, an operational amplifier, and a reference voltage source from the microcomputer; and a voltage detecting means sharing the operational amplifier and the reference voltage source from the microcomputer. A constant voltage control circuit comprising: a second amplifying means for amplifying a signal of the voltage detecting means; and selecting an amplification factor of the first amplifying device and an amplification factor of the second amplifying device. Thus, even when the constant current / constant voltage mode is switched, the operation is performed by one operational amplifier, and the storage battery capacity determination and charge management system is characterized in that it is operated.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の蓄電池の容量判定及び充電管理システムにおいて, 前記蓄電池ユニットに,該蓄電池ユニットを構成する2
次電池の種別識別用の端子を備えるとともに,前記マイ
クロコンピュータとの間で該種別識別用の端子に対応し
た種別識別信号を授受することを特徴とする蓄電池の容
量判定及び充電管理システム。
4. The storage battery capacity determination and charge management system according to claim 1, wherein said storage battery unit is constituted by said storage battery unit.
A battery capacity determination and charge management system comprising a terminal for identifying the type of a next battery and transmitting and receiving a type identification signal corresponding to the terminal for identifying the type to and from the microcomputer.
JP34799195A 1995-12-15 1995-12-15 Storage battery capacity judgment and charge management system Expired - Fee Related JP3340012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34799195A JP3340012B2 (en) 1995-12-15 1995-12-15 Storage battery capacity judgment and charge management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34799195A JP3340012B2 (en) 1995-12-15 1995-12-15 Storage battery capacity judgment and charge management system

Publications (2)

Publication Number Publication Date
JPH09172744A JPH09172744A (en) 1997-06-30
JP3340012B2 true JP3340012B2 (en) 2002-10-28

Family

ID=18394003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34799195A Expired - Fee Related JP3340012B2 (en) 1995-12-15 1995-12-15 Storage battery capacity judgment and charge management system

Country Status (1)

Country Link
JP (1) JP3340012B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427471B (en) * 2011-07-28 2014-02-21 Quanta Comp Inc Rack server system and operation method thereof
TWI448886B (en) 2011-07-28 2014-08-11 Quanta Comp Inc Rack server system and control method thereof
JP5975863B2 (en) * 2012-12-17 2016-08-23 大阪瓦斯株式会社 Battery adapter
CN109638367A (en) * 2018-11-28 2019-04-16 河钢股份有限公司承德分公司 Electric discharge device
EP4053966A4 (en) * 2019-10-29 2024-01-17 Kyocera Corp Electric storage system and management method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211945A (en) * 1981-06-24 1982-12-25 Hideo Sugimori Charge controller for no-break power unit
JPS63107426A (en) * 1986-10-22 1988-05-12 三菱電機株式会社 Sattelite
JPH0697816B2 (en) * 1987-07-06 1994-11-30 富士電機株式会社 Battery-charging circuit
JP2576901B2 (en) * 1989-06-09 1997-01-29 日本輸送機株式会社 Charging device
JPH0475434A (en) * 1990-07-16 1992-03-10 Seiko Epson Corp Power unit for secondary battery
JP3244737B2 (en) * 1991-12-24 2002-01-07 松下電工株式会社 Battery life notification device
JP3586285B2 (en) * 1992-05-13 2004-11-10 ソニー株式会社 Battery charge / discharge device
JPH06253460A (en) * 1993-02-26 1994-09-09 Sanyo Electric Co Ltd Power supply apparatus for electronic equipment
JPH06343202A (en) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd Electric car battery charger
JP2967850B2 (en) * 1993-07-28 1999-10-25 日本電信電話株式会社 Test method for battery discharge capacity
JPH07264769A (en) * 1994-03-17 1995-10-13 Hochiki Corp Disaster preventing monitor
JPH07308029A (en) * 1994-05-12 1995-11-21 Brother Ind Ltd Charging system

Also Published As

Publication number Publication date
JPH09172744A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
KR101107999B1 (en) Battery Management System with Integration of Voltage Sensor and Charge Equalizer
US6504344B1 (en) Monitoring battery packs
US7514905B2 (en) Battery management system
JP3231801B2 (en) Battery charger
US11965936B2 (en) Battery diagnosis apparatus and method
US20140184236A1 (en) Battery control apparatus and battery system
CN101765941A (en) Battery internal short-circuit detecting device and method, battery pack, and electronic device system
CN105811531A (en) Novel power battery heath management system
CN101911429A (en) Method for balancing of high voltage battery pack
US20210037407A1 (en) Wireless control system, wireless control method, and battery pack
EP4203236A1 (en) Battery management system, battery pack, energy storage system, and battery management method
JP3340012B2 (en) Storage battery capacity judgment and charge management system
JP2001526877A (en) Battery and battery equalization method connected in series
US11296366B2 (en) Apparatus, method and battery pack for detecting fault of electrical conductor
US9213066B2 (en) Multiple cell battery voltage measurement
JP2000166103A (en) Charging discharging control method
JP3096535B2 (en) Method and apparatus for charging secondary battery
KR20210051809A (en) Method for estimating of battery's state of charge and Battery Management System
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
KR20230010545A (en) Battery diagnosis apparatus, battery pack, electric vehicle, and battery diagnosis method
JP2977183B2 (en) Deterioration judgment method of secondary battery
CN112703628A (en) Power supply system, diagnostic device, and uninterruptible power supply device
CN110690736A (en) Single-string capacity detection system for battery pack
JPS5841368A (en) Battery capacity tester
JP2004282894A (en) Charging/discharging device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140816

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees