JP3320073B2 - Induction motor control device and induction motor control method - Google Patents

Induction motor control device and induction motor control method

Info

Publication number
JP3320073B2
JP3320073B2 JP54539998A JP54539998A JP3320073B2 JP 3320073 B2 JP3320073 B2 JP 3320073B2 JP 54539998 A JP54539998 A JP 54539998A JP 54539998 A JP54539998 A JP 54539998A JP 3320073 B2 JP3320073 B2 JP 3320073B2
Authority
JP
Japan
Prior art keywords
resistance
value
induction motor
winding
operation cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP54539998A
Other languages
Japanese (ja)
Inventor
晶 今中
敏之 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP3320073B2 publication Critical patent/JP3320073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、誘導電動機の運転中の温度変化に伴う巻線
抵抗値の変化を推定し、指定した巻線抵抗値を基に誘導
電動機を制御する誘導電動機の制御装置及び誘導電動機
の制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to an induction motor for controlling an induction motor based on a specified winding resistance value by estimating a change in a winding resistance value due to a temperature change during operation of the induction motor. The present invention relates to a control device and a control method for an induction motor.

背景技術 誘導電動機を高性能に制御する方式として、ベクトル
制御方式や、速度の推定演算を行って制御するセンサレ
スベクトル制御が行われている。これらの制御は、誘導
電動機の等価回路定数である1次巻線、2次巻線の1
次、2次抵抗、相互インダクタンス、1次、2次漏れイ
ンダクタンス等を制御定数として正確に設定する必要が
あり、運転する前に予め測定して設定されている。
BACKGROUND ART As a method for controlling an induction motor with high performance, a vector control method and a sensorless vector control for controlling by performing an estimation calculation of a speed are performed. These controls are based on the primary winding and secondary winding, which are equivalent circuit constants of the induction motor.
Next, it is necessary to accurately set secondary resistance, mutual inductance, primary and secondary leakage inductance, and the like as control constants, which are measured and set before operation.

しかし、1次、2次抵抗は誘導電動機の導体の温度に
よって変化するため、予め正確に設定していても誘導電
動機の温度変化によりその真値に対して誤差を持ち、ベ
クトル制御ではトルク指令に対する実トルクの制御精度
が悪化し、また、センサレスベクトル制御では速度の制
御精度が悪化する。
However, since the primary and secondary resistances change according to the temperature of the conductor of the induction motor, even if they are set accurately in advance, there is an error with respect to the true value due to the temperature change of the induction motor. The control accuracy of the actual torque is deteriorated, and the speed control accuracy is deteriorated in the sensorless vector control.

さらに、センサレスベクトル制御では、1次抵抗設定
値がその実際値に対して誤差をもっている場合には、制
御精度の悪化のみならず制御自体が不安定となり、過電
流トリップ等を生じる場合もある。
Further, in the sensorless vector control, when the primary resistance set value has an error with respect to its actual value, not only the control accuracy is deteriorated, but also the control itself becomes unstable, which may cause an overcurrent trip or the like.

この問題を解決するため、特開平7−213100号公報に
は、センサレスインバータ装置において、冷温時の誘導
電動機の2次抵抗を計測してインバータに初期値として
設定し、さらに運転中は電流と運転時間より温度上昇に
よる2次抵抗変動を推定し、速度演算に用いる2次抵抗
を修正する抵抗変動補償付きセンサレスインバータ装置
が開示されている。
In order to solve this problem, Japanese Patent Application Laid-Open No. 7-213100 discloses that in a sensorless inverter device, a secondary resistance of an induction motor at a cold time is measured and set as an initial value in the inverter. A sensorless inverter device with resistance fluctuation compensation for estimating secondary resistance fluctuation due to temperature rise from time and correcting the secondary resistance used for speed calculation is disclosed.

第12図は特開平7−213100号公報に記載されている抵
抗変動補償付きセンサレスインバータ装置のブロック図
であり、本発明の制御装置と対比し易くすべく書き改め
てある。
FIG. 12 is a block diagram of a sensorless inverter device with resistance fluctuation compensation described in Japanese Patent Application Laid-Open No. 7-213100, which has been rewritten for easy comparison with the control device of the present invention.

図において、1は誘導電動機、2はインバータ、3は
電流検出器、4は速度指令発生器、6はセンサレスベク
トル制御器、9bは抵抗変動推定器、10はスイッチ、20は
電圧検出器、21は初期値計測器、22は初期計測設定器で
ある。
In the drawing, 1 is an induction motor, 2 is an inverter, 3 is a current detector, 4 is a speed command generator, 6 is a sensorless vector controller, 9b is a resistance fluctuation estimator, 10 is a switch, 20 is a voltage detector, 21 Is an initial value measuring device, and 22 is an initial measurement setting device.

インバータ2はセンサレスベクトル制御器6の出力で
あるスイッチング信号を入力し、そのスイッチング信号
に応じた電圧を電流検出器3及び電圧検出器20を介して
誘導電動機1に出力する。
The inverter 2 receives a switching signal output from the sensorless vector controller 6 and outputs a voltage corresponding to the switching signal to the induction motor 1 via the current detector 3 and the voltage detector 20.

スイッチ10は、制御電源がオンした直後の運転開始時
にのみ初期値計測器21側に閉路し、初期値計測器21の出
力であるスイッチング信号をインバータ2に出力する。
この初期値計測器21のスイッチング信号により、インバ
ータ2から誘導電動機1に平均的に直流電圧を印加す
る。そして、一定時間後に誘導電動機1の電流Ixを電流
検出器3により計測し、(1)式より誘導電動機1の温
度上昇の初期値θ0を求めて抵抗変動推定器9bに出力す
る。但し、Ix0は誘導電動機1の温度が周囲温度と同じ
時の2次抵抗R2nに対する同様な方法による電流計測値
であり、K1は温度と電流との換算係数である。
The switch 10 closes to the initial value measuring device 21 only at the start of operation immediately after the control power supply is turned on, and outputs a switching signal output from the initial value measuring device 21 to the inverter 2.
In response to the switching signal of the initial value measuring device 21, a DC voltage is applied from the inverter 2 to the induction motor 1 on average. After a certain period of time, the current Ix of the induction motor 1 is measured by the current detector 3, and the initial value θ0 of the temperature rise of the induction motor 1 is obtained from the equation (1) and output to the resistance fluctuation estimator 9b. Here, Ix0 is a current measurement value of the secondary resistor R2n by the same method when the temperature of the induction motor 1 is equal to the ambient temperature, and K1 is a conversion coefficient between temperature and current.

θ=(IX0−IX)/IX0/K1 ・・・(1) 抵抗変動推定器9bは電流検出器3の出力である電流I
を入力して(2)式により誘導電動機1の温度上昇θを
推定し、さらに初期計測設定器22から入力されたR2nを
用いて(3)式により2次抵抗変動を推定し、修正した
2次抵抗R2xをセンサレスベクトル制御器6に出力す
る。但し、Kは換算ゲイン、Tは時定数である。
θ 0 = (I X0 −I X ) / I X0 / K1 (1) The resistance fluctuation estimator 9b outputs the current I which is the output of the current detector 3.
, The temperature rise θ of the induction motor 1 is estimated by the equation (2), and the secondary resistance fluctuation is estimated and corrected by the equation (3) using R2n input from the initial measurement setting unit 22. The next resistance R2x is output to the sensorless vector controller 6. Here, K is a conversion gain, and T is a time constant.

θ=KI2{1/(1+ST)} ・・・(2) R2X=(1+K1θ)R2n ・・・(3) センサレスベクトル制御器6は、速度指令発生器4の
出力である速度指令値ωm、電流検出器3の出力であ
る電流I、電圧検出器20の出力である電圧V及び抵抗変
動推定器9bの出力である修正された2次抵抗R2xを入力
し、また、内部に設定された誘導電動機1の2次抵抗以
外の設定値や制御ゲインを用いて誘導電動機1の速度が
その指令値ωmに追従するように制御される。
θ = KI 2 {1 / (1 + ST)} (2) R2 X = (1 + K1θ) R2 n (3) The sensorless vector controller 6 outputs a speed command value which is an output of the speed command generator 4. ωm * , the current I which is the output of the current detector 3, the voltage V which is the output of the voltage detector 20, and the modified secondary resistance R2x which is the output of the resistance fluctuation estimator 9b are input and set internally. The speed of the induction motor 1 is controlled so as to follow the command value ωm * using the set value and the control gain other than the secondary resistance of the induction motor 1.

従来の誘導電動機の制御装置は以上のように構成され
ていたため、誘導電動機の熱抵抗、熱時定数等を予め設
定しておく必要があった。特に、これらの熱に関する定
数は、駆動される電動機によって変化し、さらに設置条
件等によっても変化するため、実使用状態において予め
測定及び設定をする必要があり、インバータを異なる種
類の電動機に汎用的に適用することが困難であり、さら
に、誘導電動機の過熱保護を行うためには、誘導電動機
の温度測定のために電動機内部に熱電対等を装着する必
要があり、電動機が特殊仕様となるという問題点があっ
た。
Since the conventional induction motor control device is configured as described above, it is necessary to set the thermal resistance, thermal time constant, and the like of the induction motor in advance. In particular, since these heat-related constants vary depending on the motor to be driven, and also vary depending on installation conditions, etc., it is necessary to measure and set in advance in actual use conditions, and inverters are generally used for different types of motors. In addition, in order to protect the induction motor from overheating, it is necessary to mount a thermocouple or the like inside the motor to measure the temperature of the induction motor. There was a point.

本発明は上記のような問題点を解消するためになされ
たもので、実使用状態で誘導電動機の抵抗変化特性を演
算しながら抵抗変動を推定し、その結果を基に速度の推
定演算やすべり補正を行うために、予め誘導電動機の熱
抵抗、熱時定数等設定することなく良好に誘導電動機を
制御できる誘導電動機の制御装置及び誘導電動機の制御
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and estimates a resistance change while calculating a resistance change characteristic of an induction motor in an actual use state, and estimates a speed based on the result, and calculates a slip based on the result. An object of the present invention is to provide an induction motor control device and an induction motor control method capable of satisfactorily controlling the induction motor without previously setting the thermal resistance, thermal time constant, and the like of the induction motor in order to perform the correction.

発明の開示 本発明の誘導電動機の制御装置は、抵抗測定手段が誘
導電動機の巻線抵抗値を測定、抵抗変化係数演算手段が
第1の運転サイクルの前後に測定された巻線抵抗値の差
と第1の運転サイクル中に発生した誘導電動機の発熱量
に係わる値とを基に、この値の単位量当たりの巻線抵抗
の抵抗変化係数を演算し、抵抗変動推定手段が抵抗測定
手段により第1の運転サイクルに続く第2の運転サイク
ルの起動時に測定した起動時巻線抵抗値と第2の運転サ
イクル中の誘導電動機の発熱量に加わる値と抵抗変化係
数とを基に推定した推定巻線抵抗値を出力し、制御手段
が推定巻線抵抗値を用いて誘導電動機を駆動するインバ
ータを制御するので、誘導電動機の発熱量が変化して
も、設置条件が異なったり、熱時定数が異なる誘導電動
機に対しても運転サイクルによって変化する抵抗変動を
推定できるようになり、推定した抵抗値を用いて精度良
く誘導電動機の速度の制御できる。
DISCLOSURE OF THE INVENTION In the control device for an induction motor of the present invention, the resistance measuring means measures a winding resistance value of the induction motor, and the resistance change coefficient calculating means calculates a difference between the winding resistance values measured before and after the first operation cycle. And a value relating to the amount of heat generated by the induction motor generated during the first operation cycle, a resistance change coefficient of the winding resistance per unit amount of this value is calculated. Estimation estimated based on the starting winding resistance measured at the start of the second operation cycle following the first operation cycle, the value added to the calorific value of the induction motor during the second operation cycle, and the resistance change coefficient. Since the winding resistance is output and the control means controls the inverter that drives the induction motor using the estimated winding resistance, even if the heating value of the induction motor changes, the installation conditions may differ or the thermal time constant may change. For different induction motors This also makes it possible to estimate the resistance variation that changes according to the operation cycle, and to accurately control the speed of the induction motor using the estimated resistance value.

また、本発明の誘導電動機の制御装置は、抵抗変化係
数演算手段が、第1の運転サイクル中に発生した誘導電
動機の発熱量に係わる値を誘導電動機に供給した電流値
を基に演算し、抵抗変動推定手段が、第2の運転サイク
ル中に発生する誘導電動機の発熱量に係わる値を誘導電
動機に供給した電流値を基に演算するので、運転サイク
ルの電流値の変化による誘導電動機の発熱量が変化して
も抵抗変動を推定できるようになり、推定した抵抗値を
用いて精度良く誘導電動機の速度を制御できる。
Further, in the control device for the induction motor of the present invention, the resistance change coefficient calculation means calculates a value related to a calorific value of the induction motor generated during the first operation cycle based on a current value supplied to the induction motor, Since the resistance fluctuation estimating means calculates a value related to the amount of heat generated by the induction motor during the second operation cycle based on the current value supplied to the induction motor, the heat generation of the induction motor due to a change in the current value during the operation cycle is performed. Even if the amount changes, the resistance fluctuation can be estimated, and the speed of the induction motor can be accurately controlled using the estimated resistance value.

また、本発明の誘導電動機の制御装置は、抵抗変化係
数演算手段が、第1の運転サイクル中に発生した誘導電
動機の発熱量に係わる値を誘導電動機に指令したトルク
指令値を基に演算し、抵抗変動推定手段が、第2の運転
サイクル中に発生する誘導電動機の発熱量に係わる値を
誘導電動機に指令したトルク指令値を基に演算するの
で、運転サイクルの指令トルクの変化による誘導電動機
の発熱量が変化しても抵抗変動を推定できるようにな
り、推定した抵抗値を用いて精度良く誘導電動機の速度
を制御できる。
In the control device for an induction motor according to the present invention, the resistance change coefficient calculation means calculates a value related to a calorific value of the induction motor generated during the first operation cycle based on a torque command value instructed to the induction motor. Since the resistance variation estimating means calculates a value related to the amount of heat generated by the induction motor during the second operation cycle on the basis of the torque command value instructed to the induction motor, the induction motor based on a change in the command torque in the operation cycle. Can be estimated even if the heat value of the motor changes, and the speed of the induction motor can be accurately controlled using the estimated resistance value.

また、本発明の誘導電動機の制御装置は、抵抗変動推
定手段が、第1の運転サイクルの停止時に抵抗測定手段
が測定した停止時巻線抵抗値を第2の運転サイクルの起
動時に測定した起動時巻線抵抗として第2の運転サイク
ル中の推定巻線抵抗値を出力するので、抵抗測定手段は
第2の運転サイクルで起動時巻線抵抗を測定しなくても
よくなり、起動に要する時間が短くなる。
In the control device for an induction motor according to the present invention, the resistance fluctuation estimating means may be configured to start up by measuring the stop winding resistance measured by the resistance measuring means at the time of stopping the first operation cycle at the time of starting the second operation cycle. Since the estimated winding resistance value during the second operation cycle is output as the time winding resistance, the resistance measuring means does not have to measure the winding resistance at startup in the second operation cycle, and the time required for startup is reduced. Becomes shorter.

また、本発明の誘導電動機の制御装置は、抵抗測定手
段が誘導電動機の巻線抵抗値を測定し、抵抗変化係数演
算手段が第1の運転サイクルの前後に測定された巻線抵
抗値の差と第1の運転サイクル中に発生した誘導電動機
の発熱量に係わる値とを基に、この値から単位量当たり
の巻線抵抗の抵抗変化係数を演算し、抵抗特性記憶手段
が抵抗変化係数と巻線抵抗値との関係を記憶し、抵抗測
定手段が第1の運転サイクルに続く第2の運転サイクル
の起動時に測定した起動時巻線抵抗値を基に記憶した前
記関係を参照して抵抗変化係数を出力し、抵抗変動推定
手段が起動時巻線抵抗値を基に抵抗特性記憶手段が出力
した抵抗変化係数と第2の運転サイクル中の誘導電動機
の発熱量に係わる値とから推定巻線抵抗値を推定して出
力し、制御手段が推定巻線抵抗値を用いて誘導電動機を
駆動するインバータを制御するので、抵抗変動推定手段
は抵抗特性記憶手段が出力する抵抗変化係数と当該運転
サイクルの起動時に測定した起動時巻線抵抗とを基に抵
抗変動を推定できるようになり、予め熱抵抗、熱時定数
等を設定することなく、さらに、起動時の抵抗がその前
の運転サイクルの起動時の抵抗と大きく差を生じている
場合でも良好に巻線抵抗を推定できる。
Further, in the control device for an induction motor of the present invention, the resistance measuring means measures a winding resistance value of the induction motor, and the resistance change coefficient calculating means calculates a difference between the winding resistance values measured before and after the first operation cycle. And a value relating to the amount of heat generated by the induction motor generated during the first operation cycle, a resistance change coefficient of the winding resistance per unit amount is calculated from the value, and the resistance characteristic storage means stores the resistance change coefficient and the resistance change coefficient. The relationship with the winding resistance value is stored, and the resistance measuring means refers to the relationship stored based on the starting winding resistance value measured at the start of the second operation cycle following the first operation cycle. A change coefficient is output, and the resistance change estimating means estimates the winding based on the resistance change coefficient output from the resistance characteristic storing means based on the winding resistance value at the time of starting and the value related to the heat value of the induction motor during the second operation cycle. The wire resistance is estimated and output, and the control means Since the inverter that drives the induction motor is controlled using the winding resistance value, the resistance fluctuation estimating means uses the resistance change coefficient output from the resistance characteristic storage means and the starting winding resistance measured at the start of the operation cycle. It is also possible to estimate the resistance fluctuation, without having to set the thermal resistance, thermal time constant, etc. in advance, and even when the resistance at the time of startup greatly differs from the resistance at the time of startup of the previous operation cycle. The winding resistance can be estimated well.

また、本発明の誘導電動機の制御装置は、抵抗特性記
憶手段が、第1の運転サイクル中の電流値をパラメータ
として抵抗変化係数と巻線抵抗値との関係を記憶し、抵
抗測定手段が第2の運転サイクルの起動時に測定した起
動時巻線抵抗値に対応する抵抗変化係数を第2の運転サ
イクルの電流値を参照して出力するので、抵抗特性記憶
手段は記憶している巻線抵抗値と抵抗変化係数のうち、
当該運転サイクルの電流値に最も近い電流値に対応して
記憶されている抵抗変化係数特性のデータから、当該運
転サイクルの起動時に測定された起動時巻線抵抗を基に
抵抗変化係数を出力するようになり、誘導電動機の複数
の負荷状態による抵抗変動に適合した抵抗変化係数を設
定することができ、負荷の大きさにかかわらず精度の高
い巻線抵抗値の推定ができる。
In the control device for an induction motor according to the present invention, the resistance characteristic storage means stores the relationship between the resistance change coefficient and the winding resistance value using the current value during the first operation cycle as a parameter, and the resistance measurement means stores The resistance characteristic storage means outputs the resistance change coefficient corresponding to the starting winding resistance value measured at the start of the second operation cycle with reference to the current value of the second operation cycle. Value and coefficient of resistance change
From the data of the resistance change coefficient characteristic stored corresponding to the current value closest to the current value of the operation cycle, a resistance change coefficient is output based on the starting winding resistance measured at the start of the operation cycle. As a result, it is possible to set a resistance change coefficient suitable for a resistance change due to a plurality of load states of the induction motor, and it is possible to estimate a winding resistance value with high accuracy regardless of the size of the load.

また、本発明の誘導電動機の制御装置は、抵抗特性記
憶手段が、第1の運転サイクルにより抵抗変化係数演算
手段が演算した抵抗変化係数とその時点で抵抗測定手段
が測定した巻線抵抗値との関係を関数近似して記憶する
ので、当該運転サイクルの起動時巻線抵抗から抵抗変化
係数を参照する際により実際の変化に近い抵抗変化係数
を求めることができる。
Further, in the control device for the induction motor of the present invention, the resistance characteristic storage means stores the resistance change coefficient calculated by the resistance change coefficient calculation means in the first operation cycle and the winding resistance value measured by the resistance measurement means at that time. Is stored as a function approximation, so that the resistance change coefficient closer to the actual change can be obtained by referring to the resistance change coefficient from the winding resistance at the start of the operation cycle.

また、本発明の誘導電動機の制御装置は、抵抗変化係
数演算手段が、第2の運転サイクルの停止時に推定した
推定巻線抵抗と抵抗測定手段が第2の運転サイクルの停
止時に測定した停止時巻線抵抗とを比較しこれらの差異
が所定値を超える場合に抵抗特性記憶手段が記憶してい
る巻線抵抗値と抵抗変化係数との関係を修正するので、
気温の変化や誘導電動機周辺の環境変化等による、誘導
電動機温度と周囲温度との温度差や周囲の空気の流量等
の変化が生じても、抵抗特性記憶手段が記憶している巻
線抵抗値と抵抗変化係数との関係を実際の状態に一致す
るように修正することができ、良好に抵抗変動を推定す
ることができる。
In the control device for an induction motor according to the present invention, the resistance change coefficient calculating means may include an estimated winding resistance estimated at the time of stopping the second operation cycle and a resistance measurement means at the time of stoppage measured at the time of stopping the second operation cycle. Since the winding resistance is compared with the winding resistance and if the difference exceeds a predetermined value, the relationship between the winding resistance and the resistance change coefficient stored in the resistance characteristic storage means is corrected.
Even if a temperature difference between the induction motor temperature and the ambient temperature or a change in the flow rate of the surrounding air due to a change in air temperature or a change in the environment around the induction motor occurs, the winding resistance value stored in the resistance characteristic storage means. And the resistance change coefficient can be corrected so as to match the actual state, and the resistance fluctuation can be satisfactorily estimated.

また、本発明の誘導電動機の制御装置は、温度推定手
段が、誘導電動機の巻線の温度と巻線抵抗値との関係を
予め記憶し、抵抗変化係数演算手段が出力する推定巻線
抵抗値を基に巻線の温度と巻線抵抗値との関係から巻線
の温度を推定するので、予め誘導電動機の熱抵抗、熱時
定数を設定することなく、誘導電動機の温度を推定する
ことができる。
In the control device for an induction motor according to the present invention, the temperature estimating means pre-stores a relationship between the temperature of the winding of the induction motor and the winding resistance, and the estimated winding resistance outputted by the resistance change coefficient calculating means. Since the temperature of the winding is estimated from the relationship between the temperature of the winding and the resistance of the winding based on the above, it is possible to estimate the temperature of the induction motor without previously setting the thermal resistance and the thermal time constant of the induction motor. it can.

また、本発明の誘導電動機の制御装置は、温度推定手
段が、予めインバータから誘導電動機までの配線の抵抗
値を記憶し、抵抗測定手段が出力する1次巻線抵抗値か
ら配線の抵抗値を減算した値を基に1次巻線の温度を推
定するので、インバータから誘導電動機までの配線長さ
が比較的長い場合でも、1次巻線抵抗値を配線抵抗値と
分離して誘導電動機の1次巻線の温度を推定することが
できる。
In the induction motor control device according to the present invention, the temperature estimating means stores the resistance value of the wiring from the inverter to the induction motor in advance, and calculates the resistance value of the wiring from the primary winding resistance value output by the resistance measuring means. Since the temperature of the primary winding is estimated based on the subtracted value, even when the wiring length from the inverter to the induction motor is relatively long, the primary winding resistance is separated from the wiring resistance to separate the induction motor. The temperature of the primary winding can be estimated.

また、本発明の誘導電動機の制御装置は、温度推定手
段が、巻線の温度が所定値を超えた場合に、誘導電動機
の運転を停止する停止信号を制御手段に出力し、制御手
段がインバータの運転を停止するので、電動機内部に熱
電対等を装着しなくても、誘導電動機の過熱を防止でき
る。
In the control device for an induction motor of the present invention, the temperature estimating means outputs a stop signal to stop the operation of the induction motor to the control means when the temperature of the winding exceeds a predetermined value, and the control means , The overheating of the induction motor can be prevented without mounting a thermocouple or the like inside the motor.

また、本発明の誘導電動機の制御装置は、運転モード
設定手段が、第1と第2の運転サイクルに先立って、抵
抗変化係数演算手段により、設定された回数を繰り返す
所定の運転サイクルの各々の運転サイクルの起動時と停
止時に抵抗測定手段により測定された巻線抵抗値の差と
各々の運転サイクル中に発生した誘導電動機の発熱量に
係わる値から単位量当たりの巻線抵抗の抵抗変化係数を
各々の運転サイクル毎に減算し、抵抗特性記憶手段に各
々の運転サイクル毎の抵抗変化係数と巻線抵抗値との関
係を記憶させるので、所定の運転サイクルにおいて巻線
抵抗と抵抗変化係数の関係が予め抵抗特性記憶手段に記
憶され、第2の運転サイクルでは、より適切な巻線抵抗
値と抵抗変化係数の関係が記憶され、良好に抵抗変動を
推定できるようになる。
Further, in the control device for the induction motor of the present invention, the operation mode setting means may perform each of the predetermined operation cycles in which the resistance change coefficient calculation means repeats the set number of times before the first and second operation cycles. From the difference between the winding resistance measured by the resistance measuring means at the start and stop of the operation cycle and the value related to the amount of heat generated by the induction motor during each operation cycle, the resistance change coefficient of the winding resistance per unit quantity Is subtracted for each operation cycle, and the resistance characteristic storage means stores the relationship between the resistance change coefficient and the winding resistance value for each operation cycle. The relationship is stored in the resistance characteristic storage means in advance, and in the second operation cycle, a more appropriate relationship between the winding resistance value and the resistance change coefficient is stored, so that the resistance fluctuation can be satisfactorily estimated. .

また、本発明の誘導電動機の制御方法は、運転サイク
ルの前後に測定された巻線抵抗値の差と運転サイクル中
に発生した誘導電動機の発熱量に係わる値とを基に、こ
の値の単位量当たりの巻線抵抗の抵抗変化係数を演算
し、次の運転サイクルの起動時に起動時巻線抵抗値を測
定し、起動時巻線抵抗を基に抵抗変化係数と当該運転サ
イクル中の誘導電動機の発熱量の係わる値とから推定し
た推定巻線抵抗値を出力し、推定巻線抵抗値を基に誘導
電動機を駆動するインバータを制御し、当該運転サイク
ルの停止時に停止時巻線抵抗値を測定するので、誘導電
動機の発熱量が変化しても、設置条件が異なったり、熱
時定数が異なる誘導電動機に対しても運転サイクルによ
って変化する抵抗変動を推定できるようになり、推定し
た抵抗値を用いて精度良く誘導電動機の速度を制御でき
る。
In addition, the control method of the induction motor of the present invention uses a unit of this value based on a difference between a winding resistance value measured before and after an operation cycle and a value related to a calorific value of the induction motor generated during the operation cycle. Calculate the resistance change coefficient of the winding resistance per unit, measure the winding resistance at startup at the start of the next operation cycle, and calculate the resistance change coefficient based on the winding resistance at startup and the induction motor during the operation cycle. Output the estimated winding resistance value estimated from the value related to the calorific value of the motor, controls the inverter that drives the induction motor based on the estimated winding resistance value, and determines the stop-time winding resistance value when the operation cycle is stopped. Because of the measurement, even if the heat value of the induction motor changes, it is possible to estimate the resistance fluctuation that changes with the operation cycle even for installation motors with different installation conditions and different thermal time constants. Accuracy using You can control the speed of the Ku induction motor.

また、本発明の誘導電動機の制御方法は、運転サイク
ルの前後に測定された巻線抵抗値の差と運転サイクル中
に発生した誘導電動機の発熱量に係わる値とを基に、こ
の値の単位量当たりの巻線抵抗の抵抗変化係数を演算
し、巻線抵抗と抵抗変化係数の関係を記憶し、次の運転
サイクルの起動時に起動時巻線抵抗値を測定し、起動時
巻線抵抗に対応する抵抗変化係数を巻線抵抗と抵抗変化
係数の関係を参照して求め、起動時巻線抵抗を基にこの
起動時巻線抵抗に対応する抵抗変化係数と当該運転サイ
クル中の誘導電動機の発熱量に係わる値とから推定した
推定巻線抵抗値を出力し、推定巻線抵抗値を基に誘導電
動機を駆動するインバータを制御し、当該運転サイクル
の停止時に停止時巻線抵抗値を測定するので、当該運転
サイクルの起動時に測定した起動時巻線抵抗を基に、当
該運転サイクルの起動時巻線抵抗に対応する抵抗変化係
数を巻線抵抗と抵抗変化係数の関係を参照して求め、当
該運転サイクル中の発熱量に係わる値を用いて抵抗変動
を推定できるようになり、予め熱抵抗、熱時定数等を設
定することなく、さらに、起動時の抵抗がその前の運転
サイクルの起動時の抵抗と大きく差を生じている場合で
も良好に巻線抵抗を推定できる。
In addition, the control method of the induction motor of the present invention uses a unit of this value based on a difference between a winding resistance value measured before and after an operation cycle and a value related to a calorific value of the induction motor generated during the operation cycle. Calculates the resistance change coefficient of the winding resistance per unit, stores the relationship between the winding resistance and the resistance change coefficient, measures the starting winding resistance at the start of the next operation cycle, and calculates the starting winding resistance. The corresponding resistance change coefficient is determined with reference to the relationship between the winding resistance and the resistance change coefficient, and based on the start winding resistance, the resistance change coefficient corresponding to the start winding resistance and the induction motor during the operation cycle are determined. Outputs the estimated winding resistance value estimated from the value related to the calorific value, controls the inverter that drives the induction motor based on the estimated winding resistance value, and measures the winding resistance value when the operation cycle is stopped when the operation cycle is stopped Measurement at the start of the operation cycle. Based on the starting winding resistance obtained, a resistance change coefficient corresponding to the starting winding resistance of the operation cycle is obtained by referring to a relationship between the winding resistance and the resistance change coefficient, and the heat resistance during the operation cycle is determined. It is possible to estimate the resistance variation using the value, without previously setting the thermal resistance, thermal time constant, etc., and furthermore, the resistance at the time of startup greatly differs from the resistance at the time of startup of the previous operation cycle. The winding resistance can be well estimated.

図面の簡単な説明 第1図乃至第11図は、本発明にかかる好ましい実施の
形態を示す図であり、第1図は本発明の実施の形態1に
よる誘導電動機の制御装置を示すブロック図、第2図は
第1図に示す誘導電動機の制御装置の制御方法を示すフ
ローチャート、第3図は本発明の実施の形態2による誘
導電動機の制御装置のブロック図、第4図は一般的な誘
導電動機の巻線抵抗値と抵抗変化係数を示す説明図、第
5図は第3図に示す抵抗特性記憶器11が記憶する巻線抵
抗値と抵抗変化係数の関係の説明図、第6図は第3図に
示す誘導電動機の制御装置の制御方法を示すフローチャ
ート、第7図は一般的な誘導電動機の電流値をパラメー
タとした巻線抵抗値と抵抗変化係数を示す説明図、第8
図は第9図に示す抵抗特性記憶器11aが記憶する巻線抵
抗値と抵抗変化係数の関係の説明図、第9図は本発明の
実施の形態2による他の態様の誘導電動機の制御装置の
ブロック図、第10図は本発明の実施の形態3による誘導
電動機の制御装置を示すブロック図、第11図は本発明の
実施の形態4による誘導電動機の制御装置を示すブロッ
ク図、第12図は従来の誘導電動機の制御装置を示すブロ
ック図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 11 are diagrams showing a preferred embodiment according to the present invention, FIG. 1 is a block diagram showing a control device for an induction motor according to a first embodiment of the present invention, FIG. 2 is a flowchart showing a control method of the control device for the induction motor shown in FIG. 1, FIG. 3 is a block diagram of the control device for the induction motor according to the second embodiment of the present invention, and FIG. FIG. 5 is an explanatory diagram showing the winding resistance value and the resistance change coefficient of the motor, FIG. 5 is an explanatory diagram showing the relationship between the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage unit 11 shown in FIG. 3, and FIG. FIG. 7 is a flowchart showing a control method of the control device of the induction motor shown in FIG. 3; FIG. 7 is an explanatory diagram showing a winding resistance value and a resistance change coefficient using a current value of a general induction motor as a parameter;
FIG. 9 is an explanatory diagram of a relationship between a winding resistance value and a resistance change coefficient stored in the resistance characteristic storage unit 11a shown in FIG. 9, and FIG. 9 is a control device for an induction motor according to another embodiment of the second embodiment of the present invention. FIG. 10 is a block diagram showing a control device for an induction motor according to Embodiment 3 of the present invention, FIG. 11 is a block diagram showing a control device for an induction motor according to Embodiment 4 of the present invention, and FIG. FIG. 1 is a block diagram showing a conventional control device for an induction motor.

発明を実施するための最良の形態 実施の形態1. 第1図は本発明に係わる誘導電動機の制御装置の一実
施の形態を示すブロック図である。図において、1は誘
導電動機、2は誘導電動機1に電圧を供給するインバー
タ、3は誘導電動機1の電流を検出する電流検出器、4
は速度指令を発生する速度指令発生器、5aは速度指令発
生器4からの出力である速度指令を入力してチューニン
グを制御するチューニング制御器、6は誘導電動機1を
制御するためのセンサレスベクトル制御器、7は起動時
及び停止時に誘導電動機1の1次巻線及び2次巻線の1
次及び2次抵抗を測定する抵抗測定器である。ここで、
2次巻線とは籠型巻線を含むものとする。8は電流検出
器3と抵抗測定器7の出力とに基づき誘導電動機1の抵
抗変化係数を演算するための抵抗変化係数演算器、9aは
電流検出器3と抵抗計測器7と抵抗変化係数演算器8の
出力とに基づき誘導電動機1の抵抗変動を指定する抵抗
変動推定器、10は起動時及び停止時には抵抗測定器7側
に閉路し、運転時にはセンサレスベクトル制御器6側に
閉路する制御切替器であり、チューニング制御器5aによ
り制御される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a block diagram showing an embodiment of a control device for an induction motor according to the present invention. In the figure, 1 is an induction motor, 2 is an inverter that supplies a voltage to the induction motor 1, 3 is a current detector that detects the current of the induction motor 1, 4
Is a speed command generator that generates a speed command, 5a is a tuning controller that controls the tuning by inputting a speed command output from the speed command generator 4, and 6 is a sensorless vector control for controlling the induction motor 1. , A starter 1 and a secondary winding 1 of the induction motor 1 at the time of start and stop.
This is a resistance measuring instrument for measuring the secondary and secondary resistance. here,
The secondary winding includes a cage winding. 8 is a resistance change coefficient calculator for calculating the resistance change coefficient of the induction motor 1 based on the output of the current detector 3 and the resistance measurement device 7; 9a is a resistance change coefficient calculation of the current detector 3, the resistance measurement device 7 A resistance variation estimator for designating the resistance variation of the induction motor 1 based on the output of the device 8; a control switch 10 that closes the resistance measuring device 7 when starting and stopping, and closes the sensorless vector controller 6 when operating. And is controlled by the tuning controller 5a.

次に、動作を図について説明する。まず、速度指令発
生器4から速度指令ωmが入力された起動時におい
て、チューニング制御器5aは制御切替器10を抵抗測定器
7側に閉路するように動作し、抵抗測定器7から出力さ
れたスイッチング信号によってインバータ2から誘導電
動機1に電圧が出力できるようになる。さらに、チュー
ニング制御器5aからの抵抗測定開始信号が抵抗測定器7
に入力され、抵抗測定器7は誘導電動機1の1次及び2
次抵抗値の測定を開始する。
Next, the operation will be described with reference to the drawings. First, at the start-up when the speed command ωm * is input from the speed command generator 4, the tuning controller 5 a operates so as to close the control switch 10 to the resistance measuring device 7 side, and is output from the resistance measuring device 7. The switching signal allows the inverter 2 to output a voltage to the induction motor 1. Furthermore, the resistance measurement start signal from the tuning controller 5a is
And the resistance measuring device 7 is connected to the primary and secondary of the induction motor 1.
Start measurement of the next resistance value.

ここで、抵抗測定器7によって実行される抵抗の測定
は、例えば特開昭62−79380号公報に記載されているよ
うな方法を用いるとよい。つまり、インバータ2の出力
に直流電流IDをステップ状に発生させ、誘導電動機1の
1次電圧V1の最終値V1(∞)と直流電流の比V1(∞)/I
Dから1次抵抗R1を求め、直流電流IDによる1次電圧V1
の時刻t1、t2の過渡電圧V1(t1)、V1(t2)と最終値V1
(∞)から(4)式によって誘導電動機1の2次時定数
τ2を求め、さらにこの時定数τ2を使って(5)式か
ら2次抵抗R2を求める。なお、τ2=L2/R2であり、L2
は温度が変化しても一定値のため、予め正確に設定して
おくことができる。
Here, the resistance measurement performed by the resistance measuring device 7 may use a method described in, for example, JP-A-62-79380. That is, a DC current ID is generated in the output of the inverter 2 in a stepwise manner, and the final value V1 (∞) of the primary voltage V1 of the induction motor 1 and the ratio of the DC current V1 (∞) / I
Find the primary resistance R1 from D and calculate the primary voltage V1 by the DC current ID.
Of the transient voltages V1 (t1), V1 (t2) and the final value V1 at times t1 and t2
From (∞) to (4), the secondary time constant τ2 of the induction motor 1 is obtained, and using this time constant τ2, the secondary resistance R2 is obtained from (5). Note that τ2 = L2 / R2, and L2
Is a constant value even if the temperature changes, so that it can be set accurately in advance.

ここで、インバータ2の出力に直流電流IDをステップ
状に発生させるには、通常のベクトル制御等で一般的に
用いられている電流制御器を抵抗測定器7の内部に設
け、ステップ状の電流指令をインバータ2に与えればよ
い。
Here, in order to generate the DC current ID in the output of the inverter 2 in a step-like manner, a current controller generally used in normal vector control or the like is provided inside the resistance measuring device 7 and the step-like current controller is provided. What is necessary is just to give a current command to the inverter 2.

なお、1次電圧V1の最終値V1(∞)を求めるにあた
り、通常の誘導電動機1では2次時定数が数十msec〜数
百msecであることから、その数倍程度の時間である数百
msec〜数secの時点の値を1次電圧V1の最終値V1(∞)
としても殆ど誤差は生じることなく、短時間で測定が終
了できる。
When the final value V1 (∞) of the primary voltage V1 is obtained, since the secondary time constant is several tens msec to several hundred msec in the ordinary induction motor 1, the time is several hundreds of several hundred msec.
The value at the time of msec to several seconds is the final value V1 (∞) of the primary voltage V1.
In this case, the measurement can be completed in a short time with almost no error.

次に、抵抗測定器7が1次抵抗及び2次抵抗の測定を
完了すると、チューニング制御器5aに対して抵抗測定完
了信号が送られ、同時に抵抗変化係数演算器8及び抵抗
変動推定器9aに測定結果が出力される。チューニング制
御器5aは、この抵抗測定器7から出力された抵抗測定完
了信号を入力すると制御切替器10をセンサレスベクトル
制御器6側に閉路するように動作し、センサレスベクト
ル制御器6から出力されたスイッチング信号によって誘
導電動機1の運転を開始する。
Next, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5a, and at the same time, the resistance change coefficient calculator 8 and the resistance fluctuation estimator 9a. The measurement result is output. When the tuning controller 5a receives the resistance measurement completion signal output from the resistance measuring device 7, the tuning controller 5a operates to close the control switch 10 to the sensorless vector controller 6, and the tuning controller 5a outputs the signal from the sensorless vector controller 6. The operation of the induction motor 1 is started by the switching signal.

その後、速度指令発生器4から停止指令がチューニン
グ制御器5aを経由してセンサレスベクトル制御器6に入
力され、誘導電動機1が減速して停止すると、センサレ
スベクトル制御器6から停止完了信号がチューニング制
御器5aに出力される。チューニング制御器5aは、この停
止完了信号の入力により抵抗測定器7に抵抗測定開始信
号を出力し、抵抗測定器7はこの抵抗測定開始信号が入
力されると再び起動時と同様の方法により誘導電動機1
の1次抵抗及び2次抵抗値の測定を開始する。
Thereafter, a stop command is input from the speed command generator 4 to the sensorless vector controller 6 via the tuning controller 5a, and when the induction motor 1 is decelerated and stopped, a stop completion signal is sent from the sensorless vector controller 6 to the tuning control. Output to the container 5a. The tuning controller 5a outputs a resistance measurement start signal to the resistance measuring device 7 in response to the input of the stop completion signal, and when the resistance measurement starting signal is input, the resistance measuring device 7 guides again in the same manner as when starting. Electric motor 1
The measurement of the primary resistance and the secondary resistance value is started.

さらに、抵抗測定器7が1次抵抗及び2次抵抗の測定
を完了すると、チューニング制御器5aに対して抵抗測定
完了信号が送られ、同時に抵抗変化係数演算器8に測定
結果が出力される。抵抗変化係数演算器8は、チューニ
ング制御器5aから出力された制御信号と、電流検出器3
から出力された誘導電動機1の電流Iと、抵抗測定器7
から入力された誘導電動機1の起動時及び停止直後の1
次抵抗及び2次抵抗の測定値を入力し、起動時と停止直
後の1次抵抗及び2次抵抗測定値の差分を誘導電動機の
運転時間中に積算したΣI2t(電流2乗値の時間積分
値)で除し、(6)式及び(7)式で得られる単位量
(I2t=1)当たりの1次抵抗及び2次抵抗の変化係数
KR1、KR2を演算して抵抗変動推定器9aに出力する。こ
れは、誘導電動機1の巻線の温度上昇は誘導電動機1の
巻線抵抗に電流が流れることにより発生する抵抗損にほ
ぼ比例し、その発熱量は電流Iの2乗に比例するためで
ある。
Further, when the resistance measuring device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5a, and the measurement result is output to the resistance change coefficient calculator 8 at the same time. The resistance change coefficient calculator 8 includes a control signal output from the tuning controller 5a and the current detector 3
Current I of the induction motor 1 output from the
At the start and immediately after the start of the induction motor 1
The measured values of the primary and secondary resistances are input, and the difference between the measured primary and secondary resistances at startup and immediately after the stop is integrated during the operation time of the induction motor, ΔI 2 t (time of current square value) divided by the integral value), (6) and (7) a unit amount obtained (I 2 t = 1) 1 primary resistance and the variation coefficient of the secondary resistance KR1, KR2 operation to resistance variation estimated per Output to the container 9a. This is because the temperature rise of the winding of the induction motor 1 is substantially proportional to the resistance loss generated by the current flowing through the winding resistance of the induction motor 1, and the amount of heat generated is proportional to the square of the current I. .

次回起動時からは、抵抗変動推定器9aにより、チュー
ニング制御器5aから出力された制御信号と、電流検出器
3から出力された誘導電動機1の電流Iと、抵抗測定器
7から入力された誘導電動機1の1次抵抗及び2次抵抗
の起動時の測定値と、抵抗変化係数演算器8から出力さ
れた単位量(I2t=1)当たりの1次抵抗及び2次抵抗
の変化係数KR1、KR2を入力し、1次抵抗及び2次抵抗
の起動時の測定値を初期値として(8)式及び(9)式
により1次抵抗及び2次抵抗推定値R1、R2を演算し
てセンサレスベクトル制御器6に出力する。
From the next start-up, the control signal output from the tuning controller 5a, the current I of the induction motor 1 output from the current detector 3, and the induction input from the resistance measuring device 7 are output by the resistance fluctuation estimator 9a. The measured values of the primary resistance and the secondary resistance of the motor 1 at the time of startup and the change coefficient KR1 of the primary resistance and the secondary resistance per unit quantity (I 2 t = 1) output from the resistance change coefficient calculator 8 , KR2, and the primary resistance and secondary resistance estimated values R1 * , R2 * are calculated by the equations (8) and (9) using the measured values at the time of starting the primary resistance and the secondary resistance as initial values. And outputs it to the sensorless vector controller 6.

R1=KR1ΣI2t+R1(起動時) ・・・(8) R2=KR2ΣI2t+R2(起動時) ・・・(9) なお、センサレスベクトル制御器6は、チューニング
制御器5aを経由した速度指令発生器4の出力である速度
指令値ωm、電流検出器3の出力である電流I、及び
抵抗変動推定器9aから出力された1次抵抗及び2次抵抗
推定値R1及びR2を入力し、また、内部に設定された
誘導電動機1の定数や制御ゲインを用いて誘導電動機1
の速度がその指令値ωmに追従するように制御する。
R1 * = KR1ΣI 2 t + R1 ( startup) ··· (8) R2 * = KR2ΣI 2 t + R2 ( at startup) (9) The sensor-less vector controller 6, the speed command that has passed through the tuning controller 5a The speed command value ωm * output from the generator 4, the current I output from the current detector 3, and the primary resistance and secondary resistance estimated values R1 * and R2 * output from the resistance fluctuation estimator 9a are input. In addition, using the constant and control gain of the induction motor 1 set inside, the induction motor 1
Is controlled so that the speed of the control signal follows the command value ωm * .

上述の誘導電動機の制御装置の制御方法を第2図に示
すフローチャートにより説明する。まず、ステップS11
において、1次抵抗及び2次抵抗の変化係数KR1、KR2
を適当な値に初期設定する。最初の1回目の運転時のみ
抵抗推定の誤差を許容すれば、KR1、KR2はゼロでもよ
い。
A control method of the above-described induction motor control device will be described with reference to a flowchart shown in FIG. First, step S11
, The change coefficients KR1 and KR2 of the primary resistance and the secondary resistance
Is set to an appropriate value. KR1 and KR2 may be zero if an error in the resistance estimation is allowed only during the first operation.

次に、ステップS12において、運転開始信号が与えら
れているかどうかをチューニング制御器5aが判別し、運
転開始信号が与えられるまで待機する。運転開始信号が
与えられれば、ステップS13において、インバータ2に
より誘導電動機1に直流電流が供給され抵抗測定器7が
1次抵抗及び2次抵抗を測定する。
Next, in step S12, the tuning controller 5a determines whether or not the operation start signal is given, and waits until the operation start signal is given. When the operation start signal is given, in step S13, a DC current is supplied to the induction motor 1 by the inverter 2, and the resistance measuring device 7 measures the primary resistance and the secondary resistance.

次に、ステップS14において、通常の運転モードの実
運転サイクルに移り、誘導電動機1の運転を開始する。
なお、ステップS14では、ステップS13において計測され
た抵抗値を初期値として、前回求められたKR1、KR2
(初回のみステップS11で設定された初期値)と誘導電
動機に流れている電流IよりKR1ΣI2t、KR2ΣI2tとし
て実運転サイクル運転中の1次抵抗及び2次抵抗の変動
分を推定し、この推定された1次抵抗及び2次抵抗を用
いてセンサレスベクトル制御器2は制御を行う。ステッ
プS15では停止信号が与えられて誘導電動機1が停止し
たかどうかをチューニング制御器5aが判別し、誘導電動
機1が運転中はステップS14に戻る。停止信号が与えら
れて誘導電動機1が停止すれば、ステップS16におい
て、再びインバータ2により誘導電動機1に直流電流が
供給され抵抗測定器7が1次抵抗及び2次抵抗を測定す
る。
Next, in step S14, the operation proceeds to the actual operation cycle of the normal operation mode, and the operation of the induction motor 1 is started.
In step S14, the resistance values measured in step S13 are used as initial values, and KR1 and KR2 obtained last time are determined.
Estimating a KR1shigumaI 2 t, variation in the primary resistance and secondary resistance during actual operation cycle operation as KR2shigumaI 2 t than the current I flowing in the induction motor (the only step the initial value set in step S11 the first time), The sensorless vector controller 2 performs control using the estimated primary resistance and secondary resistance. In step S15, the tuning controller 5a determines whether a stop signal is given and the induction motor 1 is stopped, and returns to step S14 while the induction motor 1 is operating. When the stop signal is given and the induction motor 1 stops, in step S16, a DC current is supplied to the induction motor 1 again by the inverter 2, and the resistance measuring device 7 measures the primary resistance and the secondary resistance.

さらに、ステップS17において、ステップS13で測定し
た起動時の1次抵抗及び2次抵抗と、ステップS16で測
定した停止時の1次抵抗及び2次抵抗の差分を誘導電動
機1の実運転サイクルの運転時間中に積算したΣI2t
(電流2乗値の時間積分値)で除し、単位量(i2t=
1)当たりの1次抵抗及び2次抵抗の変化係数KR1、K
R2を求める。これで一連の動作が完了し、再びステップ
S12に戻り、次の運転開始信号が与えられるまで待機す
る。
Further, in step S17, the difference between the primary resistance and the secondary resistance at the time of start-up measured in step S13 and the primary resistance and the secondary resistance at the time of stoppage measured in step S16 is calculated based on the actual operation cycle of the induction motor 1. ΣI 2 t integrated over time
(Time integral of the current squared value) and divide by the unit quantity (i 2 t =
1) Primary and secondary resistance change coefficients KR1 and K
Find R2. This completes a series of operations, and steps again
The process returns to S12 and waits until the next operation start signal is given.

上述の方法により誘導電動機1を制御すると、実運転
サイクル中に時々刻々変化する1次抵抗、2次抵抗を抵
抗変動推定器9aは推定し、センサレスベクトル制御器6
は誘導電動機1の速度がその指令値ωmに追従するよ
うに精度良く制御する。
When the induction motor 1 is controlled by the above-described method, the resistance fluctuation estimator 9a estimates the primary resistance and the secondary resistance that change every moment during the actual operation cycle, and the sensorless vector controller 6
Controls precisely so that the speed of the induction motor 1 follows the command value ωm * .

以上のように、この発明によれば、抵抗測定器7によ
り測定された起動時及び停止直後の抵抗値と電流検出器
3により検出された電流とに基づき抵抗変化係数を演算
する抵抗変化係数演算器8と、電流検出器3により検出
された電流と抵抗測定器7により測定された起動時の抵
抗値と抵抗変化係数演算器8により演算された抵抗変化
係数とに基づき抵抗変動を推定するための抵抗変動推定
器9aを設けたので、予め熱抵抗、熱時定数等設定するこ
となく誘導電動機1の抵抗変動を推定できる。
As described above, according to the present invention, the resistance change coefficient calculation for calculating the resistance change coefficient based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3. For estimating the resistance variation based on the detector 8, the current detected by the current detector 3, the resistance value at startup measured by the resistance measuring device 7, and the resistance change coefficient calculated by the resistance change coefficient calculator 8. Since the resistance fluctuation estimator 9a is provided, the resistance fluctuation of the induction motor 1 can be estimated without previously setting the thermal resistance, the thermal time constant, and the like.

さらに、抵抗変化係数演算器8は、抵抗測定器7によ
り測定された起動時の抵抗値と停止直後の抵抗値との差
分を、誘導電動機1の運転時間中に積算した、電流検出
器3により検出された電流の2乗値の時間積分値で除
し、単位熱量当たりの抵抗変化量として抵抗変化係数を
演算し、抵抗変動推定器9aは、抵抗測定器7により測定
された起動時の抵抗値を初期値とし、電流検出器3によ
り検出された電流の2乗値の時間積分値と抵抗変化係数
を乗算したものを抵抗変動値として抵抗値を推定演算す
るように構成したので、誘導電動機1に流れる電流値が
変化しても、それに対応した抵抗変動が推定できる。
Further, the resistance change coefficient calculator 8 calculates the difference between the resistance value at the start-up and the resistance value immediately after the stoppage measured by the resistance measuring device 7 during the operation time of the induction motor 1, and calculates the difference by the current detector 3. The resistance change coefficient is calculated by dividing the detected current by the time integral value of the square of the current and calculating the resistance change coefficient as the resistance change amount per unit calorie. Since the resistance value is estimated and calculated by multiplying the value obtained by multiplying the time integral value of the square value of the current detected by the current detector 3 by the resistance change coefficient as a resistance change value, the induction motor is used as an initial value. Even if the value of the current flowing through the switch 1 changes, the resistance fluctuation corresponding to the change can be estimated.

なお、停止時間が誘導電動機1の熱時定数に対して十
分に小さい場合は、停止直後に測定した抵抗値と次回起
動時の抵抗値の差は小さいため、停止直後の値をそのま
ま用いても殆ど誤差を生じない。つまり、チューニング
制御器5aの内部に誘導電動機1の停止時間をカウントす
る停止時間計測器を設け、停止時間が誘導電動機1の熱
時定数に対して十分短い時は抵抗測定器7による起動時
の抵抗測定を省略し、停止直後に測定した抵抗値を次回
起動時の抵抗値とみなして用いてもよい。
If the stop time is sufficiently small with respect to the thermal time constant of the induction motor 1, the difference between the resistance measured immediately after the stop and the resistance at the next start is small. Almost no error occurs. That is, a stop time measuring device for counting the stop time of the induction motor 1 is provided inside the tuning controller 5a, and when the stop time is sufficiently shorter than the thermal time constant of the induction motor 1, the start time by the resistance measuring device 7 is reduced. The resistance measurement may be omitted, and the resistance measured immediately after the stop may be used as the resistance at the next startup.

また、誘導電動機1の停止時において、チューニング
制御器5aの内部にタイマーを設け、誘導電動機1の熱時
定数に対して十分短い適当な間隔で抵抗測定器7により
抵抗値の測定を行い、起動信号が入力された時には、抵
抗測定器7による起動時の抵抗測定の代りに直前に測定
した停止時の抵抗値を用いてもよい。
Further, when the induction motor 1 is stopped, a timer is provided inside the tuning controller 5a, and the resistance value is measured by the resistance measuring device 7 at appropriate intervals sufficiently shorter than the thermal time constant of the induction motor 1 to start. When a signal is input, the resistance value measured immediately before stopping may be used instead of the resistance measurement performed at startup by the resistance measuring device 7.

それにより、起動時の抵抗測定が省略でき、速く起動
できるという効果がある。
Thereby, the resistance measurement at the time of starting can be omitted, and there is an effect that the starting can be performed quickly.

さらに、この実施の形態1では、抵抗変化係数演算器
8及び抵抗変動推定器9aにおいて、1次抵抗、2次抵抗
の変化係数演算及び1次抵抗、2次抵抗の推定演算に電
流検出器3により検出された誘導電動機1の電流の2乗
値を用いたが、センサレスベクトル制御器6内部で電流
指令値及びトルク指令値が作成されている場合はそれら
の2乗値を単位量として用いてもよい。また、誘導電動
機の出力トルクに概略比例した量を推定または検出する
手段がセンサレスベクトル制御器6内部または誘導電動
機の負荷側に備えられていれば、それらの出力の2乗値
を単位量として用いてもよい。
Further, in the first embodiment, the resistance change coefficient calculator 8 and the resistance change estimator 9a use the current detector 3 to calculate the change coefficient of the primary resistance and the secondary resistance and the calculation of the estimation of the primary resistance and the secondary resistance. Is used, the current command value and the torque command value are created in the sensorless vector controller 6 using the square values as unit amounts. Is also good. If means for estimating or detecting an amount approximately proportional to the output torque of the induction motor is provided inside the sensorless vector controller 6 or on the load side of the induction motor, the square value of the output is used as a unit amount. May be.

また、この実施の形態1では、抵抗変化係数演算器8
は、起動時と停止直後の1次抵抗及び2次抵抗測定値の
差分を誘導電動機運転時間中に積算したΣI2t(電流2
乗値の時間積分値)で除し、(6)式及び(7)式で得
られる単位量(I2t=1)当たりの1次抵抗及び2次抵
抗の変化係数KR1、KR2を演算するように構成した。こ
れは、誘導電動機1から発生する熱は殆どが誘導電動機
1の巻線抵抗に電流が流れることにより発生し、その発
熱量は電流Iの2乗に比例するためである。しかし、誘
導電動機1の軸に装着されている自冷ファン、強制ファ
ン等の冷却装置が装備されている場合、標準的な誘導電
動機1においては概略無負荷状態では温度上昇を生じな
いことが実験により確認された。そこで、抵抗変動推定
器9aにより1次抵抗及び2次抵抗の変化係数KR1、KR2
を演算するに際し、誘導電動機1の温度上昇は電流Iの
2乗から無負荷電流I0の2乗を差し引いた量に比例する
として(10)式及び(11)式により演算してもよい。
In the first embodiment, the resistance change coefficient calculator 8
Is the ΔI 2 t (current 2) obtained by integrating the difference between the primary resistance and secondary resistance measured values at the start and immediately after the stop during the operation time of the induction motor.
Divided by the time integral value) of squared values, calculates the equation (6) and (7) a unit amount obtained by the formula (I 2 t = 1) the variation coefficient of the primary resistance and secondary resistance per KR1, KR2 It was configured as follows. This is because most of the heat generated from the induction motor 1 is generated by the current flowing through the winding resistance of the induction motor 1, and the amount of heat generated is proportional to the square of the current I. However, when a cooling device such as a self-cooling fan or a forced fan mounted on the shaft of the induction motor 1 is equipped, the standard induction motor 1 does not cause a temperature rise under substantially no load. Confirmed by Therefore, the change coefficients KR1 and KR2 of the primary resistance and the secondary resistance are obtained by the resistance fluctuation estimator 9a.
May be calculated by the equations (10) and (11), assuming that the temperature rise of the induction motor 1 is proportional to the square of the current I minus the square of the no-load current I0.

なお、(10)式及び(11)式でKR1及びKR2を演算し
た場合、抵抗変動推定器9aは、抵抗測定器7で測定され
た起動時の1次抵抗及び2次抵抗を初期値として、(1
2)式及び(13)式により1次抵抗及び2次抵抗推定値R
1、R2を演算してセンサレスベクトル制御器6に出
力すればよい。
When KR1 and KR2 are calculated by the equations (10) and (11), the resistance fluctuation estimator 9a sets the primary resistance and the secondary resistance at the time of startup measured by the resistance measuring instrument 7 as initial values. (1
The primary resistance and the secondary resistance estimated value R are calculated by the equations 2) and (13).
What is necessary is just to calculate 1 * and R2 * and output them to the sensorless vector controller 6.

R1=KR1Σ(I2−I02)t+R1(起動時) ・・・(12) R2=KR2Σ(I2−I02)t+R2(起動時) ・・・(13) これにより、より実際の抵抗値に近い値として抵抗変
動を推定できるという効果がある。
R1 * = KR1Σ (I 2 -I0 2) t + R1 ( startup) ··· (12) R2 * = KR2Σ (I 2 -I0 2) t + R2 ( startup) by this ... (13), the actual more There is an effect that the resistance fluctuation can be estimated as a value close to the resistance value.

また、誘導電動機1の電流がほぼ一定である場合、抵
抗変化係数演算器8は電流の2乗値の時間積分値の計算
を省略し、抵抗測定器7から入力された誘導電動機1の
起動時及び停止直後の1次抵抗及び2次抵抗の差分を起
動から停止までの運転時間で除した単位時間当たりの抵
抗変化量として1次抵抗及び2次抵抗の変化係数KR1、
KR2を演算してもよい。この場合、抵抗変動推定器9a
は、単位時間当たりの変化量として演算された1次抵抗
及び2次抵抗の変化係数KR1、KK2に起動してからの経
過時間を乗じて抵抗変化量として演算すればよい。
When the current of the induction motor 1 is substantially constant, the resistance change coefficient calculator 8 omits the calculation of the time integral value of the square of the current, and starts the operation of the induction motor 1 input from the resistance measuring device 7. And the coefficient of change KR1 of the primary resistance and the secondary resistance as the resistance change per unit time obtained by dividing the difference between the primary resistance and the secondary resistance immediately after the stop by the operation time from the start to the stop.
KR2 may be calculated. In this case, the resistance fluctuation estimator 9a
May be calculated as the resistance change amount by multiplying the change coefficients KR1 and KK2 of the primary resistance and the secondary resistance calculated as the change amount per unit time by the elapsed time from the start.

これにより、演算量が少なくて抵抗変動を推定できる
という効果がある。
Thus, there is an effect that the resistance fluctuation can be estimated with a small amount of calculation.

さらに、この実施の形態1では、抵抗測定器7にて1
次抵抗及び2次抵抗を測定し、抵抗変化係数演算器8に
て1次抵抗及び2次抵抗の抵抗変化係数KR1、KR2を演
算し、抵抗変動推定器9にて1次抵抗及び2次抵抗推定
値R1、R2を演算するように構成したが、1次抵抗及
び2次抵抗は独立して演算できるため、片方のみ推定す
るように構成してもよい。
Further, in the first embodiment, the resistance
The primary resistance and the secondary resistance are measured by the resistance change coefficient calculator 8 to calculate the resistance change coefficients KR1 and KR2 of the primary resistance and the secondary resistance, and the resistance change estimator 9 calculates the primary resistance and the secondary resistance. Although the estimation values R1 * and R2 * are calculated, the primary resistance and the secondary resistance can be calculated independently, so that only one of them may be estimated.

つまり、センサレスベクトル制御器6で1次抵抗及び
2次抵抗の両方使用する場合は上述のように両方とも推
定し、1次抵抗のみ使用する場合は抵抗測定器7、抵抗
変化係数演算器8及び抵抗変動推定器9にて1次抵抗の
み対象として1次抵抗のみ推定し、2次抵抗のみ使用す
る場合は2次抵抗のみ対象として推定するように構成す
ればよい。
That is, when both the primary resistance and the secondary resistance are used in the sensorless vector controller 6, both are estimated as described above. When only the primary resistance is used, the resistance measuring device 7, the resistance change coefficient calculator 8, The resistance variation estimator 9 may be configured to estimate only the primary resistance only for the primary resistance and to estimate only the secondary resistance when only the secondary resistance is used.

上述の構成とすることにより、誘導電動機1の制御演
算に必要な抵抗値のみ測定することができ、抵抗測定器
76での抵抗測定の簡素化と、抵抗変化係数演算器8及び
抵抗変動推定器9aでの演算の簡略化ができるという効果
がある。
With the above configuration, it is possible to measure only the resistance value necessary for the control operation of the induction motor 1,
There is an effect that simplification of the resistance measurement at 76 and simplification of the calculations at the resistance change coefficient calculator 8 and the resistance variation estimator 9a can be achieved.

また、1次抵抗と2次抵抗は同様に変化するとして、
1次抵抗値のみ抵抗測定器7にて測定し、測定された1
次抵抗値を用いて抵抗変化係数演算器8にて1次抵抗の
抵抗変化係数KR1を演算し、2次抵抗の抵抗変化係数K
R2=KR1としてもよい。さらに、その逆でもよい。
Also, assuming that the primary resistance and the secondary resistance change similarly,
Only the primary resistance value was measured by the resistance measuring instrument 7 and the measured 1
The resistance change coefficient KR1 of the primary resistance is calculated by the resistance change coefficient calculator 8 using the secondary resistance value, and the resistance change coefficient K of the secondary resistance is calculated.
R2 = KR1 may be set. Further, the reverse may be applied.

実施の形態2. 第3図は本発明に係わる実施の形態2による誘導電動
機の制御装置を示すブロック図である。第3図におい
て、1は誘導電動機、2は誘導電動機1に電圧を供給す
るインバータ、3は誘導電動機1の電流を検出する電流
検出器、4は速度指令を発生する速度指令発生器、5bは
速度指令発生器4からの出力である速度指令を入力して
チューニングを制御するチューニング制御器、6は誘導
電動機1を制御するためのセンサレスベクトル制御器、
7は起動時及び停止時に誘導電動機1の1次及び2次抵
抗を測定する抵抗測定器である。8は電流検出器3と抵
抗測定器7の出力とに基づき誘導電動機1の抵抗変化係
数を演算するための抵抗変化係数演算器、11は抵抗測定
器7と抵抗変化係数演算器8の出力とを入力して抵抗変
化係数と抵抗値の関係を記憶する抵抗特性記憶器、9aは
電流検出器3と抵抗計測器7と抵抗特性記憶器11の出力
とに基づき誘導電動機1の抵抗変動を推定するための抵
抗変動推定器、10は起動時及び停止時には抵抗測定器7
側に閉路し、運転時にはセンサレスベクトル制御器6側
に閉路する制御切替器であり、チューニング制御器5bに
より制御される。
Second Embodiment FIG. 3 is a block diagram showing a control device for an induction motor according to a second embodiment of the present invention. In FIG. 3, 1 is an induction motor, 2 is an inverter that supplies a voltage to the induction motor 1, 3 is a current detector that detects the current of the induction motor 1, 4 is a speed command generator that generates a speed command, and 5b is A tuning controller for controlling a tuning by inputting a speed command which is an output from the speed command generator 4, a sensorless vector controller 6 for controlling the induction motor 1,
Reference numeral 7 denotes a resistance measuring device that measures the primary and secondary resistance of the induction motor 1 at the time of starting and stopping. Reference numeral 8 denotes a resistance change coefficient calculator for calculating the resistance change coefficient of the induction motor 1 based on the current detector 3 and the output of the resistance meter 7, and 11 denotes the output of the resistance meter 7 and the resistance change coefficient calculator 8. , And stores the relationship between the resistance change coefficient and the resistance value. 9a estimates the resistance fluctuation of the induction motor 1 based on the output of the current detector 3, the resistance measuring device 7 and the resistance characteristic storage 11. 10 is a resistance fluctuation estimator for starting and stopping when starting and stopping.
This is a control switch which is closed on the side and closed on the sensorless vector controller 6 side during operation, and is controlled by the tuning controller 5b.

次に、実施の形態2による誘導電動機の制御装置の動
作を説明する。実施の形態1においては、抵抗変動推定
器9aにより、抵抗変化係数演算器8で1回前の起動時と
停止直後の抵抗測定値を用いて演算した抵抗変化係数K
R1、KR2を用いて抵抗変動を推定したが、実施の形態2
においては、抵抗特性記憶器11に抵抗値に対する抵抗変
化係数を記憶し、記憶した抵抗変化係数KR1、KR2を用
いて抵抗変動推定器9aにより抵抗変動を推定する。
Next, the operation of the control device for the induction motor according to the second embodiment will be described. In the first embodiment, the resistance change estimator 9a calculates the resistance change coefficient K calculated by the resistance change coefficient calculator 8 using the resistance measurement values immediately before the start and immediately after the stop.
The resistance fluctuation was estimated using R1 and KR2.
In, the resistance change coefficient for the resistance value is stored in the resistance characteristic storage unit 11, and the resistance change is estimated by the resistance change estimator 9a using the stored resistance change coefficients KR1 and KR2.

ここで、誘導電動機1に電流Iが流れているとする
と、誘導電動機1からはその抵抗のために単位時間当た
りIの2乗に比例する熱量が発生すると考えられる。し
かし、誘導電動機1から周囲への放熱があるため、誘導
電動機1の温度上昇は1次遅れ的な特性を示し、その結
果として、誘導電動機1の1次抵抗及び2次抵抗、及び
1次抵抗及び2次抵抗の変化係数KR1、KR2は第4図に
示したような特性となる。第4図(a)は誘導電動機の
発熱量に係わる値と抵抗値の関係を説明し、第4図
(b)は誘導電動機の発熱量に係わる値と抵抗変化係数
の関係を説明している。なお、誘導電動機1の電流が一
定の場合、第4図の横軸は時間に読み替えることができ
る。
Here, assuming that the current I is flowing through the induction motor 1, it is considered that a heat quantity proportional to the square of I per unit time is generated from the induction motor 1 due to its resistance. However, since heat is radiated from the induction motor 1 to the surroundings, the temperature rise of the induction motor 1 exhibits a first-order lag characteristic, and as a result, the primary resistance and the secondary resistance of the induction motor 1 and the primary resistance In addition, the change coefficients KR1 and KR2 of the secondary resistance have characteristics as shown in FIG. FIG. 4 (a) illustrates the relationship between the value related to the heat value of the induction motor and the resistance value, and FIG. 4 (b) illustrates the relationship between the value related to the heat value of the induction motor and the resistance change coefficient. . When the current of the induction motor 1 is constant, the horizontal axis in FIG. 4 can be read as time.

さらに、第4図の特性を抵抗値に対する抵抗変化係数
の関係として示したのが第5図である。従って、実施の
形態1と同様の動作原理によって1次抵抗及び2次抵抗
の抵抗変化係数を実運動サイクル毎に演算して抵抗特性
記憶器11に記憶し、通常運転中は抵抗値の関数として抵
抗変化係数KR1、KR2を呼び出せば、より実際の抵抗変
化にあった係数を設定することができる。
FIG. 5 shows the characteristics of FIG. 4 as a relationship between the resistance value and the resistance change coefficient. Therefore, the resistance change coefficients of the primary resistance and the secondary resistance are calculated for each actual exercise cycle and stored in the resistance characteristic storage unit 11 according to the same operation principle as that of the first embodiment, and as a function of the resistance value during normal operation. By calling the resistance change coefficients KR1 and KR2, it is possible to set a coefficient that is more suitable for the actual resistance change.

まず、速度指令発生器4から速度指令ωmがチュー
ニング制御器5bに入力された起動時において、チューニ
ング制御器5bは制御切替器10を抵抗測定器7側に閉路
し、さらに抵抗測定開始信号を抵抗測定器7に出力す
る。抵抗測定器7はチューニング制御器5bからの抵抗測
定開始信号を入力すると誘導電動機1の1次及び2次抵
抗値の測定を開始する。なお、抵抗測定器7は実施の形
態1で述べた方法と同様の方法で抵抗値を測定する。
First, at the time of startup when the speed command ωm * is input from the speed command generator 4 to the tuning controller 5b, the tuning controller 5b closes the control switch 10 to the resistance measuring device 7 side and further outputs a resistance measurement start signal. Output to the resistance measuring device 7. When the resistance measurement device 7 receives the resistance measurement start signal from the tuning controller 5b, the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1. Note that the resistance measuring device 7 measures the resistance value by the same method as that described in the first embodiment.

次に、抵抗測定器7は1次抵抗及び2次抵抗の測定を
完了するとチューニング制御器5bに対して抵抗測定完了
を出力し、同時に抵抗変化係数演算器8、抵抗特性記憶
器11及び抵抗変動推定器9aに測定結果を出力する。チュ
ーニング制御器5bは、この抵抗測定器7から出力された
抵抗測定完了信号を入力すると制御切替器10をセンサレ
スベクトル制御器6側に閉路するように動作し、センサ
レスベクトル制御器6から出力されたスイッチング信号
によって誘導電動機1の運転を開始する。
Next, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, it outputs the completion of the resistance measurement to the tuning controller 5b, and simultaneously, the resistance change coefficient calculator 8, the resistance characteristic storage device 11, and the resistance variation. The measurement result is output to the estimator 9a. When the tuning controller 5b receives the resistance measurement completion signal output from the resistance measuring device 7, the tuning controller 5b operates to close the control switch 10 to the sensorless vector controller 6 side, and the tuning controller 5b outputs the signal from the sensorless vector controller 6. The operation of the induction motor 1 is started by the switching signal.

その後、速度指令発生器4から停止指令がチューニン
グ制御器5bを経由してセンサレスベクトル制御器6に入
力され、誘導電動機1が減速して停止すると、停止完了
信号がチューニング制御器5bに出力される。チューニン
グ制御器5bは、この停止完了信号の入力により抵抗測定
器7に抵抗測定開始信号を出力し、抵抗測定器7はこの
抵抗測定開始信号が入力されると再び起動時と同様の方
法により誘導電動機1の1次抵抗及び2次抵抗値の測定
を開始する。
Thereafter, a stop command is input from the speed command generator 4 to the sensorless vector controller 6 via the tuning controller 5b, and when the induction motor 1 stops after deceleration, a stop completion signal is output to the tuning controller 5b. . The tuning controller 5b outputs a resistance measurement start signal to the resistance measuring device 7 in response to the input of the stop completion signal, and when the resistance measurement starting signal is input, the resistance measuring device 7 induces again in the same manner as when starting. The measurement of the primary resistance and the secondary resistance of the electric motor 1 is started.

さらに、抵抗測定器7が1次抵抗及び2次抵抗の測定
を完了すると、チューニング制御器5bに対して抵抗測定
完了信号が送られ、同時に抵抗変化係数演算器8に測定
結果が出力される。抵抗変化係数演算器8は、チューニ
ング制御器5bから出力された制御信号と、電流検出器3
から出力された誘導電動機1の電流Iと、抵抗測定器7
から入力された誘導電動機1の起動時及び停止直後の1
次抵抗及び2次抵抗の測定値を入力し、実施の形態1で
述べた方法と同様の方法で単位量(I2t=1)当たりの
1次抵抗及び2次抵抗の変化係数KR1、KR2を演算して
抵抗特性記憶器11に出力する。
Further, when the resistance measuring device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5b, and the measurement result is output to the resistance change coefficient calculator 8 at the same time. The resistance change coefficient calculator 8 includes a control signal output from the tuning controller 5b and the current detector 3
Current I of the induction motor 1 output from the
At the start and immediately after the start of the induction motor 1
The measured values of the secondary resistance and the secondary resistance are input, and the change coefficients KR1 and KR2 of the primary resistance and the secondary resistance per unit amount (I 2 t = 1) are input in the same manner as described in the first embodiment. Is calculated and output to the resistance characteristic storage unit 11.

抵抗特性記憶器11は、抵抗特性記憶器11が記憶してい
る抵抗値と抵抗変化係数のうち、抵抗測定器7により測
定された起動時の抵抗測定値に最も近い抵抗値に対応す
る抵抗変化係数を抵抗変動推定器9aに出力する。抵抗変
動推定器9aはこの抵抗特性記憶器11から出力された抵抗
変化係数を入力して、実施の形態1と同様の動作により
1次抵抗及び2次抵抗の推定値を演算してセンサレスベ
クトル制御器6に出力する。この一連の動作が繰り返さ
れることにより、抵抗特性記憶器11には、複数の抵抗値
に対する抵抗変化係数KR1及びKR2が記憶され、より詳
細な抵抗値と抵抗変化係数の関係が蓄積される。また、
蓄積された抵抗値と抵抗変化係数の関係が抵抗変動推定
器9aにより抵抗推定に用いられるようになり、より精度
の高い抵抗推定が実現できる。
The resistance characteristic storage 11 stores the resistance change corresponding to the resistance closest to the resistance measured at startup measured by the resistance measuring device 7 among the resistance values and the resistance change coefficients stored in the resistance characteristic storage 11. The coefficient is output to the resistance fluctuation estimator 9a. The resistance change estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11, calculates the primary resistance and the secondary resistance by the same operation as in the first embodiment, and performs sensorless vector control. Output to the container 6. By repeating this series of operations, the resistance characteristic storage unit 11 stores the resistance change coefficients KR1 and KR2 for a plurality of resistance values, and stores a more detailed relationship between the resistance value and the resistance change coefficient. Also,
The relationship between the accumulated resistance value and the resistance change coefficient is used for the resistance estimation by the resistance variation estimator 9a, and more accurate resistance estimation can be realized.

実施の形態2による誘導電動機の制御装置の制御方法
を第6図に示すフローチャートにより説明する。まず、
ステップS101において、運転開始信号が与えられている
かどうかをチューニング制御器5bが判別し、運転開始信
号が与えられるまで待機する。運転開始信号が与えられ
れば、ステップS102において、インバータ2により直流
電流を誘導電動機1に供給し、1次抵抗及び2次抵抗を
抵抗測定器7が測定する。次に、ステップS103では、ス
テップS102で計測された抵抗値を用いて、抵抗特性記憶
器11に記憶されている抵抗変化係数KR1、KR2を参照す
る。さらに、ステップS104で通常の運転モードである実
運転サイクルに移り、誘導電動機1の運動を開始する。
なお、ステップS104では、ステップS102で計測された抵
抗値を初期値として、ステップS103で参照したKR1、K
R2と誘導電動機に流れている電流IよりKR1ΣI2t、KR
2ΣI2tとして実運転サイクルの運転中の1次抵抗及び2
次抵抗の変動分を推定し、この推定された1次抵抗及び
2次抵抗を用いてセンサレスベクトル制御器6がインバ
ータ2の制御を行う。
A control method of the control device for the induction motor according to the second embodiment will be described with reference to a flowchart shown in FIG. First,
In step S101, the tuning controller 5b determines whether or not the operation start signal is given, and waits until the operation start signal is given. When the operation start signal is given, in step S102, a DC current is supplied to the induction motor 1 by the inverter 2, and the primary resistance and the secondary resistance are measured by the resistance measuring device 7. Next, in step S103, the resistance change coefficients KR1 and KR2 stored in the resistance characteristic storage unit 11 are referred to using the resistance value measured in step S102. Further, in step S104, the process proceeds to the actual operation cycle, which is the normal operation mode, and the movement of the induction motor 1 is started.
In step S104, the resistance values measured in step S102 are set as initial values, and the values of KR1 and KR1 referred to in step S103 are determined.
R2 and induced current flowing to the motor I than KR1ΣI 2 t, KR
2ΣI 2 t and the primary resistance and 2
The variation of the secondary resistance is estimated, and the sensorless vector controller 6 controls the inverter 2 using the estimated primary resistance and secondary resistance.

ステップS105では停止信号が与えられて誘導電動機1
が停止したかどうかをチューニング制御器5bが判別し、
誘導電動機1が運転中はステップS104に戻る。停止信号
が与えられて誘導電動機1が停止すれば、ステップS106
で再びインバータ2により誘導電動機1の1次抵抗及び
2次抵抗を測定する。さらに、ステップS107において、
ステップS102で測定した起動時の1次抵抗及び2次抵抗
と、ステップS106で測定した停止時の1次抵抗及び2次
抵抗の差分を誘導電動機1の実運転サイクルの運転時間
中に積算したΣI2t(電流2乗値の時間積分値)で除
し、単位量(i2t=1)当たりの1次抵抗及び2次抵抗
の変化係数KR1、KR2を求める。次に、ステップS108に
おいて、抵抗特性記憶器11に記憶されている抵抗値に対
する抵抗変化係数の関係データにステップS107で演算し
た最新のデータを追加、もしくは最新のデータを用いて
従来のデータの補正を行う。これで一連の動作が完了
し、再びステップS101に戻り、次の運転開始信号が与え
られるまで待機する。
In step S105, a stop signal is given to the induction motor 1
The tuning controller 5b determines whether or not has stopped,
While the induction motor 1 is operating, the process returns to step S104. If a stop signal is given and the induction motor 1 stops, step S106
Then, the primary resistance and the secondary resistance of the induction motor 1 are measured by the inverter 2 again. Further, in step S107,
The difference between the primary resistance and the secondary resistance at the time of starting measured in step S102 and the primary resistance and the secondary resistance at the time of stopping measured in step S106 is integrated during the operation time of the actual operation cycle of the induction motor 1. 2 is divided by t (time integral value of the current squared) to obtain the unit weight (i 2 t = 1) the variation coefficient of the primary resistance and secondary resistance per KR1, KR2. Next, in step S108, the latest data calculated in step S107 is added to the relation data of the resistance change coefficient with respect to the resistance value stored in the resistance characteristic storage 11, or the conventional data is corrected using the latest data. I do. This completes a series of operations, returns to step S101 again, and waits until the next operation start signal is given.

以上のように、この実施の形態2による誘導電動機の
制御装置によれば、抵抗測定器7により測定された起動
時及び停止直後の抵抗値と電流検出器3により検出され
た電流とに基づき抵抗変化係数を演算する抵抗変化係数
演算器8と、抵抗測定器7により測定された抵抗値と抵
抗変化係数演算器8により演算された抵抗変化係数とを
入力して抵抗変化係数と抵抗値の関係を記憶する抵抗特
性記憶器11と、電流検出器3により検出された電流と抵
抗測定器7によい測定された起動時の抵抗値と抵抗特性
記憶器11からの出力である抵抗変化係数とに基づき抵抗
変動を推定するための抵抗変動推定器9aを設けたので、
予め熱抵抗、熱時定数等設定することなく、さらに、起
動時の抵抗値がその前の抵抗値に対して大きく差を生じ
ている場合でも良好に誘導電動機1の抵抗変動を推定で
きるという効果がある。
As described above, according to the control device for an induction motor according to the second embodiment, the resistance is determined based on the resistance value measured by the resistance measuring device 7 at the start and immediately after the stop and the current detected by the current detector 3. A resistance change coefficient calculator 8 for calculating a change coefficient, and a relation between the resistance change coefficient and the resistance value by inputting the resistance value measured by the resistance measuring device 7 and the resistance change coefficient calculated by the resistance change coefficient calculator 8. The resistance characteristic storage unit 11 stores the current detected by the current detector 3, the resistance value at the time of startup measured by the resistance measurement unit 7, and the resistance change coefficient output from the resistance characteristic storage unit 11. Since the resistance fluctuation estimator 9a for estimating the resistance fluctuation based on is provided,
The effect that the resistance fluctuation of the induction motor 1 can be satisfactorily estimated without setting the thermal resistance, the thermal time constant, and the like in advance, and even when the resistance value at the time of startup greatly differs from the previous resistance value. There is.

この実施の形態2による誘導電動機の制御装置におい
ては、抵抗値に対応する抵抗変化係数KR1、KR2の関係
を記憶して蓄積し、記憶した関係を用いて抵抗を推定す
るようにしたが、さらに電流検出器3により検出された
電流をパラメータとして抵抗値に対応する抵抗変化係数
KR1、KR2の関係を記憶して蓄積し、実運転サイクルの
運転中の電流と抵抗値に対応する抵抗変化係数KR1、K
R2の関係を参照して抵抗を推定するように構成してもよ
い。
In the induction motor control device according to the second embodiment, the relationship between the resistance change coefficients KR1 and KR2 corresponding to the resistance value is stored and accumulated, and the resistance is estimated using the stored relationship. The relationship between the resistance change coefficients KR1 and KR2 corresponding to the resistance values is stored and accumulated using the current detected by the current detector 3 as a parameter, and the current change during the actual operation cycle and the resistance change coefficient KR1 corresponding to the resistance value. , K
The resistance may be estimated with reference to the relationship of R2.

第4図に示したように、誘導電動機1の抵抗値はΣI2
tに対して1次遅れ的な特性を示す。但し、誘導電動機
1の負荷状態によって誘導電動機1に流れる電流が異な
る場合は最終温度上昇値が異なることが一般に知られて
おり、誘導電動機1の温度上昇と抵抗値上昇は比例関係
にあるため、第7図(a)に示すように誘導電動機1の
電流IをパラメータとしてΣI2tに対する抵抗値の特性
が得られ、また抵抗変化係数の関係は第7図(b)に示
したような電流Iをパラメータとした特性となる。
As shown in FIG. 4, the resistance value of the induction motor 1 is ΔI 2
It shows a first-order lag characteristic with respect to t. However, it is generally known that when the current flowing through the induction motor 1 varies depending on the load state of the induction motor 1, the final temperature rise value differs. Since the temperature rise of the induction motor 1 and the resistance value rise are in a proportional relationship, As shown in FIG. 7 (a), the characteristic of the resistance value with respect to ΣI 2 t is obtained using the current I of the induction motor 1 as a parameter, and the relationship of the resistance change coefficient is as shown in FIG. 7 (b). It becomes a characteristic using I as a parameter.

さらに、第7図(b)の特性を抵抗値に対する抵抗変
化係数の関係として示したのが第8図である。従って、
第3図に示す誘導電動機の制御装置と同様の動作原理に
よって1次抵抗及び2次抵抗の抵抗変化係数を実運転サ
イクル毎に演算し、電流をパラメータとして抵抗特性記
憶器11aに記憶して蓄積し、実運転サイクルの運転中は
電流をパラメータとして抵抗値に対する関数として抵抗
変化係数KR1、KR2を呼び出せば、誘導電動機の複数の
負荷状態に対する実際の抵抗変化にあった係数を設定す
ることができる。
Further, FIG. 8 shows the characteristic of FIG. 7 (b) as a relationship between the resistance value and the resistance change coefficient. Therefore,
According to the same operating principle as the induction motor control device shown in FIG. 3, the resistance change coefficients of the primary resistance and the secondary resistance are calculated for each actual operation cycle, and the current is stored as a parameter in the resistance characteristic storage 11a and stored. Then, during the operation of the actual operation cycle, if the resistance change coefficients KR1 and KR2 are called as a function with respect to the resistance value using the current as a parameter, a coefficient corresponding to the actual resistance change for a plurality of load states of the induction motor can be set. .

第9図はこの発明の実施の形態2による誘導電動機の
制御装置の他の態様を示すブロック図であり、第3図と
同一符号は同一又は相当部分を示す。第9図において、
11aは抵抗測定器7と抵抗変化係数演算器8の出力とを
入力して電流検出器3で検出された電流をパラメータと
して抵抗変化係数と抵抗値の関係を記憶する抵抗特性記
憶器である。
FIG. 9 is a block diagram showing another mode of the control device for the induction motor according to the second embodiment of the present invention, and the same reference numerals as in FIG. 3 indicate the same or corresponding parts. In FIG.
Reference numeral 11a denotes a resistance characteristic storage device that receives the resistance measurement device 7 and the output of the resistance change coefficient calculator 8 and stores the relationship between the resistance change coefficient and the resistance value using the current detected by the current detector 3 as a parameter.

抵抗特性記憶器11aは、抵抗変化係数演算器8から出
力された1次抵抗及び2次抵抗の変化係数KR1、KR2
と、電流検出器3で検出された誘導電動機1の電流とを
入力し、入力された電流をパラメータとして第8図に示
すような抵抗値と抵抗変化係数の関係を記憶するように
動作する。
The resistance characteristic memory 11a stores the change coefficients KR1 and KR2 of the primary resistance and the secondary resistance output from the resistance change coefficient calculator 8.
And the current of the induction motor 1 detected by the current detector 3, and operates so as to store the relationship between the resistance value and the resistance change coefficient as shown in FIG. 8 using the input current as a parameter.

また、抵抗特性記憶器11aは、記憶している抵抗値と
抵抗変化係数のうち、電流検出器3で検出された電流に
最も近い電流値に対応して記憶されている抵抗変化係数
特性のデータから、抵抗測定器7により測定された起動
時の抵抗測定値に最も近い抵抗値に対応する抵抗変化係
数を抵抗変動推定器9aに出力する。抵抗変動推定器9aは
この抵抗特性記憶器11aから出力された抵抗変化係数を
入力して、第3図で説明した誘導電動機の制御装置と同
様の動作により1次抵抗及び2次抵抗の推定値を演算し
てセンサレスベクトル制御器6に出力する。この一連の
動作が繰り返されることにより、抵抗特性記憶器11aに
は複数の抵抗値に対する抵抗変化係数KR1及びKR2が記
憶され、より詳細な抵抗値と抵抗変化係数の関係が蓄積
される。また、それが抵抗変動推定器9aにより抵抗推定
に用いられて精度の高い抵抗推定が実現できる。さらに
は、電流をパラメータとして抵抗変化係数と抵抗値の関
係を記憶して蓄積するため、誘導電動機1の複数の負荷
状態に対する実際の抵抗変化にあった係数を設定するこ
とができ、負荷の大きさにかかわらず精度の高い抵抗値
の推定ができるという効果がある。
The resistance characteristic storage unit 11a stores the resistance change coefficient characteristic data stored in correspondence with the current value closest to the current detected by the current detector 3 among the stored resistance value and resistance change coefficient. Then, the resistance change coefficient corresponding to the resistance value closest to the resistance measured value at startup measured by the resistance measurement device 7 is output to the resistance fluctuation estimator 9a. The resistance variation estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11a and estimates the primary resistance and the secondary resistance by the same operation as the induction motor control device described with reference to FIG. Is calculated and output to the sensorless vector controller 6. By repeating this series of operations, the resistance characteristic storage unit 11a stores the resistance change coefficients KR1 and KR2 for a plurality of resistance values, and stores a more detailed relationship between the resistance value and the resistance change coefficient. Further, it is used for the resistance estimation by the resistance fluctuation estimator 9a, so that highly accurate resistance estimation can be realized. Further, since the relationship between the resistance change coefficient and the resistance value is stored and accumulated using the current as a parameter, it is possible to set a coefficient corresponding to the actual resistance change with respect to a plurality of load states of the induction motor 1, and to set the load size. Irrespective of this, there is an effect that a highly accurate resistance value can be estimated.

なお、第9図に示す誘導電動機の制御装置の説明にお
いては、抵抗測定器7により測定された起動時の抵抗測
定値に最も近い抵抗値に対応する抵抗変化係数を抵抗変
動推定器9aに出力するようにしたが、運転中には抵抗変
動推定器9aから出力された抵抗の推定値を抵抗特性記憶
器11aに入力し、逐次その抵抗値に最も近い抵抗値に対
応する抵抗変化係数を抵抗変動推定器9aに出力してもよ
い。これにより、連続運転状態が長時間続いて抵抗変化
係数が変化していく場合でも、推定した抵抗値の変化に
伴って最適な値が用いられるようになり、より精度の高
い抵抗値の推定ができるという効果がある。
In the description of the control device for the induction motor shown in FIG. 9, the resistance change coefficient corresponding to the resistance value closest to the resistance measured value at startup measured by the resistance measurement device 7 is output to the resistance fluctuation estimator 9a. During operation, the estimated value of the resistance output from the resistance fluctuation estimator 9a is input to the resistance characteristic storage unit 11a, and the resistance change coefficient corresponding to the resistance value closest to the resistance value is sequentially determined. The output may be output to the fluctuation estimator 9a. As a result, even when the continuous operation state continues for a long time and the resistance change coefficient changes, the optimum value is used in accordance with the change in the estimated resistance value, and more accurate estimation of the resistance value is performed. There is an effect that can be.

実施の形態3. 実施の形態2においては、通常の運転を行いながら抵
抗値と抵抗変化係数の関係を記憶していったが、通常の
運転に先立ち、テスト運転モードとして誘導電動機1の
熱時定数よりも短い時間間隔でのサイクル運転を行い、
予め通常運転状態にて取りうる誘導電動機1の温度範囲
における複数点の抵抗値に対する抵抗変化係数を記憶し
てもよい。
Third Embodiment In the second embodiment, the relationship between the resistance value and the resistance change coefficient is stored while performing the normal operation. However, prior to the normal operation, the test operation mode is set as the test operation mode when the induction motor 1 is heated. Perform cycle operation at time intervals shorter than the constant,
The resistance change coefficients for a plurality of resistance values in the temperature range of the induction motor 1 that can be taken in the normal operation state may be stored in advance.

第10図はこの発明の実施の形態3による誘導電動機の
制御装置を示すブロック図であり、第3図と同一符号は
同一又は相当部分を示す。第10図において、12は誘導電
動機1の運転モードを設定する運転モード設定器、5cは
速度指令発生器4からの出力である速度指令と運転モー
ド設定器12からの出力である運転モード指令を入力して
チューニングを制御するチューニング制御器である。
FIG. 10 is a block diagram showing a control device for an induction motor according to Embodiment 3 of the present invention, and the same reference numerals as those in FIG. 3 denote the same or corresponding parts. In FIG. 10, reference numeral 12 denotes an operation mode setting device for setting the operation mode of the induction motor 1, and reference numeral 5c denotes a speed command output from the speed command generator 4 and an operation mode command output from the operation mode setting device 12. This is a tuning controller that controls tuning by inputting.

次に、実施の形態3による誘導電動機の制御装置の動
作を説明する。まず、運転モード設定器12にテスト運転
モードを設定すると、チューニング制御器5cはテスト用
の所定の運転サイクルとなるように切り替わる。次に、
速度指令発生器4から速度指令ωmが入力されると、
チューニング制御器5cは制御切替器10を抵抗測定器7側
に閉路し、さらに抵抗測定開始信号を抵抗測定器7に出
力する。抵抗測定器7はチューニング制御器5cからの抵
抗測定開始信号を入力すると誘導電動機1の1次及び2
次抵抗値の測定を開始する。なお、抵抗測定器7は実施
の形態1で述べた方法と同様の方法で抵抗値を測定す
る。
Next, the operation of the control device for an induction motor according to the third embodiment will be described. First, when the test operation mode is set in the operation mode setting unit 12, the tuning controller 5c switches so as to have a predetermined operation cycle for testing. next,
When the speed command ωm * is input from the speed command generator 4,
The tuning controller 5c closes the control switch 10 to the resistance measuring device 7 and outputs a resistance measurement start signal to the resistance measuring device 7. When the resistance measuring device 7 receives the resistance measurement start signal from the tuning controller 5c, the primary and secondary resistances of the induction motor 1 are controlled.
Start measurement of the next resistance value. Note that the resistance measuring device 7 measures the resistance value by the same method as that described in the first embodiment.

次に、抵抗測定器7は1次抵抗及び2次抵抗の測定を
完了するとチューニング制御器5cに対して抵抗測定完了
を出力し、同時に抵抗変化係数演算器8、抵抗特性記憶
器11及び抵抗変動推定器9aに測定結果を出力する。チュ
ーニング制御器5cは、この抵抗測定器7から出力された
抵抗測定完了信号を入力すると制御切替器10をセンサレ
スベクトル制御器6側に閉路するように動作し、センサ
レスベクトル制御器6から出力されたスイッチング信号
によって誘導電動機1の運転を開始する。
Next, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, it outputs a resistance measurement completion to the tuning controller 5c, and at the same time, the resistance change coefficient calculator 8, the resistance characteristic storage device 11, and the resistance fluctuation. The measurement result is output to the estimator 9a. When the tuning controller 5c receives the resistance measurement completion signal output from the resistance measuring device 7, the tuning controller 5c operates to close the control switch 10 to the sensorless vector controller 6 side, and the tuning controller 5c outputs the signal from the sensorless vector controller 6. The operation of the induction motor 1 is started by the switching signal.

その後、誘導電動機の熱時定数よりも短い時間経過後
に誘導電動機1を減速停止させ、センサレスベクトル制
御器6から停止完了信号をチューニング制御器5cに出力
する。チューニング制御器5cは、この停止完了信号の入
力により抵抗測定器7に抵抗測定開始信号を出力し、抵
抗測定器7はこの抵抗測定開始信号が入力されると再び
起動時と同様の方法により停止時の誘導電動機1の1次
抵抗及び2次抵抗値の測定を開始する。
Thereafter, after a lapse of time shorter than the thermal time constant of the induction motor, the induction motor 1 is decelerated and stopped, and a stop completion signal is output from the sensorless vector controller 6 to the tuning controller 5c. The tuning controller 5c outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and when the resistance measurement start signal is input, the resistance measurement device 7 stops again in the same manner as when starting. The measurement of the primary resistance and the secondary resistance of the induction motor 1 at the time is started.

さらに、抵抗測定器7が1次抵抗及び2次抵抗の測定
を完了すると、チューニング制御器5cに対して抵抗測定
完了信号が送られ、同時に抵抗変化係数演算器8に測定
結果が出力される。抵抗変化係数演算器8は、チューニ
ング制御器5cから出力された制御信号と、電流検出器3
から出力された誘導電動機1の電流Iと、抵抗測定器7
から入力された誘導電動機1の起動時及び停止直後の1
次抵抗及び2次抵抗の測定値を入力し、実施の形態1で
述べた方法と同様の方法で単位量(I2t=1)当たりの
1次抵抗及び2次抵抗の変化係数KR1、KR2を演算して
抵抗特性記憶器11に出力する。さらに、チューニング制
御器5cは上記サイクルを、運転回数、運転時間または抵
抗測定値の変化量等が予め設定された値になるまで繰り
返し行うように制御信号を出力し、その結果として抵抗
特性記憶器11には複数の抵抗値に対する抵抗変化係数K
R1及びKR2が記憶される。
Further, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5c, and the measurement result is output to the resistance change coefficient calculator 8 at the same time. The resistance change coefficient calculator 8 is configured to control the control signal output from the tuning controller 5c and the current detector 3
Current I of the induction motor 1 output from the
At the start and immediately after the start of the induction motor 1
The measured values of the secondary resistance and the secondary resistance are input, and the change coefficients KR1 and KR2 of the primary resistance and the secondary resistance per unit amount (I 2 t = 1) are input in the same manner as described in the first embodiment. Is calculated and output to the resistance characteristic storage unit 11. Further, the tuning controller 5c outputs a control signal so that the above-described cycle is repeatedly performed until the number of operations, the operation time, or the amount of change in the resistance measurement value reaches a preset value, and as a result, the resistance characteristic storage device 11 has a resistance change coefficient K for a plurality of resistance values.
R1 and KR2 are stored.

次に、テスト用の所定の運転サイクルが終了すると、
チューニング制御器5cはテスト運転モードから通常運転
モードに切り替わる。次回起動時からは実施の形態2で
述べたと同様の動作により、抵抗特性記憶器11は記憶し
ている抵抗値と抵抗変化係数のうち、抵抗測定器7によ
り測定された起動時の抵抗測定値に最も近い抵抗値に対
応する抵抗変化係数を抵抗変動推定器9aに出力する。抵
抗変動推定器9aはこの抵抗特性記憶器11から出力された
抵抗変化係数を入力して、実施の形態1で述べた同様の
動作により1次抵抗及び2次抵抗の推定値を演算してセ
ンサレスベクトル制御器6に出力する。
Next, when a predetermined driving cycle for testing is completed,
The tuning controller 5c switches from the test operation mode to the normal operation mode. From the next start-up, by the same operation as described in the second embodiment, the resistance characteristic storage 11 stores the resistance measured value at the start-up measured by the resistance measuring device 7 out of the stored resistance value and resistance change coefficient. Is output to the resistance fluctuation estimator 9a. The resistance change estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11 and calculates the estimated values of the primary resistance and the secondary resistance by the same operation as described in the first embodiment, and performs sensorless operation. Output to the vector controller 6.

これにより、通常運転状態の実運転サイクルにおいて
は、より適切な抵抗値と抵抗変化係数の関係が記憶さ
れ、良好に抵抗変動が推定できるという効果がある。ま
た、起動時及び停止直後の抵抗測定を省略することも可
能であり、起動を速めることができるという効果があ
る。
Thereby, in the actual operation cycle in the normal operation state, there is an effect that the more appropriate relationship between the resistance value and the resistance change coefficient is stored, and the resistance fluctuation can be estimated well. Further, it is possible to omit the resistance measurement at the time of start-up and immediately after the stop, and there is an effect that the start-up can be accelerated.

なお、抵抗特性記憶器11は、テスト用の所定の運転モ
ードで記憶された複数の抵抗値に対する抵抗変化係数
を、多項式近似や最小2乗法による関数近似等行い、滑
らかに補間された関数として記憶してもよい。
Note that the resistance characteristic storage unit 11 stores a resistance change coefficient for a plurality of resistance values stored in a predetermined test operation mode as a function interpolated by performing a polynomial approximation or a function approximation using a least-squares method, etc. May be.

これにより、抵抗値から抵抗変化係数を参照する際に
より実際の変化に近い値として参照することができ、良
好に抵抗変動が推定できるという効果がある。
Thereby, when referring to the resistance change coefficient from the resistance value, the resistance change coefficient can be referred to as a value closer to the actual change, and there is an effect that the resistance change can be well estimated.

また、通常の実運転サイクルにおいて抵抗変動推定器
9aにより推定された停止直後の抵抗推定値と、抵抗測定
器7により測定された停止直後の抵抗測定値を比較し、
これらの差が所定値を超えた場合には抵抗特性記憶器11
が記憶している抵抗値と抵抗変化係数の関数を補正する
ように構成してもよい。
In addition, a resistance fluctuation estimator
9a, the resistance value immediately after the stop is estimated by the resistance measuring device 7 and the resistance value immediately after the stop is compared.
If these differences exceed a predetermined value, the resistance characteristic storage 11
May be configured so as to correct the function of the resistance value and the resistance change coefficient stored by.

これにより、気温の変化や電動機周辺の環境変化等に
よる、誘導電動機温度と雰囲気温度との温度差や周囲の
空気の流量等の変化が生じても、抵抗特性記憶器11に記
憶されている特性の実際の特性に一致するように常に補
正することができ、良好にて抵抗変動が推定できるとい
う効果がある。
As a result, even when a temperature difference between the induction motor temperature and the ambient temperature or a change in the flow rate of the surrounding air due to a change in air temperature or an environmental change in the vicinity of the motor occurs, the characteristic stored in the resistance characteristic storage unit 11 is obtained. Can always be corrected so as to match the actual characteristics, and the effect is that the resistance fluctuation can be estimated in good condition.

さらに、通常の実運転サイクルの運転中において、抵
抗変動推定器9aにより推定された抵抗値を用いて逐次抵
抗特性記憶器11に記憶されている抵抗変化係数を参照
し、抵抗変動推定器9aでは参照された抵抗変化係数を用
いて抵抗値を推定するように構成してもよい。
Furthermore, during the operation of the normal actual operation cycle, the resistance variation estimator 9a refers to the resistance change coefficient stored in the sequential resistance characteristic storage 11 using the resistance value estimated by the resistance variation estimator 9a. The resistance value may be estimated using the referred resistance change coefficient.

これにより、運転中の誘導電動機の温度上昇により変
化していく抵抗値に逐次対応した抵抗変化係数を設定で
き、起動時からの抵抗変化量が大きくても良好に抵抗変
動が推定できるという効果がある。
As a result, it is possible to set a resistance change coefficient that sequentially corresponds to the resistance value that changes due to the temperature rise of the induction motor during operation, and has an effect that the resistance change can be well estimated even when the resistance change amount from the start is large. is there.

実施の形態4. 上述の実施の形態においては、誘導電動機1の温度変
動による抵抗値変化を推定し、センサレスベクトル制御
器6により推定した抵抗値を用いてインバータ2を制御
する構成としたが、抵抗値変化からさらに誘導電動機1
の温度上昇を推定するように構成してもよい。
Embodiment 4 In the above-described embodiment, the resistance value change due to the temperature fluctuation of the induction motor 1 is estimated, and the inverter 2 is controlled using the resistance value estimated by the sensorless vector controller 6, but Induction motor 1 from resistance change
May be configured to estimate the temperature rise.

第11図はこの発明の実施の形態4による誘導電動機の
制御装置を示すブロック図であり、第3図と同一符号は
同一又は相当部分を示す。第11図において、13は抵抗変
動推定器9aから出力された抵抗推定値を入力して誘導電
動機1の温度を推定する温度推定器、5dは速度指令発生
器4からの出力である速度指令と温度推定器13からの出
力である誘導電動機1の温度推定値を入力してチューニ
ングを制御するチューニング制御器である。
FIG. 11 is a block diagram showing a control device for an induction motor according to Embodiment 4 of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts. In FIG. 11, 13 is a temperature estimator for estimating the temperature of the induction motor 1 by inputting the resistance estimation value output from the resistance fluctuation estimator 9a, 5d is a speed command which is an output from the speed command generator 4, and The tuning controller controls the tuning by inputting the estimated temperature of the induction motor 1 output from the temperature estimator 13.

温度推定器13は、抵抗測定器7により測定された誘導
電動機1の温度が概略既知の状態における1次、2次抵
抗の抵抗値を予め記憶する。次に、抵抗変動推定器9aか
ら出力された抵抗推定値を入力して、予め記憶された抵
抗値との比と、誘導電動機1の1次導体及び2次導体の
材質に固有の熱抵抗変化係数とから誘導電動機1の1次
導体及び2次導体の温度を推定する。例えば、1次導体
の材質が銅の場合、温度t0℃において抵抗測定器7によ
り測定した抵抗値がR1(t0)とすると、抵抗変動推定器
9aから出力された抵抗値がR1(t1)における誘導電動機
1の温度t 1℃は(14)式で推定できる。
The temperature estimator 13 stores in advance the resistance values of the primary and secondary resistances in a state where the temperature of the induction motor 1 measured by the resistance measuring device 7 is substantially known. Next, the resistance estimation value output from the resistance fluctuation estimator 9a is input, and the ratio between the resistance value stored in advance and the thermal resistance change specific to the materials of the primary conductor and the secondary conductor of the induction motor 1 are determined. From the coefficients, the temperatures of the primary conductor and the secondary conductor of the induction motor 1 are estimated. For example, if the material of the primary conductor is copper and the resistance value measured by the resistance measuring device 7 at the temperature t0 ° C. is R1 (t0), the resistance fluctuation estimator
The temperature t 1 ° C of the induction motor 1 when the resistance value output from 9a is R1 (t1) can be estimated by equation (14).

さらに、チューニング制御器5dは、温度推定器13から
出力された誘導電動機1の上記温度推定値を入力して、
予め設定された温度以上に温度推定値が上昇すれば、焼
損防止のために誘導電動機1を停止させるように動作す
る。
Further, the tuning controller 5d receives the temperature estimation value of the induction motor 1 output from the temperature estimator 13 and
When the estimated temperature rises above a preset temperature, the operation is performed to stop the induction motor 1 to prevent burning.

ここで、誘導電動機1の概略既知の温度における抵抗
値を測定する時、誘導電動機1に特別に熱電対等の検出
器を設けなくても、誘導電動機1が周囲温度とほぼ同じ
温度状態にある時に抵抗測定器7により抵抗値を測定
し、その時の周囲温度を測定したものを誘導電動機1の
温度として設定すればよい。
Here, when measuring the resistance value of the induction motor 1 at a generally known temperature, when the induction motor 1 is in a temperature state substantially equal to the ambient temperature without providing a special detector such as a thermocouple in the induction motor 1. What is necessary is just to set the measured value of the ambient temperature at that time by measuring the resistance value with the resistance measuring device 7 as the temperature of the induction motor 1.

なお、チューニング制御器5dは、温度推定器13から出
力された誘導電動機1の上記温度推定値を入力して、予
め設定された温度以上に温度推定値が上昇すれば、誘導
電動機1を停止させる代りに外部に警報信号を出力する
ように構成してもよい。また、誘導電動機1の温度表示
として、温度推定器13で推定された温度指定値を表示さ
せてもよい。
The tuning controller 5d receives the temperature estimation value of the induction motor 1 output from the temperature estimator 13 and stops the induction motor 1 if the temperature estimation value rises above a preset temperature. Alternatively, an alarm signal may be output to the outside. Further, as the temperature display of the induction motor 1, the specified temperature value estimated by the temperature estimator 13 may be displayed.

以上のように、この発明によれば、抵抗測定器7によ
り測定された起動時及び停止直後の抵抗値と前記電流検
出器3により検出された電流とに基づき抵抗変化係数を
演算する抵抗変化係数演算器8と、抵抗測定器7により
測定された抵抗値と抵抗変化係数演算器8により演算さ
れた抵抗変化係数とを入力して抵抗変化係数と抵抗値の
関係を記憶する抵抗特性記憶器11と、電流検出器3によ
り検出された電流と抵抗測定手段により測定された起動
時の抵抗値と抵抗特性記憶器11からの出力である抵抗変
化係数とに基づき抵抗変動を推定するための抵抗変動推
定器9aと、抵抗変動推定器9aからの出力である推定抵抗
値から誘導電動機1の温度を推定する温度推定器13を設
けたので、予め誘導電動機の熱抵抗、熱時定数等を設定
することなく、誘導電動機の温度上昇を推定できるとい
う効果がある。
As described above, according to the present invention, the resistance change coefficient that calculates the resistance change coefficient based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3 A computing unit 8, a resistance characteristic storage unit 11 that receives the resistance value measured by the resistance measuring unit 7 and the resistance change coefficient calculated by the resistance change coefficient computing unit 8 and stores the relationship between the resistance change coefficient and the resistance value. And a resistance change for estimating the resistance change based on the current detected by the current detector 3, the resistance value at startup measured by the resistance measuring means, and the resistance change coefficient output from the resistance characteristic storage unit 11. Since the estimator 9a and the temperature estimator 13 for estimating the temperature of the induction motor 1 from the estimated resistance value output from the resistance fluctuation estimator 9a are provided, the thermal resistance, thermal time constant, etc. of the induction motor are set in advance. Without induction The effect is that the temperature rise of the machine can be estimated.

なお、抵抗測定器7により測定される誘導電動機1の
1次抵抗値は、インバータ2から誘導電動機1への配線
抵抗分も含めて測定されることになる。しかし、インバ
ータ2から誘導電動機1への配線は通常あまり温度上昇
しないように選定、布設されているため、温度変化を温
度推定器13に予め配線抵抗値Rhを設定しておき、配線抵
抗値Rhは運転中に一定と仮定して(14)式に代えて(1
5)式を用いてもよい。
The primary resistance value of the induction motor 1 measured by the resistance measuring device 7 is measured including the wiring resistance from the inverter 2 to the induction motor 1. However, since the wiring from the inverter 2 to the induction motor 1 is usually selected and laid so that the temperature does not rise too much, the temperature change is set in advance in the temperature estimator 13 by the wiring resistance Rh, and the wiring resistance Rh is set. Is assumed to be constant during operation, and instead of equation (14), (1
5) Equation may be used.

ここで、インバータ2から誘導電動機1への配線の抵
抗値はブリッジ、ミリオーム計等の低抵抗測定器で測定
した値を設定しても、また、配線の単位長当たりの抵抗
値が製造者のデータ等により予め既知であれば、それに
配線長さを掛けて計算により求めて設定してもよい。
Here, the resistance value of the wiring from the inverter 2 to the induction motor 1 may be set to a value measured by a low resistance measuring device such as a bridge or a milliohm meter. If it is known in advance by data or the like, it may be obtained by calculation by multiplying it by the wiring length and set.

これにより、インバータ2から誘導電動機1への配線
抵抗が比較的大きくても、誘導電動機1の1次抵抗変動
をより正確に推定することができ、それによって誘導電
動機1の温度上昇を良好に推定できるという効果があ
る。
Thereby, even if the wiring resistance from the inverter 2 to the induction motor 1 is relatively large, the primary resistance fluctuation of the induction motor 1 can be more accurately estimated, whereby the temperature rise of the induction motor 1 can be satisfactorily estimated. There is an effect that can be.

また、上述の実施の形態全てにおいて、インバータ2
を用いた誘導電動機1の抵抗測定には、単相印加、低電
圧三相印加による抵抗測定等、多くの既知の抵抗測定方
法があり、さらにこれ以外のどのような抵抗測定方法を
用いても本発明の誘導電動機の制御装置が構成できるこ
とはいうまでもない。
In all of the above-described embodiments, the inverter 2
There are many known resistance measurement methods such as single-phase application, resistance measurement by low-voltage three-phase application, and the like. It goes without saying that the control device for an induction motor of the present invention can be configured.

また、これら実施の形態を適当に組み合わせて実施す
ることができるのはいうまでもない。
Needless to say, these embodiments can be implemented in an appropriate combination.

産業上の利用可能性 以上のように、この発明にかかるは誘導電動機の制御
装置及び誘導電動機の制御方法は、例えば、誘導電動機
の巻線の運転中の温度変化に伴う抵抗値変化を推定し、
推定した巻線抵抗値を基に誘導電動機を指令速度に追従
するようにベクトル制御及びセンサレスでベクトル制御
を行う誘導電動機の制御装置及び誘導電動機の制御方法
に適している。
INDUSTRIAL APPLICABILITY As described above, the control device for an induction motor and the control method for an induction motor according to the present invention, for example, estimate a resistance change due to a temperature change during operation of a winding of the induction motor. ,
The present invention is suitable for an induction motor control device and an induction motor control method for performing vector control and sensorless vector control so that the induction motor follows the command speed based on the estimated winding resistance value.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−117683(JP,A) 特開 平6−30587(JP,A) 特開 平6−165562(JP,A) 特開 昭58−215992(JP,A) 特開 昭60−16184(JP,A) 特開 昭61−76090(JP,A) 特開 昭61−231890(JP,A) 特開 昭63−249486(JP,A) 特開 昭56−86089(JP,A) 特開 昭62−79380(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02P 5/408 - 5/412 H02P 7/628 - 7/632 H02P 21/00 H02M 7/42 - 7/98 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-117683 (JP, A) JP-A-6-30587 (JP, A) JP-A-6-165562 (JP, A) JP-A-58-58 215992 (JP, A) JP-A-60-16184 (JP, A) JP-A-61-76090 (JP, A) JP-A-61-231890 (JP, A) JP-A-63-249486 (JP, A) JP-A-56-86089 (JP, A) JP-A-62-79380 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02P 5/408-5/412 H02P 7/628 -7/632 H02P 21/00 H02M 7/42-7/98

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(補正後)誘導電動機の運転を開始し所定
期間運転した後に停止させる第1の運転サイクルと、該
第1の運転サイクルの後再び前記誘導電動機の運転を開
始する第2の運転サイクルと、を少なくとも含むように
前記誘導電動機の運転を制御する誘導電動機の制御装置
において、 前記誘導電動機に電圧を供給するインバータと、前記誘
導電動機の巻線抵抗値を測定する抵抗測定手段と、前記
第1の運転サイクルの前後に測定された前記巻線抵抗値
の差と前記第1の運転サイクル中に発生した前記誘導電
動機の発熱量に係わる値を基に、この値の単位量当たり
の巻線抵抗の変化の度合いを表わす抵抗変化係数を演算
する抵抗変化係数演算手段と、前記第2の運転サイクル
の起動時に前記抵抗測定手段により測定された起動時巻
線抵抗値と前記第2の運転サイクル中の前記誘導電動機
の発熱量に係わる値と前記抵抗変化係数とを基に推定し
た推定巻線抵抗値を出力する抵抗変動推定手段と、前記
推定巻線抵抗値を用いて前記インバータを制御する制御
手段とを備え、前記発熱量に係わる値が、前記誘導電動
機の発熱量自体又は該発熱量に応じて変動する所定の物
理値に相当することを特徴とする誘導電動機の制御装
置。
1. A first operation cycle in which the operation of an induction motor is started (after correction) and is stopped after a predetermined period of operation, and a second operation in which the operation of the induction motor is started again after the first operation cycle. An operation cycle, and a control device for the induction motor that controls the operation of the induction motor so as to include at least: an inverter that supplies a voltage to the induction motor; and a resistance measurement unit that measures a winding resistance value of the induction motor. Based on a difference between the winding resistance measured before and after the first operation cycle and a value related to a heat value of the induction motor generated during the first operation cycle, per unit amount of this value. Resistance change coefficient calculating means for calculating a resistance change coefficient representing the degree of change in the winding resistance of the winding; and starting winding resistance measured by the resistance measuring means at the start of the second operation cycle. Resistance variation estimating means for outputting an estimated winding resistance value estimated based on a value and a value related to a heat value of the induction motor during the second operation cycle and the resistance change coefficient; and the estimated winding resistance value. And a control unit for controlling the inverter using the control unit, wherein the value related to the heat value corresponds to the heat value itself of the induction motor or a predetermined physical value that varies according to the heat value. Control device for induction motor.
【請求項2】抵抗変化係数演算手段は、第1の運転サイ
クル中に発生した誘導電動機の発熱量に係わる値を前記
誘導電動機に供給した電流値を基に演算し、抵抗変動推
定手段は、第2の運転サイクル中に発生する誘導電動機
の発熱量に係わる値を前記誘導電動機に供給した電流値
を基に演算することを特徴とする請求の範囲第1項に記
載の誘導電動機の制御装置。
2. The resistance change coefficient calculation means calculates a value related to a heat value of the induction motor generated during the first operation cycle based on a current value supplied to the induction motor, and the resistance change estimation means includes: 2. The control device for an induction motor according to claim 1, wherein a value related to a calorific value of the induction motor generated during the second operation cycle is calculated based on a current value supplied to the induction motor. .
【請求項3】抵抗変化係数演算手段は、第1の運転サイ
クル中に発生した誘導電動機の発熱量に係わる値を前記
誘導電動機に指令したトルク指令値を基に演算し、抵抗
変動推定手段は、第2の運転サイクル中に発生する誘導
電動機の発熱量に係わる値を前記誘導電動機に指令した
トルク指令値を基に演算することを特徴とする請求の範
囲第1項に記載の誘導電動機の制御装置。
3. A resistance change coefficient calculating means calculates a value related to a heat generation amount of the induction motor generated during the first operation cycle based on a torque command value instructed to the induction motor. 2. The induction motor according to claim 1, wherein a value related to a heat value of the induction motor generated during the second operation cycle is calculated based on a torque command value instructed to the induction motor. Control device.
【請求項4】抵抗推定手段は、第1の運転サイクルの停
止時に抵抗測定手段が測定した停止時巻線抵抗値を前記
第2の運転サイクルの起動時に測定した起動時巻線抵抗
として前記第2の運転サイクル中の推定巻線抵抗値を出
力することを特徴とする請求の範囲第1項に記載の誘導
電動機の制御装置。
4. The resistance estimating means is configured to determine the stop winding resistance measured by the resistance measuring means when the first operation cycle is stopped as the start winding resistance measured at the start of the second operation cycle. The control device for an induction motor according to claim 1, wherein an estimated winding resistance value during the second operation cycle is output.
【請求項5】(補正後)誘導電動機の運転を開始し所定
期間運転した後に停止させる第1の運転サイクルと、該
第1の運転サイクルの後再び前記誘導電動機の運転を開
始する第2の運転サイクルと、を少なくとも含むように
前記誘導電動機の運転を制御する誘導電動機の制御装置
において、 前記誘導電動機に電圧を供給するインバータと、前記誘
導電動機の巻線抵抗値を測定する抵抗測定手段と、第1
の運転サイクルの前後に測定された前記巻線抵抗値の差
と前記第1の運転サイクル中に発生した前記誘導電動機
の発熱量に係わる値とを基に、この値の単位量当たりの
巻線抵抗の変化の度合いを表わす抵抗変化係数を演算す
る抵抗変化係数演算手段と、前記抵抗変化係数と前記巻
線抵抗値との関係を記憶し、前記第2の運転サイクルの
起動時に前記抵抗測定手段により測定された起動時巻線
抵抗値を基に記憶した前記関係を参照して抵抗変化係数
を出力する抵抗特性記憶手段と、前記起動時巻線抵抗値
を基に前記抵抗特性記憶手段から出力された抵抗変化係
数と前記第2の運転サイクルの前記誘導電動機の発熱量
に係わる値とから推定巻線抵抗値を推定して出力する抵
抗変動推定手段と、前記推定巻線抵抗値を用いて前記イ
ンバータを制御する制御手段とを備え、前記発熱量に係
わる値が、前記誘導電動機の発熱量自体又は該発熱量に
応じて変動する所定の物理値に相当することを特徴とす
る誘導電動機の制御装置。
5. A first operation cycle in which the operation of the induction motor is started (after correction) and is stopped after a predetermined period of operation, and a second operation in which the operation of the induction motor is started again after the first operation cycle. An operation cycle, and a control device for the induction motor that controls the operation of the induction motor so as to include at least: an inverter that supplies a voltage to the induction motor; and a resistance measurement unit that measures a winding resistance value of the induction motor. , First
Based on the difference between the winding resistance values measured before and after the operation cycle and a value related to the calorific value of the induction motor generated during the first operation cycle. Resistance change coefficient calculating means for calculating a resistance change coefficient representing a degree of change in resistance; storing a relationship between the resistance change coefficient and the winding resistance value; A resistance characteristic storage unit that outputs a resistance change coefficient by referring to the relationship stored based on the startup winding resistance value measured by the above, and an output from the resistance characteristic storage unit based on the startup winding resistance value. Resistance variation estimating means for estimating and outputting an estimated winding resistance value from the obtained resistance change coefficient and a value relating to the heat value of the induction motor in the second operation cycle, and using the estimated winding resistance value. Control the inverter And control means, the value relating to the amount of heat generated, the control device of an induction motor, characterized in that corresponding to a predetermined physical value which varies as a function of the calorific value itself or emitting heat of the induction motor.
【請求項6】抵抗特性記憶手段は、第1の運転サイクル
中の電流値をパラメータとして抵抗変化係数と巻線抵抗
値との関係を記憶し、抵抗測定手段が第2の運転サイク
ルの起動時に測定した起動時巻線抵抗値に対応する抵抗
変化係数を前記第2の運転サイクルの電流値を参照して
出力することを特徴とする請求の範囲第5項に記載の誘
導電動機の制御装置。
6. A resistance characteristic storage means for storing a relationship between a resistance change coefficient and a winding resistance value using a current value during a first operation cycle as a parameter, and a resistance measurement means for starting the second operation cycle. 6. The control device for an induction motor according to claim 5, wherein a resistance change coefficient corresponding to the measured start-up winding resistance value is output with reference to the current value in the second operation cycle.
【請求項7】抵抗特性記憶手段は、第1の運転サイクル
により抵抗変化係数演算手段が演算した抵抗変化係数と
その時点で抵抗測定手段が測定した巻線抵抗値との関係
を関数近似して記憶することを特徴とする請求の範囲第
5項に記載の誘導電動機の制御装置。
7. The resistance characteristic storage means approximates a function between the resistance change coefficient calculated by the resistance change coefficient calculation means in the first operation cycle and the winding resistance value measured by the resistance measurement means at that time. The control device for an induction motor according to claim 5, wherein the control device stores the information.
【請求項8】抵抗変化係数演算手段は、第2の運転サイ
クルの停止時に推定した推定巻線抵抗と抵抗測定手段が
前記第2の運転サイクルの停止時に測定した停止時巻線
抵抗とを比較しこれらの差異が所定値を超える場合に抵
抗特性記憶手段が記憶している巻線抵抗値と抵抗変化係
数との関係を修正することを特徴とする請求の範囲第5
項に記載の誘導電動機の制御装置。
8. The resistance change coefficient calculating means compares the estimated winding resistance estimated at the time of stopping the second operation cycle with the winding resistance at stop measured at the time of stopping the second operation cycle by the resistance measuring means. And wherein when the difference exceeds a predetermined value, the relation between the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage means is corrected.
The control device for an induction motor according to Item.
【請求項9】誘導電動機の巻線の温度と巻線抵抗値との
関係を予め記憶し、抵抗変化係数演算手段が出力する推
定巻線抵抗値を基に前記巻線の温度と巻線抵抗値との関
係から前記巻線の温度を推定する温度推定手段を具備し
たことを特徴とする請求の範囲第5項に記載の誘導電動
機の制御装置。
9. The relationship between the temperature of the winding of the induction motor and the resistance of the winding is stored in advance, and the temperature of the winding and the resistance of the winding are determined based on the estimated winding resistance output by the resistance change coefficient calculating means. 6. The control device for an induction motor according to claim 5, further comprising a temperature estimating means for estimating a temperature of the winding from a relationship with a value.
【請求項10】温度推定手段は、予めインバータから誘
導電動機までの配線の抵抗値を記憶し、抵抗測定手段が
出力する1次巻線抵抗値から前記配線の抵抗値を減算し
た値を基に前記1次巻線の温度を推定することを特徴と
する請求の範囲第9項に記載の誘導電動機の制御装置。
10. The temperature estimating means stores the resistance value of the wiring from the inverter to the induction motor in advance, and based on the value obtained by subtracting the resistance value of the wiring from the primary winding resistance value output by the resistance measuring means. The control device for an induction motor according to claim 9, wherein the temperature of the primary winding is estimated.
【請求項11】温度推定手段は、巻線の温度が所定値を
超えた場合に、誘導電動機の運転を停止する停止信号を
制御手段に出力し、この制御手段がインバータの運転を
停止することを特徴とする請求の範囲第9項に記載の誘
導電動機の制御装置。
11. The temperature estimating means outputs a stop signal for stopping the operation of the induction motor to the control means when the temperature of the winding exceeds a predetermined value, and the control means stops the operation of the inverter. 10. The control device for an induction motor according to claim 9, wherein:
【請求項12】第1と第2の運転サイクルに先立って、
抵抗変化係数演算手段により、設定された回数を繰り返
す所定の運転サイクルの各々の運転サイクルの起動時と
停止時に抵抗測定手段により測定された巻線抵抗値の差
と前記各々の運転サイクル中に発生した誘導電動機の発
熱量に係わる値から単位量当たりの巻線抵抗の抵抗変化
係数を前記各々の運転サイクル毎に演算し、抵抗特性記
憶手段に前記各々の運転サイクル毎の前記抵抗変化係数
と前記巻線抵抗値との関係を記憶させる運転モード設定
手段を具備したことを特徴とする請求の範囲第5項に記
載の誘導電動機の制御装置。
12. Prior to the first and second driving cycles,
The difference between the winding resistance measured by the resistance measuring means at the start and stop of each operation cycle of a predetermined operation cycle that repeats a set number of times by the resistance change coefficient calculation means and the difference generated during each of the operation cycles. The resistance change coefficient of the winding resistance per unit amount is calculated for each of the operation cycles from the value related to the calorific value of the induction motor thus obtained, and the resistance change coefficient for each of the operation cycles and the resistance change coefficient are stored in resistance characteristic storage means. 6. The control device for an induction motor according to claim 5, further comprising an operation mode setting means for storing a relationship with a winding resistance value.
【請求項13】(補正後)運転サイクルの前後に測定さ
れた巻線抵抗値の差と前記運転サイクル中に発生した誘
導電動機の発熱量に係わる値とを基に、この値の単位量
当たりの巻線抵抗の変化の度合いを表わす抵抗変化係数
を演算する係数演算ステップと、次の運転サイクルの起
動時に起動時巻線抵抗値を測定する起動抵抗測定ステッ
プと、前記起動時巻線抵抗を基に前記抵抗変化係数と当
該運転サイクル中の誘導電動機の発熱量に係わる値とか
ら推定した推定巻線抵抗値を出力する巻線抵抗値推定ス
テップと、前記推定巻線抵抗値を基に前記誘導電動機を
駆動するインバータを制御する制御ステップと、当該運
転サイクルの停止時に停止時巻線抵抗値を測定する停止
時抵抗測定ステップとを備え、前記発熱量に係わる値
が、前記誘導電動機の発熱量自体又は該発熱量に応じて
変動する所定の物理値に相当することを特徴とする誘導
電動機の制御方法。
13. Based on a difference between winding resistance values measured before and after an operation cycle (after correction) and a value related to a heat value of an induction motor generated during the operation cycle, this value is calculated per unit amount. A coefficient calculation step of calculating a resistance change coefficient representing the degree of change of the winding resistance of the coil, a startup resistance measurement step of measuring a startup winding resistance at the start of the next operation cycle, and the startup winding resistance. A winding resistance value estimating step of outputting an estimated winding resistance value estimated from the resistance change coefficient and a value related to a calorific value of the induction motor during the operation cycle, based on the estimated winding resistance value. A control step of controlling an inverter that drives the induction motor; and a stop resistance measurement step of measuring a stop winding resistance value when the operation cycle is stopped, wherein the value related to the heat value is the induction motor. Control method for an induction motor, characterized in that corresponding to a predetermined physical value which varies as a function of the calorific value itself or emitting heat.
【請求項14】(補正後)運転サイクルの前後に測定さ
れた巻線抵抗値の差と前記運転サイクル中に発生した誘
導電動機の発熱量に係わる値とを基に、この値の単位量
当たりの巻線抵抗の変化の度合いを表わす抵抗変化係数
を演算する係数演算ステップと、前記巻線抵抗と前記抵
抗変化係数の関係を記憶する記憶ステップと、次の運転
サイクルの起動時に起動時巻線抵抗値を測定する起動時
抵抗測定ステップと、前記起動時巻線抵抗に対応する抵
抗変化係数を前記巻線抵抗と前記抵抗変化係数の関係を
参照して求める係数抽出ステップと、前記起動時巻線抵
抗を基にこの起動時巻線抵抗に対応する抵抗変化係数と
当該運転サイクル中の誘導電動機の発熱量に係わる値と
から推定した推定巻線抵抗値を出力する巻線抵抗推定ス
テップと、前記推定巻線抵抗値を基に前記誘導電動機を
駆動するインバータを制御する制御ステップと、前記当
該運転サイクルの停止時に停止時巻線抵抗値を測定する
停止時抵抗測定ステップとを備え、前記発熱量に係わる
値が、前記誘導電動機の発熱量自体又は該発熱量に応じ
て変動する所定の物理値に相当することを特徴とする誘
導電動機の制御方法。
14. Based on a difference between winding resistance values measured before and after an operation cycle (after correction) and a value related to a heat value of an induction motor generated during the operation cycle, this value is calculated per unit amount. A coefficient calculating step of calculating a resistance change coefficient representing a degree of change of the winding resistance of the winding, a storage step of storing a relationship between the winding resistance and the resistance change coefficient, and a start-up winding at the start of a next operation cycle. A startup resistance measurement step of measuring a resistance value; a coefficient extraction step of obtaining a resistance change coefficient corresponding to the startup winding resistance by referring to a relationship between the winding resistance and the resistance change coefficient; A winding resistance estimating step of outputting an estimated winding resistance value estimated from a resistance change coefficient corresponding to the starting winding resistance based on the wire resistance and a value related to a calorific value of the induction motor during the operation cycle; Said A control step of controlling an inverter that drives the induction motor based on a winding resistance value; anda stop resistance measurement step of measuring a stop winding resistance value when the operation cycle is stopped. A method for controlling an induction motor, wherein the related value corresponds to a heat value itself of the induction motor or a predetermined physical value that varies according to the heat value.
JP54539998A 1997-03-24 1997-03-24 Induction motor control device and induction motor control method Expired - Fee Related JP3320073B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000952 WO1998043347A1 (en) 1997-03-24 1997-03-24 Device and method for controlling induction motor

Publications (1)

Publication Number Publication Date
JP3320073B2 true JP3320073B2 (en) 2002-09-03

Family

ID=14180275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54539998A Expired - Fee Related JP3320073B2 (en) 1997-03-24 1997-03-24 Induction motor control device and induction motor control method

Country Status (2)

Country Link
JP (1) JP3320073B2 (en)
WO (1) WO1998043347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055927A (en) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 Washing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021736A (en) * 2000-07-07 2002-01-23 Ebara Corp Pumping device using solar battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215992A (en) * 1982-06-07 1983-12-15 Toshiba Corp Vector contorller for induction motor
JPS6016184A (en) * 1983-07-06 1985-01-26 Mitsubishi Electric Corp Controller of elevator
JPS6176090A (en) * 1984-09-20 1986-04-18 Hitachi Ltd Controller for elevator
JPS61231890A (en) * 1985-04-05 1986-10-16 Hitachi Ltd Setting method for constant of inverter
JPS63249486A (en) * 1987-04-03 1988-10-17 Mitsubishi Heavy Ind Ltd Induction motor secondary resistance calculator
JPH01117683A (en) * 1987-10-30 1989-05-10 Toyota Motor Corp Operation controller for induction motor
JPH0630587A (en) * 1992-02-05 1994-02-04 Nec Corp Control apparatus for induction motor
JPH06165562A (en) * 1992-11-16 1994-06-10 Japan Steel Works Ltd:The Method and system for controlling torque of induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055927A (en) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 Washing machine

Also Published As

Publication number Publication date
WO1998043347A1 (en) 1998-10-01

Similar Documents

Publication Publication Date Title
US4672288A (en) Torque controller for an AC motor drive and AC motor drive embodying the same
US7265954B2 (en) Method for estimating DC motor coil temperature, DC motor control method and their devices
US5600575A (en) Drive protection monitor for motor and amplifier
US6621291B2 (en) Device and method for estimating the resistance of a stator winding for an AC induction motor
JP3183759B2 (en) Load measuring device
BR112013021505B1 (en) METHOD AND SYSTEM FOR CONTROLLING AN ELECTRIC MOTOR
US6294888B1 (en) Frequent start protection and economizer control for a motor starter
JP2008029193A (en) Method of adjusting parameters of synchronous motor, and variable speed drive using such a method
CN110676814B (en) Processing device, determination method, and computer-readable storage medium
US7161778B2 (en) Rotor thermal model for use in motor protection
CN114585890A (en) Processing device and method for determining winding temperature calculation model
US20120274257A1 (en) Motor Control System
JP2001268989A (en) Synchronous motor and motor vehicle comprising it and its controlling method
JPH0650930B2 (en) Temperature monitoring device for DC shunt winding motor for rotary printing press
US6297607B1 (en) Thermal compensation control for a motor starter
JP3320073B2 (en) Induction motor control device and induction motor control method
JP2003014552A (en) Temperature detector
JP4343898B2 (en) Temperature estimation device for rotating electrical machines
JP3760871B2 (en) Inverter
US6879130B2 (en) Controller for induction motor
Acarnley et al. Estimation of speed and armature temperature in a brushed DC drive using the extended Kalman filter
KR20080014809A (en) Method and device for estimating the current output by an alternator for a motor vehicle
JPH0759399A (en) Method for correcting secondary resistance of induction motor
JP2005185071A (en) Rotational speed controller of single-phase induction motor
JP2850091B2 (en) Sensorless inverter device with resistance fluctuation compensation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees