JP3326254B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP3326254B2
JP3326254B2 JP27995893A JP27995893A JP3326254B2 JP 3326254 B2 JP3326254 B2 JP 3326254B2 JP 27995893 A JP27995893 A JP 27995893A JP 27995893 A JP27995893 A JP 27995893A JP 3326254 B2 JP3326254 B2 JP 3326254B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
electrolyte
layer
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27995893A
Other languages
Japanese (ja)
Other versions
JPH07134996A (en
Inventor
哲哉 芳賀
賢彦 朝岡
孝尚 鈴木
和生 河原
勝司 阿部
竜也 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP27995893A priority Critical patent/JP3326254B2/en
Publication of JPH07134996A publication Critical patent/JPH07134996A/en
Application granted granted Critical
Publication of JP3326254B2 publication Critical patent/JP3326254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素を含む燃料ガスお
よび酸素を含有するガスより電気を発生させる燃料電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell for generating electricity from a fuel gas containing hydrogen and a gas containing oxygen.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池は、通常、加湿
した固体高分子よりなる電解質膜とこの電解質膜を挟ん
で設けられた燃料極と空気極とで構成されている。この
燃料極および空気極は、燃料ガスおよび空気などの酸素
を含有するガスをそれぞれ電極反応を行わせる触媒層と
燃料ガスおよび空気などの酸素を含有するガスの触媒層
への供給路ならびに集電体として機能するガス拡散層と
の2層構造となっている。燃料ガスから触媒層での電極
反応で形成された水素イオンが電解質膜内を移動し空気
極側の触媒による電極反応で水となることで電流が出力
される。(以下、単に「電解質」とは電解質膜と触媒層
中の電解質との双方を言い、「電解質膜」、「触媒層中
の電解質」とは区別する。)上記の典型的な触媒層は、
触媒(Pt等)を高分散担持した炭素粒子(カーボンブ
ラック)に疎水性バインダー粒子(フッ素樹脂粉末)を
添加し、焼成成形により製造される。この触媒は比較的
厚い(100μm以上)触媒層内に分散して存在してお
り、触媒表面への反応ガスの供給は疎水性粒子で形成さ
れた孔隙で確保されるものの、触媒と電解質との接触界
面については触媒層形成時にはほとんど考慮されていな
い。
2. Description of the Related Art A polymer electrolyte fuel cell usually comprises an electrolyte membrane made of a humidified solid polymer, and a fuel electrode and an air electrode provided with the electrolyte membrane interposed therebetween. The fuel electrode and the air electrode are provided with a catalyst layer for causing an oxygen-containing gas such as a fuel gas and air to undergo an electrode reaction, a supply path for the fuel gas and an oxygen-containing gas such as air to the catalyst layer, and a current collector. It has a two-layer structure with a gas diffusion layer functioning as a body. Hydrogen ions formed by the electrode reaction in the catalyst layer from the fuel gas move in the electrolyte membrane and become water by the electrode reaction by the catalyst on the air electrode side, so that current is output. (Hereinafter, simply refers to both the electrolyte of the electrolyte membrane and the catalyst layer in the "electrolyte", distinguished from the "electrolyte membrane", "electrolyte in the catalyst layer".) The typical catalyst layer,
It is produced by adding hydrophobic binder particles (fluororesin powder) to carbon particles (carbon black) carrying a catalyst (Pt or the like) in a highly dispersed state, and firing and molding. This catalyst is dispersed in a relatively thick (100 μm or more) catalyst layer, and the supply of the reaction gas to the catalyst surface is ensured by the pores formed by the hydrophobic particles. The contact interface is hardly taken into account when forming the catalyst layer.

【0003】上記の触媒層は電解質にホットプレスなど
により接合しただけではその界面での電気抵抗が大きく
電流量の増大に伴う性能低下が大きい。そこで、電解質
膜と触媒層とを接合する前に高分子電解質を溶解した溶
液を触媒層に塗布して接合するなどの改善策が考案され
ている(J.Power Source,22,359
(1988)。しかし、触媒担持炭素粒子とフッ素樹脂
粉末との混合物からなる従来の触媒層は、通気性と強度
を確保する関係上、厚さ約100μm以下とすることが
困難であり、この厚さの触媒層全体に電解質を塗布して
触媒と触媒層中の電解質との間の界面を形成することは
事実上困難である。このため、電解質を塗布した電極よ
り製作した電池でも触媒の利用率は一般に低く、高電流
域で電池性能が低下し易いという問題がある。また、厚
い触媒層の孔隙内にある触媒表面に触媒層中の電解質の
塗布膜をガス拡散特性を損なわない程度に薄く形成する
のは容易な技術ではない。したがって、従来の触媒層に
電解質を塗布した電極は低濃度分極も大きく高性能な電
池を作製することは容易ではない。
[0003] When the above-mentioned catalyst layer is simply joined to the electrolyte by hot pressing or the like, the electric resistance at the interface is large, and the performance is greatly reduced as the amount of current increases. Therefore, improvement measures such as applying a solution in which a polymer electrolyte is dissolved to a catalyst layer before bonding the electrolyte membrane and the catalyst layer and bonding the same are devised (J. Power Source, 22 , 359).
(1988). However, the conventional catalyst layer made of a mixture of the catalyst-supporting carbon particles and the fluororesin powder is difficult to have a thickness of about 100 μm or less in view of securing air permeability and strength. It is practically difficult to apply the electrolyte all over to form an interface between the catalyst and the electrolyte in the catalyst layer. For this reason, there is a problem that the utilization rate of the catalyst is generally low even in a battery manufactured from an electrode coated with an electrolyte, and the battery performance tends to deteriorate in a high current region. Further, it is not an easy technique to form a thin coating of the electrolyte in the catalyst layer on the surface of the catalyst in the pores of the thick catalyst layer so as not to impair the gas diffusion characteristics. Therefore, it is not easy to produce a high-performance battery with a conventional electrode in which an electrolyte is applied to a catalyst layer, having a large low concentration polarization.

【0004】この従来の電極の欠点を考慮して、最近全
く新しいタイプの触媒層が考案されている。すなわち、
この触媒層はフッ素樹脂粒子のような疎水化剤を全く含
ないもので電解質と触媒を担持した炭素のみからなる触
媒層であり、電解質溶液と触媒担持炭素とを混練してか
ら溶媒を蒸発させることにより形成される(J.Ele
ctrochem.Soc.Lett.L28(199
2),J.Appl.Electrochem.22
1(1992)。この触媒層では、触媒と触媒層中の電
解質の配合比や成形条件の調節により触媒と電解質との
界面の大きさおよび状態が制御可能になるとともに、約
15μm以下の厚さまで薄くすることができる。このた
め、従来電池よりも高触媒利用率および低濃度分極の高
性能電池が得られる。
In view of the drawbacks of the conventional electrode, a completely new type of catalyst layer has recently been devised. That is,
The catalyst layer is a catalyst layer composed only of carbon hydrophobizing agent carrying an electrolyte and catalyst totally not comprise such as fluorine resin particles, the solvent is evaporated from the kneaded an electrolyte solution and the catalyst supporting carbon (J. Ele
trochem. Soc. Lett. L28 (199
2). Appl. Electrochem. 22 ,
1 (1992). In this catalyst layer, the size and state of the interface between the catalyst and the electrolyte can be controlled by adjusting the mixing ratio of the catalyst and the electrolyte in the catalyst layer and the molding conditions, and can be reduced to a thickness of about 15 μm or less. . Therefore, a high-performance battery having a higher catalyst utilization rate and lower concentration polarization than the conventional battery can be obtained.

【0005】しかし、この触媒層の薄層化による上記の
電池性能の向上は、触媒層の厚さが10〜15μm以下
になるとその効果が小さくなる傾向があるという問題が
ある。これは触媒層での触媒担持炭素粒子間隙の大部分
を埋める電解質層がほぼ唯一の水およびガスの輸送経路
となる関係上、電極内で発生した液体水によるフラッデ
ィング現象が従来の触媒層より起こりやすいという性質
があるからである。電流密度すなわち水発生速度が増加
すると、冠水して電極反応に寄与しない触媒が増加する
ことになり、失活する触媒の割合は触媒層が薄くなるほ
ど高くなる。
[0005] However, the above-described improvement in battery performance by making the catalyst layer thinner has a problem that the effect tends to be reduced when the thickness of the catalyst layer is 10 to 15 µm or less. This is because the electrolyte layer that fills most of the gaps between the catalyst-supporting carbon particles in the catalyst layer is almost the only water and gas transport path, and the flooding phenomenon due to liquid water generated in the electrode occurs more than in the conventional catalyst layer. This is because it has the property of being easy. When the current density, that is, the water generation rate increases, the number of catalysts that do not contribute to the electrode reaction due to flooding increases, and the ratio of the deactivated catalyst increases as the catalyst layer becomes thinner.

【0006】以上により、従来の電池では触媒層が液体
水によるフラッディングが避けがたい現状では、触媒を
均一に充填した層を単純に薄くするだけでは触媒金属が
有効に利用できず不経済であり、触媒と電解質との界面
が大きい極薄触媒層の特徴を充分生かしきれていない。
[0006] As described above, in the current situation where flooding of the catalyst layer with liquid water is unavoidable in the conventional battery, the catalyst metal is simply reduced by simply thinning the layer uniformly filled with the catalyst.
It is not economical because it cannot be used effectively, and the characteristics of an ultrathin catalyst layer having a large interface between the catalyst and the electrolyte cannot be fully utilized.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、電解質と触媒担持炭素とから構
成される薄い電極触媒層を有する高分子電解質型燃料電
池において、放電時の触媒利用率の低下を抑えて電池性
能を向上させた燃料電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed in a polymer electrolyte fuel cell having a thin electrode catalyst layer composed of an electrolyte and a catalyst-supporting carbon. It is an object of the present invention to provide a fuel cell in which the cell performance is improved by suppressing a decrease in the catalyst utilization.

【0008】[0008]

【課題を解決するための手段】本発明の燃料電池は、固
体高分子よりなる電解質膜と該電解質膜の両側に配置し
た燃料極と空気極とよりなり、該燃料極および該空気極
は、該電解質膜の膜面に面接して配置された触媒層をも
つ燃料電池において、上記触媒層は、炭素粒子と該炭素
粒子に担持された触媒金属と電解質とで構成され、該触
媒層の上記電解質膜側とは反対側の部分を形成する該炭
素粒子に対する該触媒金属および該電解質の配合割合は
該触媒層の上記電解質膜側の部分を形成する該炭素粒子
に対する該触媒金属および該固体電解質の配合割合より
大きいことを特徴とする。
The fuel cell of the present invention comprises an electrolyte membrane made of a solid polymer, a fuel electrode and an air electrode disposed on both sides of the electrolyte membrane, and the fuel electrode and the air electrode are In a fuel cell having a catalyst layer arranged in contact with the membrane surface of the electrolyte membrane , the catalyst layer comprises carbon particles and carbon
The catalyst metal and the electrolyte are composed of a catalyst metal supported on particles and an electrolyte, and the compounding ratio of the catalyst metal and the electrolyte to the carbon particles forming a portion of the catalyst layer opposite to the electrolyte membrane side is the same as that of the catalyst layer. It is characterized in that the mixing ratio of the catalyst metal and the solid electrolyte to the carbon particles forming the portion on the electrolyte membrane side is larger than that.

【0009】本発明の燃料電池は、固体高分子よりなる
電解質膜とこの電解質膜の両側に配置した燃料極と空気
極とで構成され、空気極および燃料極はそれぞれ電解質
の膜面に面接して配置された触媒層をもつものであ
る。電解質膜は電荷担体(H+ )を透過させる電解質特
性を示す高分子膜が使用できる。
[0009] The fuel cell of the present invention is composed of an electrolyte membrane and a fuel electrode and an air electrode arranged on both sides of the electrolyte membrane made of solid polymer, respectively the air electrode and the fuel electrode electrolyte
Those having a catalyst layer disposed interview to the film surface of the film. As the electrolyte membrane, a polymer membrane exhibiting an electrolyte property that allows a charge carrier (H + ) to permeate can be used.

【0010】空気極および燃料極には、電解質膜とは反
対側の触媒層面にガス拡散層を配置してもよい。該ガス
拡散層は、高いガス透過性および高電子伝導性を有する
多孔質体で形成され、燃料ガス、空気などの酸素を含有
するガスを触媒層に均一に供給する。ガス拡散層は通常
炭素粒子と疎水性粒子との混合物を成形して作られる。
In the air electrode and the fuel electrode, a gas diffusion layer may be arranged on the surface of the catalyst layer opposite to the electrolyte membrane. The gas diffusion layer is formed of a porous material having high gas permeability and high electron conductivity, and uniformly supplies a gas containing oxygen such as fuel gas or air to the catalyst layer. The gas diffusion layer is usually formed by molding a mixture of carbon particles and hydrophobic particles.

【0011】また、燃料極および空気極の他の構成要素
である触媒層は炭素粒子とこの炭素粒子上に担持された
触媒金属および電解質(触媒層中の電解質)とで構成さ
れている。この触媒層を構成する炭素粒子は電子を運
び、触媒層中の電解質は電荷担体であるH+ を運ぶ。そ
して燃料極の触媒金属は水素をH+ にし空気極の触媒
金属は酸素とH+ とを反応させる。すなわち、触媒層は
炭素粒子、触媒金属および電解質の三者が共存し炭素
粒子は触媒層を構成する主体となるもので、その存在量
は多い。本発明にかかる触媒層では、炭素粒子表面に触
媒金属が担持され、さらに触媒金属が担持された炭素粒
子表面を電解質が被覆する。炭素粒子上に分散担持され
た触媒粒子の全表面積のうち電解質と接触している部分
の面積を触媒有効表面積と呼ぶことにする。この触媒有
効表面積は電極反応に関与しうる触媒の最大表面積を示
す。実際の電極反応に関与する触媒の表面積(たとえ
ば、実効表面積と呼ぶことができる)は有効表面積より
も一般に小さく、その割合には反応ガスの触媒表面への
拡散過程が関係する。具体的には触媒層の内部孔隙構
造、反応生成水量および触媒金属を覆う電解質の厚さが
反応ガスの拡散速度を左右する。触媒層が多孔であれば
ある程、触媒金属を覆う電解質の厚さが薄い程実効表面
積は触媒有効表面積に近くなる。
The catalyst layer, which is another component of the fuel electrode and the air electrode, is composed of carbon particles, a catalyst metal supported on the carbon particles, and an electrolyte (electrolyte in the catalyst layer). The carbon particles constituting the catalyst layer carry electrons, and the electrolyte in the catalyst layer carries H + as a charge carrier. The catalytic metal fuel electrode to the hydrogen H +, catalytic metal of the air electrode is reacted with oxygen and H +. In other words, the catalyst layer contains carbon particles, a catalyst metal, and an electrolyte , and the carbon particles are the main constituent of the catalyst layer, and the abundance is large. The catalyst layer according to the present invention, the catalytic metal is supported on carbon particle surface, the carbon particle to further catalytic metal is supported
The surface of the cell is coated with an electrolyte . The area of the portion of the catalyst particles dispersed and supported on the carbon particles that is in contact with the electrolyte is referred to as the catalyst effective surface area. This catalyst effective surface area indicates the maximum surface area of the catalyst that can participate in the electrode reaction. The surface area of the catalyst that participates in the actual electrode reaction (eg, can be referred to as the effective surface area) is generally smaller than the effective surface area, and the ratio is related to the diffusion process of the reaction gas to the catalyst surface. Specifically, the internal pore structure of the catalyst layer, the amount of water generated by the reaction, and the thickness of the electrolyte covering the catalyst metal determine the diffusion rate of the reaction gas. The more porous the catalyst layer and the smaller the thickness of the electrolyte covering the catalyst metal, the closer the effective surface area becomes to the effective catalyst surface area.

【0012】触媒の全表面積は、電解質を含まない触媒
担持炭素粉末または成形体について、室温付近における
COの飽和化学(単分子)吸着量から計算するか、また
は透過型電子顕微鏡観察により測定した平均粒子径から
求めることができる。通常、両者の方法で得られる結果
は良く一致する。触媒有効表面積は、電気化学的方法
(電気二重層容量の水素吸着波成分測定、すなわち、触
媒層に不活性ガス(N2 )を供給し、電極電位(vs,
水素電極)を0.06〜1.4Vの範囲で反復掃引する
サイクリックボルタンメトリー)により求めることがで
きる。
The total surface area of the catalyst is calculated from the amount of saturated chemical (single-molecule) adsorption of CO at around room temperature of the catalyst-supporting carbon powder or molded body containing no electrolyte, or the average measured by observation with a transmission electron microscope. It can be determined from the particle size. In general, the results obtained by both methods are in good agreement. The effective surface area of the catalyst is determined by an electrochemical method (measurement of the hydrogen adsorption wave component of the electric double layer capacity, that is, supply of an inert gas (N 2 ) to the catalyst layer, electrode potential (vs,
(Hydrogen electrode) can be determined by cyclic voltammetry (repetitive sweeping in the range of 0.06 to 1.4 V).

【0013】本発明にかかる触媒層では、触媒層の電解
質膜側とは反対側(ガス拡散層がある場合にはガス拡散
層側)の部分を形成する炭素粒子に対する触媒金属およ
電解質の配合割合は触媒層の電解質膜側の部分を形成
する炭素粒子に対する触媒金属および電解質の配合割合
より大きく傾斜配合されている。すなわち、触媒層の
解質膜側とは反対側の部分の触媒有効表面積は触媒層の
電解質膜側の部分の触媒有効表面積より大きい。
In the catalyst layer according to the present invention, the electrolysis of the catalyst layer
Carbon particles (if there is a gas diffusion layer the gas diffusion layer side) and the quality membrane side opposite the mixing ratio of the catalytic metal and the electrolyte to carbon particles forming a portion of which forms a portion of the electrolyte membrane side of the catalyst layer Is larger than the mixing ratio of the catalyst metal and the electrolyte . That is, the voltage of the catalyst layer
The catalyst effective surface area of the part on the side opposite to the decomposing membrane side is larger than the catalyst effective surface area of the part of the catalyst layer on the electrolyte membrane side.

【0014】触媒層の厚さを導入される反応ガスの拡散
の観点から見ると約10μm以下とするのが好ましい。
触媒層の厚さが増すほど、反応ガスの導入が困難となり
実効表面積が小さくなる。そこで触媒層の厚さを約10
μmとし、低電流域の電池性能の点から触媒有効表面積
を電極1cm2 面積あたり400cm2 程度に設定す
る。この条件では触媒層内の平均触媒有効表面積は触媒
層1cm3 あたり約40cm2 以上必要となる。一方、
触媒層を構成する触媒担持炭素粒子の担持量は触媒分散
度の観点から炭素粒子と触媒金属の合計を100重量%
(以下、%は特に断らないかぎり重量%を意味する。)
とした場合、触媒金属は40%以下とするのが望まし
い。
The thickness of the catalyst layer is preferably about 10 μm or less from the viewpoint of diffusion of the introduced reaction gas.
As the thickness of the catalyst layer increases, it becomes more difficult to introduce a reaction gas, and the effective surface area decreases. Therefore, the thickness of the catalyst layer is about 10
and [mu] m, is set to electrodes 1 cm 2 of about 400cm per 2 area of catalytically active surface area in terms of battery performance low current region. Under these conditions, the average effective catalyst surface area in the catalyst layer needs to be about 40 cm 2 or more per 1 cm 3 of the catalyst layer. on the other hand,
The loading amount of the catalyst-supporting carbon particles constituting the catalyst layer is 100% by weight of the total of the carbon particles and the catalyst metal from the viewpoint of the degree of catalyst dispersion.
(Hereinafter,% means weight% unless otherwise specified.)
In this case, the catalyst metal content is desirably 40% or less.

【0015】触媒層の厚さ方向に触媒有効表面積の傾斜
を設ける手段としては、次の方法を採用できる。具体的
には、触媒担持量の異なる高分散触媒担持炭素粒子を数
種類形成する。そして各種類の炭素粒子し電解質を溶解
した溶液とをそれぞれ混合する。これによりそれぞれ触
媒有効表面積の異なる、触媒金属担持炭素粒子と電解質
の溶液との混合ペーストが得られる。これらの溶液を触
媒有効表面積の大きさの順に薄層を形成して積層するこ
とにより触媒有効表面積の傾斜をもつ触媒層を得ること
ができる。
The following method can be adopted as means for providing a gradient of the effective surface area of the catalyst in the thickness direction of the catalyst layer. Specifically, several types of highly dispersed catalyst-supported carbon particles having different amounts of supported catalyst are formed. Each type of carbon particles is then mixed with a solution in which an electrolyte is dissolved. As a result, a mixed paste of the catalyst metal-carrying carbon particles and the solution of the electrolyte having different catalyst effective surface areas is obtained. By forming a thin layer of these solutions in the order of the effective catalyst surface area and laminating them, a catalyst layer having a gradient of the effective catalyst surface area can be obtained.

【0016】なお、触媒を高濃度で担持すると炭素粒子
上の触媒の分散性が低下するので、何らかの高分散化対
策を施すことが望ましい。たとえば、高表面積炭素担体
(小粒径カーボンブラックなど)を使用する、熱酸化賦
活法などにより炭素担体の表面積を拡大する、炭素担体
表面の化学性状を修飾(硝酸酸化処理など)し炭素粒子
への触媒または前駆体の吸着や濡れを促進する。触媒担
持前または担持だんかいでの第三成分添加などの対策で
ある。
When the catalyst is supported at a high concentration, carbon particles
Since the dispersibility of the above catalyst is reduced, it is desirable to take some measures for increasing the dispersion. For example, using a high surface area carbon support (such as small particle size carbon black), expanding the surface area of the carbon support by a thermal oxidation activation method, etc., modifying the chemical properties of the carbon support surface (such as nitric acid oxidation treatment) to carbon particles Promotes adsorption or wetting of the catalyst or precursor. This is a countermeasure such as adding a third component before or after carrying the catalyst.

【0017】40%の白金を担持した炭素粒子を電解質
の溶液と混和して触媒層を形成すると、層内の触媒有効
表面積は触媒層1cm3 あたり約60m2 となることが
わかった。したがって、触媒有効表面積の傾斜を厚さ1
0μmの触媒層内に直線的に設ける場合は、触媒層の一
方の側端に約60m2 の層を、逆の側端を約10m2
層としてその間に順に触媒有効表面積を減少させた層を
重ねることにより形成できる。ちなみに、触媒を10%
高分散担持した炭素粒子を電解質の溶液と混和して成形
すると1cm3 あたり約10m2 の触媒有効表面積をも
つ層が形成できる。
When carbon particles carrying 40% of platinum were mixed with an electrolyte solution to form a catalyst layer, it was found that the effective surface area of the catalyst in the layer was about 60 m 2 per cm 3 of the catalyst layer. Therefore, the slope of the effective surface area of the catalyst is reduced to a thickness of 1
When the catalyst layer is provided linearly in the 0 μm catalyst layer, a layer of about 60 m 2 is provided on one side end of the catalyst layer and a layer of about 10 m 2 is provided on the opposite side end, and the catalyst effective surface area is sequentially reduced between the layers. Can be formed by overlapping. By the way, 10% of catalyst
When the highly dispersed and supported carbon particles are mixed with an electrolyte solution and molded, a layer having a catalyst effective surface area of about 10 m 2 per 1 cm 3 can be formed.

【0018】しかし、実際に触媒有効表面積にどのよう
な傾斜を設けるかは、電極からの排水速度に影響するガ
ス拡散層の性能および電池運転条件を考慮して決めるの
が望ましい。触媒層内の反応ガスの濃度変化は、触媒層
内での反応および拡散抵抗により、ガス拡散層側で濃度
が高く、電解質膜側は低い傾向となるのが一般的であ
る。また、電解質膜側はガス拡散を抑制する液体水の量
も多い。してみると本発明にかかる触媒層は高電流密度
域で反応ガス濃度が大きいところは単位体積あたりの触
媒有効面積を大きくし、反応ガス濃度が低下するところ
は逆に単位体積あたりの触媒有効面積を小さくするよう
な構成となっていることになる。
However, what gradient is actually provided in the effective surface area of the catalyst depends on the gas that affects the drainage speed from the electrode.
It is desirable to determine in consideration of the performance of the diffusion layer and battery operating conditions. The change in the concentration of the reaction gas in the catalyst layer generally tends to be high on the gas diffusion layer side and low on the electrolyte membrane side due to the reaction and diffusion resistance in the catalyst layer. Also, the amount of liquid water that suppresses gas diffusion is large on the electrolyte membrane side . In the catalyst layer according to the present invention, when the reaction gas concentration is high in the high current density region, the catalyst effective area per unit volume is increased, and when the reaction gas concentration is decreased, the catalyst effective area per unit volume is conversely increased. The configuration is such that the area is reduced.

【0019】たとえば、空気極の触媒層では、ガスを触
媒層に導入するガス拡散層に接触している側の触媒有効
表面積を大きくし電解質膜側方向に向かって触媒有効表
面積を小さくするような傾斜を設ける様に触媒有効表面
積の異なるものを順次重ねて触媒層を形成する。これに
より空気極では生成する液体水による影響を受ける触媒
の量が少なくなるととともに、触媒層に導入される反応
ガスとの電極反応を効率良く進行させることができる。
このため高電流密度域での出力電圧の低下を最小限にす
ることができる。
For example, in the catalyst layer of the air electrode, the catalyst effective surface area on the side in contact with the gas diffusion layer for introducing gas into the catalyst layer is increased, and the catalyst effective surface area is reduced toward the electrolyte membrane. The catalyst layers having different catalyst effective surface areas are sequentially stacked so as to form a slope to form a catalyst layer. As a result, the amount of the catalyst affected by the generated liquid water at the air electrode is reduced, and the electrode reaction with the reaction gas introduced into the catalyst layer can proceed efficiently.
Therefore, a decrease in output voltage in a high current density region can be minimized.

【0020】[0020]

【作用】本発明の燃料電池では、触媒層内の触媒総量を
変えることなく液体水の滞留が避けがたい部分の触媒量
を減らすように触媒層内の触媒有効面積が制御される。
これにより、大部分の触媒を電極反応に寄与させること
ができる。すなわち、従来の燃料電池では低電流密度で
はすべての触媒が反応に寄与するが、電流密度が増加し
てくると触媒層内の液体水が過剰となり触媒の利用率が
一般に低下する。しかし、本発明によれば、触媒利用率
低下を最小限に抑える構成としているため、低電流領域
の性能を変えることなく、高電流領域でも電極反応の低
下を抑制して進行できる。このため広い電流範囲で高電
圧の出力を保持することが可能となる。その結果、触媒
利用率が向上し触媒の節約が可能となる。
In the fuel cell of the present invention, the effective area of the catalyst in the catalyst layer is controlled so as to reduce the amount of the catalyst in the portion where the stagnation of liquid water is unavoidable without changing the total amount of the catalyst in the catalyst layer.
This allows most of the catalyst to contribute to the electrode reaction. That is, in the conventional fuel cell, all the catalysts contribute to the reaction at a low current density, but when the current density increases, the liquid water in the catalyst layer becomes excessive and the utilization rate of the catalyst generally decreases. However, according to the present invention, since the reduction in the catalyst utilization rate is minimized, the electrode reaction can be suppressed and reduced even in the high current region without changing the performance in the low current region. For this reason, it is possible to maintain a high voltage output in a wide current range. As a result, the catalyst utilization rate is improved, and the catalyst can be saved.

【0021】特に空気極側では電解質膜側からガス拡散
層側へ触媒有効表面積を増加させる構成とすることが有
効である。
Particularly on the air electrode side, it is effective to increase the effective surface area of the catalyst from the electrolyte membrane side to the gas diffusion layer side.

【0022】[0022]

【実施例】以下、実施例により具体的に説明する。 触媒層の作製 含浸法やコロイド分散法などにより表1に示すA、B、
C、Dの4種の白金触媒の担持量が異なる白金担持炭素
粉末を調製した。この4種の白金担持炭素粉末に表1に
示す量の電解質(商品名NAFION) が溶解したアルコール
溶液を混和し単位体積あたりの触媒有効表面積が異なる
4種類の混合ペーストをほぼ同量ずつ調製した。
The present invention will be specifically described below with reference to examples. Preparation of catalyst layer A, B, and A shown in Table 1 by impregnation method, colloid dispersion method, etc.
Platinum-supported carbon powders having different loading amounts of the four types of platinum catalysts C and D were prepared. The four kinds of platinum-supported carbon powders were mixed with an alcohol solution in which the electrolyte (trade name: NAFION) was dissolved in an amount shown in Table 1 to prepare four kinds of mixed pastes having different effective surface areas per unit volume in almost equal amounts. .

【0023】次にカーボン布に炭素粒子と疎水性粒子と
の混合物を塗布焼成した孔質体よりなる電極ガス拡散層
を用意し、その片側に上記ペーストを触媒有効表面積の
大きさの順(D←C←B←A)に塗布し層状に積層し
た。触媒有効表面積は電極単位面積当りDが98c
2 、Cが79cm2 、Bが46cm2 、Aが27cm
2 でガス拡散層から順に小さくなっている。全体の触媒
有効表面積は250cm2 である。この積層の際、各層
の界面部分のみが混じり合うように、各層形成時のペー
スト内溶媒(アルコールなど)の蒸発量を乾燥時間や外
部条件(温度・雰囲気)などを調製した。
Next, an electrode gas diffusion layer made of a porous material prepared by applying a mixture of carbon particles and hydrophobic particles to a carbon cloth is prepared, and the paste is applied to one side of the electrode gas diffusion layer in the order of the size of the catalyst effective surface area (D). ← C ← B ← A) and laminated in layers. The effective surface area of the catalyst is 98 c per unit area of the electrode.
m 2 , C is 79 cm 2 , B is 46 cm 2 , A is 27 cm
In FIG. 2 , it becomes smaller in order from the gas diffusion layer. The overall catalytic effective surface area is 250 cm 2 . At the time of this lamination, the evaporation amount of the solvent (such as alcohol) in the paste at the time of forming each layer was adjusted with respect to the drying time and the external conditions (temperature and atmosphere) so that only the interface portions of each layer were mixed.

【0024】触媒層の形成作業は、はけ塗りなどの手作
業でも可能であるが、スプレー法やスクリーン印刷ドク
タープレート成形時などの方法でおこなうのが、均一性
確保の点から望ましい。また触媒層の傾斜をより連続的
に形成するには、触媒担持炭素粒子の比重差を利用した
沈降転写法やペースト組成を連続的に変えながらスプレ
ー塗布する方法が望ましい。
The formation of the catalyst layer can be carried out by hand such as brushing, but it is desirable to carry out the method by spraying or screen printing for forming a doctor plate from the viewpoint of ensuring uniformity. Further, in order to form the gradient of the catalyst layer more continuously, a sedimentation transfer method using a specific gravity difference of the catalyst-supporting carbon particles or a spray coating method while continuously changing the paste composition is desirable.

【0025】[0025]

【表1】 ──────────────────────────────────── 領域 A B C D 全体 ──────────────────────────────────── % Pt/C 10% 20% 30% 40% − Pt+C(mg) 0.40 0.30 0.40 0.45 1.55 Pt(mg) 0.04 0.06 0.12 0.18 0.40 ──────────────────────────────────── 電解質 NAFION 各領域のPt/C 粉に溶液から添加混合 (mg) 0.02 0.03 0.06 0.09 0.20 触媒層厚さ(μm)2 2 2 2 8 ──────────────────────────────────── Pt有効面(cm2) 27 46 79 98 250 ─────────────────────────────────── 最後に、電解質膜を別に作成した燃料極(触媒層は傾斜
を設けないもの)と上記で作製した空気極(触媒層+ガ
ス拡散層)の各々の触媒層側で挟み、プレス治具内に固
定して30〜150kg/cm2 の圧力をかけ、(この
段階において電極触媒層内にはまだ少量の溶媒が残留し
ていることが望ましい。)電解質膜の変質が起こらない
範囲内で、できるだけ高い温度(120〜150℃)で
短時間(15分以内)ホットプレスして電池を作製し
た。
[Table 1] {Whole area ABCD} ────────────────────────────────% Pt / C 10% 20% 30% 40% − Pt + C (mg ) 0.40 0.30 0.40 0.45 1.55 Pt (mg) 0.04 0.06 0.12 0.18 0.40 ───────────────────────────────────添加 Electrolyte NAFION Addition and mixing from solution to Pt / C powder in each area (mg) 0.02 0.03 0.06 0.09 0.20 Catalyst layer thickness (μm) 2 2 2 2 8 ─────────────── ───────────────────── Pt effective surface (cm 2 ) 27 46 79 98 250 ───────────────── ────────────────── Finally, the anode (catalyst layer has no slope) with the electrolyte membrane separately prepared and the cathode (contact (Media layer + gas diffusion layer), sandwiched between the catalyst layers, fixed in a press jig, and applied a pressure of 30 to 150 kg / cm 2 (at this stage, a small amount of solvent still exists in the electrode catalyst layer). The battery is preferably hot-pressed at a temperature as high as possible (120 to 150 ° C.) for a short time (within 15 minutes) within a range where deterioration of the electrolyte membrane does not occur.

【0026】図1に上記方法で形成した空気極側の触媒
層の積層状態の模式的に示す。 (比較例)比較例として表2に示す触媒層内にPtの有
効表面積の傾斜を設けない4種の触媒層を用いた他は実
施例と同じ電池を作製した。Ptの有効表面積は比較例
4を除いて実施例の250cm2 (全体)より大きくし
た。
FIG. 1 schematically shows the state of lamination of the catalyst layer on the air electrode side formed by the above method. (Comparative Example) As Comparative Example, the same battery as that of the example was prepared except that four types of catalyst layers having no gradient of the effective surface area of Pt were used in the catalyst layers shown in Table 2. Except for Comparative Example 4, the effective surface area of Pt was larger than 250 cm 2 (overall) of the example.

【0027】この実施例と比較例1〜4の5種の電池の
常圧(H2 /Air)70での電流密度と電池出力電
圧との関係を調べた。結果を、図2に示す。比較例1〜
4では、電池性能がPt有効表面積よりもPt担持炭素
量、すなわち、触媒層の厚さに支配されており、電流密
度の増加により出力電圧の低下が比較例1→2→3→4
の順で良くなっている。これは厚い触媒層ほどガス透過
性が低下すること、触媒が液体水に陥没し失活しやすい
ことによる。
The relationship between the current density at normal pressure (H 2 / Air) of 70 ° C. and the battery output voltage of the five batteries of this example and Comparative Examples 1 to 4 was examined. The results are shown in FIG. Comparative Examples 1 to
In No. 4, the battery performance was more governed by the amount of Pt-supported carbon, that is, the thickness of the catalyst layer, than the Pt effective surface area, and the decrease in output voltage due to an increase in current density was caused by Comparative Examples 1 → 2 → 3 → 4
The order is getting better. This is because the gas permeability decreases as the catalyst layer becomes thicker, and the catalyst sinks into liquid water and is easily deactivated.

【0028】[0028]

【表2】 ──────────────────────────────────── 触媒層 Pt有効表 Pt/C 粉(mg) Pt(mg) 電解質(mg) 厚さμm 面積(cm2) ──────────────────────────────────── 比較例1 10%Pt/C(4.0) 0.4 NAFION(0.2) 24 270 比較例2 20%Pt/C(2.0) 0.4 NAFION(0.2) 11 307 比較例3 30%Pt/C(1.3) 0.4 NAFION(0.2) 6 262 比較例4 40%Pt/C(1.0) 0.4 NAFION(0.2) 4 218 ─────────────────────────────────── 本実施例では触媒層は、全体で比較的高活性な比較例3
とほぼ同等の厚さ(Pt/C量)および白金有効表面積
をもつ。しかも、比較例と違って触媒層内のPt有効表
面積の傾斜効果により、ガス濃度が高いところで反応が
進行し触媒利用率が高く保持できるので、広い電流域で
比較例4を上回る高い性能を示した。
[Table 2] 触媒 Catalyst layer Pt effective table Pt / C powder ( mg) Pt (mg) Electrolyte (mg) Thickness μm Area (cm 2 ) ────────────────────────────────比較 Comparative Example 1 10% Pt / C (4.0) 0.4 NAFION (0.2) 24 270 Comparative Example 2 20% Pt / C (2.0) 0.4 NAFION (0.2) 11 307 Comparative Example 3 30% Pt / C (1.3 ) 0.4 NAFION (0.2) 6 262 Comparative Example 4 40% Pt / C (1.0) 0.4 NAFION (0.2) 4 218 ────────────────────────で は In this example, the catalyst layer is comparatively high in Comparative Example 3 as a whole.
Have a thickness (Pt / C amount) and a platinum effective surface area substantially equal to In addition, unlike the comparative example, the effect of the gradient of the Pt effective surface area in the catalyst layer allows the reaction to proceed at a high gas concentration and keeps the catalyst utilization high, so that it exhibits higher performance than comparative example 4 in a wide current range. Was.

【0029】[0029]

【発明の効果】本発明の触媒層の構成によれば、触媒利
用率の高い反応ガス濃度の高い所に電解質と接触した触
媒有効表面積を多くし、順次触媒有効表面積を低下させ
ているので、電流密度が高くなる領域でも触媒利用率の
低下を最小限に抑えることができる。したがって、同一
触媒量の従来電池に比べ、高電流密度における電池性能
を著しく向上させることができる。また、この電池は触
媒利用率が向上するので使用する触媒の節約が可能とな
る。
According to the structure of the catalyst layer of the present invention, the catalyst effective surface area in contact with the electrolyte is increased at a place where the reaction gas concentration where the catalyst utilization is high and the reaction gas concentration is high, and the catalyst effective surface area is sequentially reduced. Even in a region where the current density is high, it is possible to minimize a decrease in the catalyst utilization rate. Therefore, the battery performance at a high current density can be remarkably improved as compared with a conventional battery having the same catalyst amount. In addition, this battery improves the catalyst utilization rate, so that the catalyst used can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この図は触媒有効表面積に傾斜を設けた本実
施例の空気極側の触媒層(4領域分割した)の模式図で
ある。
FIG. 1 is a schematic diagram of a catalyst layer (divided into four regions) on the air electrode side of the present embodiment in which a catalyst effective surface area is inclined.

【図2】 この図は、電池の電池出力電圧と電流密度と
の関係を調べたグラフである。
FIG. 2 is a graph showing a relationship between a battery output voltage and a current density of a battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 孝尚 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 河原 和生 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 阿部 勝司 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 川原 竜也 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平5−251086(JP,A) 特開 平4−233164(JP,A) 特開 昭62−195855(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 H01M 8/00 - 8/24 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takanao Suzuki 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. 41, Yokomichi, Toyota Central Research Institute, Inc. (72) Inventor Katsuji Abe 41, Yoji, Chukuji, Nagakute-cho, Aichi-gun, Aichi Prefecture 1 within Toyota Central Research Institute, Inc. (72) Inventor Tatsuya Kawahara Toyota, Aichi Prefecture 1 Toyota Town Inside Toyota Motor Corporation (56) References JP-A-5-251086 (JP, A) JP-A-4-233164 (JP, A) JP-A-62-195855 (JP, A) (58) ) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/86-4/98 H01M 8/00-8/24 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体高分子よりなる電解質膜と該電解質膜
の両側に配置した燃料極と空気極とよりなり、該燃料極
および該空気極は、該電解質膜の膜面に面接して配置さ
れた触媒層をもつ燃料電池において、 上記触媒層は、炭素粒子と該炭素粒子に担持された触媒
金属と電解質とで構成され、該触媒層の上記電解質膜側
とは反対側の部分を形成する該炭素粒子に対する該触媒
金属および該電解質の配合割合は該触媒層の上記電解質
膜側の部分を形成する該炭素粒子に対する該触媒金属お
よび該電解質の配合割合より大きいことを特徴とする燃
料電池。
1. A becomes more a fuel electrode and an air electrode arranged on both sides of the electrolyte membrane and the electrolyte membrane made of solid polymer, the fuel electrode and the air Kikyoku are arranged interview to the film surface of the electrolyte membrane in the fuel cell having the catalyst layer, the catalyst layer is composed of a catalyst metal supported on carbon particles and carbon particles and the electrolyte, opposite to the electrolyte membrane side <br/> of the catalyst layer Wherein the mixing ratio of the catalyst metal and the electrolyte to the carbon particles forming the portion of the catalyst layer is larger than the mixing ratio of the catalyst metal and the electrolyte to the carbon particles forming the portion of the catalyst layer on the electrolyte membrane side. And the fuel cell.
JP27995893A 1993-11-09 1993-11-09 Fuel cell Expired - Fee Related JP3326254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27995893A JP3326254B2 (en) 1993-11-09 1993-11-09 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27995893A JP3326254B2 (en) 1993-11-09 1993-11-09 Fuel cell

Publications (2)

Publication Number Publication Date
JPH07134996A JPH07134996A (en) 1995-05-23
JP3326254B2 true JP3326254B2 (en) 2002-09-17

Family

ID=17618301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27995893A Expired - Fee Related JP3326254B2 (en) 1993-11-09 1993-11-09 Fuel cell

Country Status (1)

Country Link
JP (1) JP3326254B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257687A (en) * 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
JP3711545B2 (en) * 1996-03-29 2005-11-02 マツダ株式会社 Polymer electrolyte fuel cell
JP3579886B2 (en) * 2000-09-01 2004-10-20 本田技研工業株式会社 Electrode structure for fuel cell and manufacturing method thereof
JP3604078B2 (en) * 2000-09-01 2004-12-22 本田技研工業株式会社 Electrode structure for fuel cell and manufacturing method thereof
JP3579885B2 (en) * 2000-09-01 2004-10-20 本田技研工業株式会社 Electrode structure for fuel cell and manufacturing method thereof
TW515128B (en) * 2000-09-29 2002-12-21 Sony Corp Electrochemical device and method for preparing the same
JP2003173785A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell
KR100528020B1 (en) 2003-03-31 2005-11-15 세이코 엡슨 가부시키가이샤 Method for forming functional porous layer, method for manufacturing fuel cell, electronic device, and automobile
EP1833887A1 (en) * 2004-12-17 2007-09-19 Pirelli & C. S.p.A. Proton exchange fuel cell
JP5034252B2 (en) * 2006-02-07 2012-09-26 凸版印刷株式会社 Electrode catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP5094069B2 (en) * 2006-07-25 2012-12-12 シャープ株式会社 Polymer electrolyte fuel cell and electronic device using the same
EP2164122B1 (en) * 2007-06-29 2018-10-31 Toppan Printing Co., Ltd. Membrane electrode assembly and process for producing membrane electrode assembly
JP5332444B2 (en) * 2008-09-24 2013-11-06 凸版印刷株式会社 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799696B2 (en) * 1986-02-22 1995-10-25 株式会社日立製作所 Method for producing fuel cell using ion exchange membrane as electrolyte
JPH04233164A (en) * 1990-12-28 1992-08-21 Aisin Aw Co Ltd Method of junctioning electrode and solid electrolyte
JP3245929B2 (en) * 1992-03-09 2002-01-15 株式会社日立製作所 Fuel cell and its application device

Also Published As

Publication number Publication date
JPH07134996A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JP3245929B2 (en) Fuel cell and its application device
JP3271801B2 (en) Polymer solid electrolyte fuel cell, humidifying method of the fuel cell, and manufacturing method
EP1489677A2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
EP3567665B1 (en) Catalyst layer for fuel cell and production method therefor
JP3326254B2 (en) Fuel cell
JPH08162123A (en) Polymer electrolyte-type electro-chemical cell and its manufacture
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP2000012041A (en) Fuel cell electrode and its manufacture
JP2009104905A (en) Paste for electrode of fuel cell, electrode, membrane electrode assembly, and method for manufacturing fuel cell system
JP7287347B2 (en) Laminates for fuel cells
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JP2741574B2 (en) Solid polymer electrolyte fuel cell
JPH0644984A (en) Electrode for solid high polymer electrolyte fuel cell
JP3495668B2 (en) Fuel cell manufacturing method
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP3619826B2 (en) Fuel cell electrode and fuel cell
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP5045021B2 (en) FUEL CELL ELECTRODE, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE FUEL CELL ELECTRODE
US20100003567A1 (en) Fuel cell
JP2011238443A (en) Fuel cell
US20240136540A1 (en) Method for producing catalyst layers for fuel cells
WO2016108255A1 (en) Membrane/electrode assembly and method for producing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees