JP3310551B2 - Semiconductor light emitting device and method of manufacturing the same - Google Patents

Semiconductor light emitting device and method of manufacturing the same

Info

Publication number
JP3310551B2
JP3310551B2 JP22194596A JP22194596A JP3310551B2 JP 3310551 B2 JP3310551 B2 JP 3310551B2 JP 22194596 A JP22194596 A JP 22194596A JP 22194596 A JP22194596 A JP 22194596A JP 3310551 B2 JP3310551 B2 JP 3310551B2
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
sealing
emitting device
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22194596A
Other languages
Japanese (ja)
Other versions
JPH1065220A (en
Inventor
匡彦 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22194596A priority Critical patent/JP3310551B2/en
Publication of JPH1065220A publication Critical patent/JPH1065220A/en
Application granted granted Critical
Publication of JP3310551B2 publication Critical patent/JP3310551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体発光
素子からなる半導体発光装置及びその製造方法に係り、
特に、光の外部への取り出し効率の改善方法に関する。
The present invention relates to a semiconductor light emitting device comprising a compound semiconductor light emitting element and a method for manufacturing the same.
In particular, it relates to a method for improving the efficiency of extracting light to the outside.

【0002】[0002]

【従来の技術】従来例の半導体発光装置の略断面図を図
6に示す。図6(a)はランプ型の発光装置、図6
(b)は面実装チップ部品型の発光装置である。図6
(a)において、化合物半導体発光素子40はリードフ
レーム41上に銀ペースト等でダイボントされ、金線4
2でリードフレームとワイヤーボンドされている。そし
て、化合物半導体発光素子40は透光性樹脂43で樹脂
封止されている。
2. Description of the Related Art A schematic sectional view of a conventional semiconductor light emitting device is shown in FIG. FIG. 6A shows a lamp-type light emitting device, and FIG.
(B) is a light emitting device of a surface mount chip component type. FIG.
3A, a compound semiconductor light emitting device 40 is die-bonded on a lead frame 41 with a silver paste or the like, and a gold wire 4 is formed.
2 is wire-bonded to the lead frame. The compound semiconductor light emitting element 40 is sealed with a light-transmitting resin 43.

【0003】図6(b)は面実装チップ部品型の発光装
置であり、化合物半導体発光素子40はセラミックス基
板44の電気的導電層45上に銀ペースト等でダイボン
トされ、金線42で電気的導電層45とワイヤーボンド
されている。そして、化合物半導体発光素子40はその
外側を透光性樹脂43で樹脂封止されている。
FIG. 6B shows a light emitting device of a surface mount chip component type. A compound semiconductor light emitting element 40 is die-bonded on an electrically conductive layer 45 of a ceramic substrate 44 with a silver paste or the like, and electrically connected with a gold wire 42. Wire-bonded to the conductive layer 45. The outside of the compound semiconductor light emitting element 40 is resin-sealed with a translucent resin 43.

【0004】しかし、化合物半導体発光素子の屈折率
は、例えば、GaAsやGaAlAs等の屈折率は3.
5程度あり、空気の屈折率1.0との屈折率差が大きい
ので、接合界面で発光した光を有効に外部に取り出すこ
とは困難で、光が内部に閉じ込められる割合が高い。こ
の内部に閉じ込められる要因は、界面での屈折率差によ
る反射である。屈折率NA=3.5の媒質(化合物半導
体)から屈折率NB=1.5の媒質(エポキシ樹脂)に
光が進むと、フレネルの式から、界面での反射率Rは、
R=((NA−NB)/(NA+NB))2 = 0.16
となり、R(%)=16%となる。
However, the refractive index of a compound semiconductor light emitting device is, for example, GaAs or GaAlAs, which is 3.
Since there is about 5 and the refractive index difference from the refractive index of air 1.0 is large, it is difficult to effectively extract the light emitted at the bonding interface to the outside, and the ratio of light confined inside is high. The factor confined inside is reflection due to a difference in refractive index at the interface. When light travels from a medium having a refractive index N A = 3.5 (compound semiconductor) to a medium having a refractive index N B = 1.5 (epoxy resin), the reflectance R at the interface becomes
R = ((N A -N B ) / (N A + N B)) 2 = 0.16
And R (%) = 16%.

【0005】また、このときの全反射の臨界角θCは、
スネルの式から、Sin(θC)=NA、θC≒25°、
約25度となる。つまり、界面で16%の減衰を受ける
だけでなく、界面に対する法線より25度以上の角度に
ある光は全反射して、外部に取り出せないことになる。
The critical angle θ C of total reflection at this time is:
From Snell's formula, Sin (θ C ) = N A , θ C ≒ 25 °,
It is about 25 degrees. In other words, not only the light is attenuated by 16% at the interface, but also light at an angle of 25 degrees or more from the normal to the interface is totally reflected and cannot be extracted to the outside.

【0006】この問題点を改善する方法として、特開平
5−190901号公報や特開平7―38148号公報
がある。
As a method for solving this problem, there are JP-A-5-190901 and JP-A-7-38148.

【0007】特開平5−190901号公報、半導体発
光素子及びその製造方法(出願人:シャープ株式会社)
では、図6に示されるように、発光素子(チップ)表面
を小さな多数のレンズ状とすることにより、外部効率の
向上を図っており、これを図7に示す。
Japanese Patent Application Laid-Open No. 5-190901, semiconductor light emitting device and manufacturing method thereof (applicant: Sharp Corporation)
Then, as shown in FIG. 6, the external efficiency is improved by forming the surface of the light emitting element (chip) into a large number of small lenses, which is shown in FIG.

【0008】図7は従来例の半導体発光素子であり、図
7(a)はその上面図を示し、図7(b)はその断面図
を示す。図7(b)において、半導体発光素子(発光ダ
イオードLED)50はn型GaP基板51上に、n型
GaP成長層52、及びp型GaP成長層53が形成さ
れている。p型GaP成長層53には上面に多数個のレ
ンズ状部53aを形成したレンズ集積層が形成されてい
る。54は表面側のp型電極であり、55は裏面側のn
型電極である。エキシマレーザ光の制御により、所望の
形状のレンズ状部53aを形成し、前記の全反射の問題
に対処している。また、図7(a)において、50は半
導体発光素子、53aは多数個のレンズ状部、54は表
面側のp型電極である。
FIG. 7 shows a conventional semiconductor light emitting device. FIG. 7A shows a top view thereof, and FIG. 7B shows a sectional view thereof. In FIG. 7B, a semiconductor light emitting device (light emitting diode LED) 50 has an n-type GaP growth layer 52 and a p-type GaP growth layer 53 formed on an n-type GaP substrate 51. On the p-type GaP growth layer 53, a lens integrated layer having a large number of lens-shaped portions 53a formed on the upper surface is formed. 54 is a p-type electrode on the front side, and 55 is n-type electrode on the back side.
Type electrode. By controlling the excimer laser light, a lens-shaped portion 53a having a desired shape is formed to address the above-described problem of total reflection. In FIG. 7A, reference numeral 50 denotes a semiconductor light emitting element, 53a denotes a plurality of lens-shaped portions, and 54 denotes a p-type electrode on the front side.

【0009】また、特開平7―38148号公報、化合
物半導体発光素子、発光ダイオード及び発光ダイオード
の製造方法(出願人:日立電線株式会社)では、化合物
半導体発光素子の表面に化合物半導体発光素子63と封
止樹脂65の間の屈折率を持つ物質で発光素子の上面に
反射防止膜60を形成するもので、これを図8に示す。
図8(a)の断面図において、63はDH構造AlG
aAs赤色発光ダイオードの構造を示し、p型GaAs
基板56上に、p型AlGaAsクラッド層57、p型
AlGaAs活性層58、n型AlGaAsウインドウ
層59の三層のエピタキシャル層と、その表面に形成さ
れた硫化亜鉛(屈折率2.25〜2.43)反射防止膜
60と表面電極61、及び裏面に形成された裏面電極6
2により構成されている。
In Japanese Patent Application Laid-Open No. 7-38148, a compound semiconductor light emitting device, a light emitting diode, and a method of manufacturing a light emitting diode (applicant: Hitachi Cable, Ltd.) are disclosed. The antireflection film 60 is formed on the upper surface of the light emitting element with a material having a refractive index between the sealing resins 65, and this is shown in FIG.
In the sectional view of FIG. 8A, reference numeral 63 denotes a DH structure AlG.
2 shows the structure of an aAs red light emitting diode, and shows p-type GaAs
On a substrate 56, three epitaxial layers of a p-type AlGaAs cladding layer 57, a p-type AlGaAs active layer 58, and an n-type AlGaAs window layer 59, and zinc sulfide formed on the surface thereof (refractive index: 2.25 to 2. 43) Antireflection film 60 and front electrode 61, and back electrode 6 formed on the back surface
2.

【0010】図8(b)はAlGaAs赤色発光ダイオ
ードの断面構造を示す図であり、リードフレーム64上
に赤色発光ダイオード63をマウントし、それを屈折率
1.55のエポキシ樹脂65でモールドしたもので、反
射防止膜60の形成により、外部発光出力を1.4〜
2.2倍向上している。66はリードフレーム64のリ
ードである。
FIG. 8B is a diagram showing a cross-sectional structure of an AlGaAs red light emitting diode, in which a red light emitting diode 63 is mounted on a lead frame 64 and molded with an epoxy resin 65 having a refractive index of 1.55. Thus, the formation of the anti-reflection film 60 can reduce the external light emission output from 1.4 to
It has improved 2.2 times. 66 is a lead of the lead frame 64.

【0011】[0011]

【発明が解決しようとする課題】しかし、この先行例の
特開平5−190901号公報では、全反射の問題を解
決するため、エキシマレーザ光の光加工技術により、一
個一個のレンズ状部を形成するため、その加工時間とコ
ストはかなり大きなものとなっている。
However, in Japanese Patent Laid-Open No. Hei 5-190901, which is an example of this prior art, in order to solve the problem of total reflection, each lens-like portion is formed one by one by an optical processing technique of excimer laser light. Therefore, the processing time and cost are considerably large.

【0012】また、先行例の特開平7―38148号公
報では、反射防止膜の形成により、前面への光出射の反
射を約16%低減するものであるが、発光素子の側面か
ら出射光に対する対応はなされていない。また、反射防
止膜では全反射の臨界角を広くすることはできない。
In Japanese Patent Application Laid-Open No. 7-38148, a reflection of light emitted to the front surface is reduced by about 16% by forming an anti-reflection film. No response has been made. Also, the critical angle of total reflection cannot be widened with an antireflection film.

【0013】本発明は、光の外部取り出し効率を改善す
るため、化合物半導体発光素子と封止樹脂界面での反射
率の低減及び全反射の臨界角を広くする安価な構造とそ
の製造方法を提供するものである。
The present invention provides an inexpensive structure for reducing the reflectance at the interface between the compound semiconductor light emitting element and the sealing resin and widening the critical angle of total reflection and a method of manufacturing the same in order to improve the efficiency of extracting light outside. Is what you do.

【0014】[0014]

【課題を解決するための手段】本発明の請求項1記載の
半導体発光装置は、化合物半導体発光素子を透光性封止
材料により封止してなる半導体発光装置であり、該透光
性封止材料による封止構造が2重構造であり、且つ、該
化合物半導体発光素子の屈折率N1と、化合物半導体発
光素子に接する第1の透光性封止材料の屈折率N2と、
更にその外側を封止する第2の透光性封止材料の屈折率
N3との間に、N1>N2>N3>1の関係を有し、且つ、
第1の封止樹脂は、複数の凹凸が連なった形状の表面
で、厚さが一様でないことを特徴とするものである。
According to a first aspect of the present invention, there is provided a semiconductor light emitting device in which a compound semiconductor light emitting element is sealed with a light transmitting sealing material. The sealing structure of the sealing material is a double structure, and the refractive index N1 of the compound semiconductor light-emitting element, the refractive index N2 of the first light-transmitting sealing material in contact with the compound semiconductor light-emitting element,
Further, the second light-transmitting sealing material sealing the outside has a relationship of N1>N2>N3> 1 with the refractive index N3 of the second light-transmitting sealing material, and
The first sealing resin has a surface having a shape in which a plurality of irregularities are continuous.
And the thickness is not uniform.

【0015】また、本発明の請求項2記載の半導体発光
装置は、前記化合物半導体発光素子の1辺の長さをaと
する時、該第1の透光性封止材料による封止構造の大き
さは、化合物半導体発光素子の発光点の中央を中心とす
る半径rが、r>aである球状又はドーム状であること
を特徴とするものである。
Further, in the semiconductor light emitting device according to the second aspect of the present invention, when the length of one side of the compound semiconductor light emitting element is a, the sealing structure using the first translucent sealing material is used. The size is characterized in that the compound semiconductor light-emitting element has a spherical or dome shape with a radius r centered on the center of the light-emitting point where r> a.

【0016】また、本発明の請求項3記載の半導体発光
装置は、第1の透光性封止材料は屈折率N2が1.6以
上である樹脂であり、第2の透光性封止材料がエポキシ
系樹脂であることを特徴とするものである。
According to a third aspect of the present invention, in the semiconductor light emitting device, the first translucent sealing material is a resin having a refractive index N 2 of 1.6 or more, and the second translucent sealing material is a resin. The stopping material is an epoxy resin.

【0017】また、本発明の請求項4記載の半導体発光
装置の製造方法は、射出成形法により第1の透光性封止
材料を封止する第1の封止工程と、キャスティング法又
はトランファーモールド成形法で第2の透光性封止材料
を封止する第2の封止工程とを含むことを特徴とするも
のである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a semiconductor light emitting device, comprising: a first sealing step of sealing a first translucent sealing material by an injection molding method; And a second sealing step of sealing the second translucent sealing material by a fur molding method.

【0018】また、本発明の請求項5記載の半導体発光
装置の製造方法は、第1の透光性封止材料を加熱溶融
し、化合物半導体発光素子の周りに浸漬法又はポッティ
ング法により溶融状態の封止材料を付着させて封止する
第1の封止工程と、キャスティング法もしくはトランフ
ァーモールド成形法でエポキシ系樹脂を封止する第2の
封止工程を含むことを特徴とするものである。
According to a fifth aspect of the present invention, in the method for manufacturing a semiconductor light emitting device, the first light-transmissive encapsulating material is heated and melted, and is immersed around the compound semiconductor light emitting element by a dipping method or a potting method. And a second sealing step of sealing the epoxy resin by a casting method or a transfer molding method. is there.

【0019】また、本発明の請求項6記載の半導体発光
装置の製造方法は、粉末状もしくは顆粒状の前記第1の
透光性封止材料で前記化合物半導体発光素子を覆い且つ
加熱溶融して化合物半導体発光素子を封止する第1の封
止工程と、キャスティング法もしくはトランファーモー
ルド成形法でエポキシ系樹脂を封止する第2の封止工程
とを含むことを特徴とするものである。
Further, in the method of manufacturing a semiconductor light emitting device according to claim 6 of the present invention, the compound semiconductor light emitting element is covered with the powdery or granular first light-transmitting sealing material and melted by heating. It is characterized by including a first sealing step of sealing the compound semiconductor light emitting element and a second sealing step of sealing the epoxy resin by a casting method or a transfer molding method.

【0020】また、本発明の請求項7記載の半導体発光
装置の製造方法は、前記第1の透光性封止材料を有機溶
剤に溶解させ、その溶液を前記化合物半導体発光素子の
周りに浸漬法又はポッティング法により付着させ、該溶
媒の溶剤を蒸発させて樹脂封止する第1の封止工程と、
キャスティング法もしくはトランファーモールド成形法
でエポキシ系樹脂を封止する第2の封止工程とを含むこ
とを特徴とするものである。
According to a seventh aspect of the present invention, in the method for manufacturing a semiconductor light emitting device, the first translucent sealing material is dissolved in an organic solvent, and the solution is immersed around the compound semiconductor light emitting element. A first sealing step of attaching by a method or a potting method, evaporating the solvent of the solvent, and sealing the resin.
And a second sealing step of sealing the epoxy resin by a casting method or a transfer molding method.

【0021】[0021]

【発明の実施の形態】図1乃至図5は本発明の一実施の
形態よりなる図である。
1 to 5 are diagrams showing an embodiment of the present invention.

【0022】図1に本発明の一実施の形態よりなる半導
体発光装置の略断面図を示し、図1(a)はランプ型の
発光装置、図1(b)は面実装チップ部品型の発光装置
である。図1(a)において、化合物半導体発光素子1
0はリードフレーム11上に銀ペースト等でダイボント
され、金線12でリードフレームとワイヤーボンドされ
ている。そして、化合物半導体発光素子10は透光性高
屈折率樹脂13で封止(第1の樹脂封止)され、その外
側を透光性低屈折率樹脂14で封止(第2の樹脂封止)
されている。
FIG. 1 is a schematic sectional view of a semiconductor light emitting device according to an embodiment of the present invention. FIG. 1 (a) is a lamp type light emitting device, and FIG. 1 (b) is a surface mount chip component type light emitting device. Device. In FIG. 1A, a compound semiconductor light emitting device 1
Numeral 0 is die-bonded to the lead frame 11 with a silver paste or the like, and is wire-bonded to the lead frame with a gold wire 12. The compound semiconductor light emitting element 10 is sealed with a light-transmitting high-refractive-index resin 13 (first resin sealing), and the outside thereof is sealed with a light-transmitting low-refractive-index resin 14 (second resin sealing). )
Have been.

【0023】高屈折率樹脂13の一例として、ポリビニ
ールカルバゾール(屈折率1.66)を有機溶剤(ジク
ロロエタン)に溶解して、化合物半導体発光素子10の
周りにポッティングし、有機溶剤を乾燥して、透光性高
屈折率樹脂による第1の樹脂封止(ポッティング法)を
行った。次にその外側をキャスティング法によりエポキ
シ系樹脂(透光性低屈折率樹脂14)で第2の樹脂封止
した。
As an example of the high refractive index resin 13, polyvinyl carbazole (refractive index: 1.66) is dissolved in an organic solvent (dichloroethane), potted around the compound semiconductor light emitting element 10, and the organic solvent is dried. Then, a first resin sealing (potting method) using a translucent high refractive index resin was performed. Next, the outside was sealed with a second resin with an epoxy resin (translucent low refractive index resin 14) by a casting method.

【0024】図1(b)は面実装チップ部品型の発光装
置であり、化合物半導体発光素子10は液晶ポリマー樹
脂基板またはセラミックス基板15の電気的導電層16
上に銀ペースト等でダイボントされ、金線12で電気的
導電層16とワイヤーボンドされている。そして、化合
物半導体発光素子10は透光性高屈折率樹脂13で封止
され、その外側を透光性低屈折率樹脂14で封止され、
この透光性高屈折率樹脂13の封止方法は図1(a)で
説明したと同じ方法が用いられる。また、透光性低屈折
率樹脂14はトランスファーモールド成形法でエポキシ
系樹脂を封止した。また、トランスファーモールド成形
法に用いられるエポキシ系樹脂は熱硬化前でも固体状態
であり、一方キャスティング法に用いられるエポキシ系
樹脂は熱硬化前は液体状態であり、分子量の小さい材料
であるが、どちらもエポキシ系樹脂である。
FIG. 1B shows a light emitting device of a surface mount chip component type. The compound semiconductor light emitting element 10 is an electric conductive layer 16 of a liquid crystal polymer resin substrate or a ceramic substrate 15.
The upper surface is die-bonded with a silver paste or the like, and is wire-bonded to the electrically conductive layer 16 with the gold wire 12. The compound semiconductor light emitting element 10 is sealed with a light-transmitting high-refractive-index resin 13, and the outside thereof is sealed with a light-transmitting low-refractive-index resin 14.
The same method as described with reference to FIG. 1A is used for sealing the light-transmitting high refractive index resin 13. The translucent low refractive index resin 14 was sealed with an epoxy resin by a transfer molding method. Also, the epoxy resin used in the transfer molding method is in a solid state even before thermosetting, while the epoxy resin used in the casting method is in a liquid state before thermosetting and is a material having a small molecular weight. Is also an epoxy resin.

【0025】図2に本発明の一実施の形態よりなる他の
半導体発光装置の略断面図を示し、図2(a)はランプ
型の発光装置、図2(b)は面実装チップ部品型の発光
装置である。図2(a)において、化合物半導体発光素
子10はリードフレーム11上に銀ペースト等でダイボ
ントされ、金線12でリードフレームとワイヤーボンド
されている。そして、化合物半導体発光素子10は透光
性高屈折率樹脂13で封止され、その外側を透光性低屈
折率樹脂14で封止されている。
FIG. 2 is a schematic sectional view of another semiconductor light emitting device according to an embodiment of the present invention. FIG. 2 (a) is a lamp type light emitting device, and FIG. 2 (b) is a surface mount chip component type. Is a light emitting device. In FIG. 2A, the compound semiconductor light emitting device 10 is die-bonded on a lead frame 11 with a silver paste or the like, and is wire-bonded to the lead frame with a gold wire 12. The compound semiconductor light-emitting element 10 is sealed with a light-transmitting high-refractive-index resin 13, and the outside thereof is sealed with a light-transmitting low-refractive-index resin 14.

【0026】高屈折率樹脂13の一例として、顆粒状の
ポリエーテルサルフォン(屈折率1.65)で化合物半
導体発光素子の周りを覆い、乾燥窒素ガスに置換した真
空オープン中で300℃に加熱して樹脂を溶融させ、一
旦減圧して気泡を除いた後、大気圧に戻して冷却し、第
1の封止(工程)をした。次にその外側をキャスティン
グ法によりエポキシ系樹脂(透光性低屈折率樹脂14)
で第2の封止(工程)をした。
As an example of the high-refractive-index resin 13, the compound semiconductor light-emitting element is covered with granular polyethersulfone (refractive index: 1.65) and heated to 300 ° C. in a vacuum open in which dry nitrogen gas is substituted. Then, the resin was melted, and once depressurized to remove air bubbles, returned to the atmospheric pressure and cooled to perform a first sealing (step). Next, the outside thereof is cast using an epoxy resin (light-transmitting low refractive index resin 14) by a casting method.
The second sealing (step) was performed.

【0027】また、第1の封止工程は、乾燥窒素ガス中
で高屈折率樹脂を予め溶融して、リードフレームに搭載
した化合物半導体発光素子をディッピング(浸漬)する
ことにより行うことができる。ディップ法の場合は、化
合物半導体発光素子及び搭載部分(リードフレームのマ
ウント部)を予め加熱しておくことにより、樹脂との密
着を高めることができる。
The first sealing step can be performed by previously melting a high refractive index resin in dry nitrogen gas and dipping (immersing) the compound semiconductor light emitting device mounted on the lead frame. In the case of the dipping method, the adhesion to the resin can be enhanced by heating the compound semiconductor light emitting element and the mounting portion (the mounting portion of the lead frame) in advance.

【0028】図2(a)において、化合物半導体発光素
子は大きさは0.2〜0.5mm角程度であり、その1
辺の長さをaとする時、透光性高屈折率樹脂構造の大き
さは化合物半導体発光素子の発光点の中央を中心とする
半径rがr>aである球状又はドーム状を包含する大き
さに選ばれる。この半径rの球状またはドーム状の大き
さを破線17で示す。
In FIG. 2A, the size of the compound semiconductor light emitting device is about 0.2 to 0.5 mm square.
When the length of the side is a, the size of the light-transmitting high-refractive-index resin structure includes a spherical shape or a dome shape in which the radius r around the center of the light-emitting point of the compound semiconductor light-emitting element is r> a. The size is chosen. The spherical or dome-shaped size of this radius r is indicated by a broken line 17.

【0029】図2(b)は面実装チップ部品型の発光装
置であり、化合物半導体発光素子10は液晶ポリマー樹
脂基板またはセラミックス基板15の電気的導電層16
上に銀ペースト等でダイボントされ、金線12で電気的
導電層16とワイヤーボンドされている。そして、化合
物半導体発光素子10は透光性高屈折率樹脂13で封止
され、その外側を透光性低屈折率樹脂14で封止されて
いる。また、透光性高屈折率樹脂構造の大きさは化合物
半導体発光素子の発光点の中央を中心とする半径rが、
r>aである球状又はドーム状を包含する大きさに選ば
れる。この半径rの球状またはドーム状の大きさを破線
17で示す。
FIG. 2B shows a light emitting device of a surface mount chip component type. The compound semiconductor light emitting element 10 is an electric conductive layer 16 of a liquid crystal polymer resin substrate or a ceramic substrate 15.
The upper surface is die-bonded with a silver paste or the like, and is wire-bonded to the electrically conductive layer 16 with the gold wire 12. The compound semiconductor light-emitting element 10 is sealed with a light-transmitting high-refractive-index resin 13, and the outside thereof is sealed with a light-transmitting low-refractive-index resin 14. In addition, the size of the light-transmitting high-refractive-index resin structure is such that the radius r of the compound semiconductor light-emitting element around the center of the light emitting point is
The size is selected to include a spherical shape or a dome shape in which r> a. The spherical or dome-shaped size of this radius r is indicated by a broken line 17.

【0030】図3に本発明の一実施の形態よりなる他の
半導体発光装置の略断面図を示し、タイプはランプ型の
発光装置である。図3において、化合物半導体発光素子
10はリードフレーム11上に銀ペースト等でダイボン
トされ、金線12でリードフレームとワイヤーボンドさ
れている。そして、化合物半導体発光素子10は透光性
高屈折率樹脂13で封止され、その外側を透光性低屈折
率樹脂14で封止されている。
FIG. 3 is a schematic sectional view of another semiconductor light emitting device according to an embodiment of the present invention, which is a lamp type light emitting device. In FIG. 3, a compound semiconductor light emitting device 10 is die-bonded on a lead frame 11 with a silver paste or the like, and is wire-bonded to the lead frame with a gold wire 12. The compound semiconductor light-emitting element 10 is sealed with a light-transmitting high-refractive-index resin 13, and the outside thereof is sealed with a light-transmitting low-refractive-index resin 14.

【0031】この製造方法では、第1の樹脂封止を大き
くすることできる。リードフレームに化合物半導体発光
素子を搭載し、成形金型にリードフレームをインサート
して、射出成形法で第1の樹脂封止を行う。化合物半導
体発光素子の1辺の長さをaとし、第1の樹脂封止の半
径をr0とすると、r0>>a、とし、十分大きいドーム
状に成形する第1の樹脂封止を行った。この場合、第1
の樹脂封止の大きさをリードフレームの幅よりも大きく
選ぶこともできる。第2の樹脂封止は、図1で説明した
ものと同様である。また、射出成形法では、外形形状を
規定できるため、第1の樹脂封止と第2の樹脂封止との
界面でレンズの機能を付与することが可能である。 こ
こで使用した第1の封止用高屈折率樹脂は、ポリエーテ
ルサルフォン(屈折率1.65)であったが、この外
に、ポリサルフォン(屈折率1.65)、ポリイミド
(屈折率1.72)、芳香族ポリアミド(屈折率1.8
9)等、樹脂の屈折率が1.6以上であれば、外部取り
出し効率の改善がはかれる。
In this manufacturing method, the size of the first resin sealing can be increased. A compound semiconductor light emitting element is mounted on a lead frame, the lead frame is inserted into a molding die, and first resin sealing is performed by an injection molding method. Assuming that the length of one side of the compound semiconductor light emitting element is a and the radius of the first resin seal is r 0 , r 0 >> a, and the first resin seal formed into a sufficiently large dome shape went. In this case, the first
May be selected to be larger than the width of the lead frame. The second resin sealing is the same as that described with reference to FIG. In addition, in the injection molding method, since the outer shape can be specified, a function of a lens can be provided at an interface between the first resin sealing and the second resin sealing. The first high refractive index resin for sealing used here was polyethersulfone (refractive index 1.65), but in addition, polysulfone (refractive index 1.65) and polyimide (refractive index 1). .72), aromatic polyamide (refractive index 1.8)
If the refractive index of the resin is 1.6 or more, such as 9), the external extraction efficiency can be improved.

【0032】図2及び図3で説明した本発明の一実施の
形態よりなる例では、第1の封止樹脂の厚さが発光素子
の大きさに比べ十分大きいので、発光素子のどの部分か
ら放射した光も、第1と第2の封止界面ではほぼ垂直に
入射する状態となり、その結果全反射が無くなり、効率
よく光を外部に取り出すことができる。しかし、第1の
樹脂封止の厚さが光の波長の数倍程度以内であれば、第
1と第2の封止界面での反射率を小さくする効果しかな
い。
In the embodiment according to the embodiment of the present invention described with reference to FIGS. 2 and 3, since the thickness of the first sealing resin is sufficiently large compared to the size of the light emitting element, any portion of the light emitting element can be used. The emitted light is also substantially perpendicularly incident on the first and second sealing interfaces. As a result, total reflection is eliminated, and light can be efficiently extracted to the outside. However, if the thickness of the first resin seal is within several times the wavelength of light, there is only an effect of reducing the reflectance at the interface between the first and second seals.

【0033】本発明では、化合物半導体発光素子の1辺
の長さをaとする時、前記第1の透光性封止材料による
封止構造の大きさが、化合物半導体発光素子の発光点の
中央を中心とする半径rがr>aである球状又はドーム
状を包含する大きさに選ばれているので、第1と第2の
封止界面ではほぼ垂直に入射する状態となり、その結果
全反射が無くなり、効率よく光を外部に取り出すことが
できる。
In the present invention, when the length of one side of the compound semiconductor light emitting device is a, the size of the sealing structure made of the first light-transmitting sealing material is equal to the light emitting point of the compound semiconductor light emitting device. Since the radius r with the center at the center is selected to include a spherical shape or a dome shape in which r> a, the first and second sealing interfaces are substantially perpendicularly incident, and as a result, There is no reflection, and light can be efficiently extracted to the outside.

【0034】図4に、本発明による光の外部取り出し効
率の計算結果を示す。計算は、化合物半導体発光素子の
屈折率N1=3.5、第2の樹脂封止材料の屈折率N3
1.5、として行った。第1の樹脂封止材料の屈折率N
2が、N2>1.6であれば効率は23%以上となり、つ
まりエポキシ樹脂だけで封止した場合(屈折率が1.5
の計算値)の19%と比較して、1.2倍以上の効率向
上が図れた。
FIG. 4 shows a calculation result of the light extraction efficiency according to the present invention. The calculation was performed with the refractive index N 1 of the compound semiconductor light emitting element = 3.5, and the refractive index N 3 of the second resin sealing material = 3.
1.5. Refractive index N of first resin sealing material
2 is N 2 > 1.6, the efficiency is 23% or more, that is, when sealing is performed only with the epoxy resin (the refractive index is 1.5%).
Compared with 19% of the calculated value), the efficiency was improved by 1.2 times or more.

【0035】図5を用いて、本発明の2重構造の封止に
おける光の外部への取り出し作用について、リードフレ
ーム11上マウントされた化合物半導体発光素子10か
らの光L1、L2を例に取り説明する。
Referring to FIG. 5, the light L 1 and L 2 from the compound semiconductor light emitting device 10 mounted on the lead frame 11 will be described as an example of the light extraction action in the double structure sealing of the present invention. Will be explained.

【0036】図5において、化合物半導体発光素子10
の屈折率N1と、化合物半導体発光素子に接する第1の
透光性封止材料13の屈折率N2と、更にその外側を封
止する第2の透光性封止材料14の屈折率N3との間
に、N1>N2>N3>1の関係がある。化合物半導体発
光素子の発光点の中央Oから出た光L1aは第1の透光
性封止材料13と第2の透光性封止材料14との界面A
において、光の反射・全反射の作用を受ける。そして、
1aはL1bとなり、界面Bで、光の反射・全反射の作
用を受け、L1cとなって空気中へ放射される。図示し
た別の光線、L2aは界面Cで光の反射・全反射の作用
を受けてL2bとなり、界面Dで、光の反射・全反射の
作用を受けてL2cとなって空気中へ放射される。
In FIG. 5, the compound semiconductor light emitting device 10
A refractive index N 1 of the refractive index N 2 of the first translucent sealing material 13 in contact with the compound semiconductor light-emitting device, further the refractive index of the second translucent sealing material 14 for sealing the outer between N 3, N 1> N 2 > N 3> 1 the relationship. Light L 1 a emitted from the center O of the light emitting point of the compound semiconductor light emitting element is applied to the interface A between the first light transmitting sealing material 13 and the second light transmitting sealing material 14.
, Are affected by light reflection and total reflection. And
L 1 a is L 1 b, and the at the interface B, under the action of reflection and total reflection of light, is radiated becomes L 1 c into the air. Another light ray illustrated, L 2 a is L 2 b becomes under the action of reflection and total reflection of light at the interface C, and the interface D, and under the action of reflection and total reflection of light becomes L 2 c Emitted into the air.

【0037】第1の透光性封止材料13が一様な厚さで
ないためその表面は屈曲面となり、仮に界面Aにおいて
全反射となる場合も、2度目の入射光の角度が変化する
ため、外側の第2の透光性封止材料14へ出ていく光が
増加する。屈折率が、N1>N2>N3>1の関係にある
ため、それぞれの入射角は、θ1<θ2、θ3<θ4の関係
になっている。
Since the first translucent sealing material 13 is not uniform in thickness, its surface becomes a curved surface. Even if total reflection occurs at the interface A, the angle of the second incident light changes. Thus, the amount of light exiting to the outer second translucent sealing material 14 increases. Since the refractive indexes have a relationship of N 1 > N 2 > N 3 > 1, the respective incident angles have a relationship of θ 12 and θ 34 .

【0038】図5において、化合物半導体発光素子10
は大きさは0.2〜0.4mm角程度であり、その1辺
の長さをaとし、透光性高屈折率樹脂構造の大きさは化
合物半導体発光素子の発光点の中央を中心とする半径r
が、r>aである球状又はドーム状を包含する大きさに
選ばれる。この半径rの球状またはドーム状の大きさを
破線17で示す。この構造とすることにより、第1の透
光性封止材料13は化合物半導体発光素子10の外周を
完全に覆うことができ、化合物半導体発光素子10の接
合界面で発生した光を有効に取り出すことができる。
In FIG. 5, the compound semiconductor light emitting device 10
Is about 0.2 to 0.4 mm square, and the length of one side is a, and the size of the translucent high refractive index resin structure is centered on the center of the light emitting point of the compound semiconductor light emitting element. Radius r
Is selected to have a spherical or dome shape in which r> a. The spherical or dome-shaped size of this radius r is indicated by a broken line 17. With this structure, the first translucent sealing material 13 can completely cover the outer periphery of the compound semiconductor light emitting device 10, and can effectively extract light generated at the bonding interface of the compound semiconductor light emitting device 10. Can be.

【0039】[0039]

【発明の効果】以上のように、本発明の請求項1記載の
半導体発光装置によれば、屈折率の高い第1の透光性封
止材料と屈折率の低い第2の透光性封止材料とによる2
重構造の封止を行うので、化合物半導体発光素子と封止
材料と空気との屈折率差が小さくなり、反射率の低減効
果がある。さらに第1の封止樹脂は、複数の凹凸が連な
った形状の表面で、厚さが一様でないので、第2の封止
樹脂の界面で全反射しても、再度界面に入射する時は、
入射角度が変わり、全反射を起こさずに外部へ出る光が
増加するため、外部への光取り出し効率が改善される。
As described above, according to the semiconductor light emitting device of the first aspect of the present invention, the first translucent sealing material having a high refractive index and the second translucent sealing material having a low refractive index. 2 depending on the material used
Since the double structure is sealed, the difference in the refractive index between the compound semiconductor light emitting device, the sealing material, and air is reduced, and there is an effect of reducing the reflectance. Further, the first sealing resin has a plurality of concavities and convexities.
Since the thickness is not uniform on the surface with the irregular shape, even if it is totally reflected at the interface of the second sealing resin, when it reenters the interface,
Since the angle of incidence is changed and the amount of light that exits without causing total reflection increases, the efficiency of light extraction to the outside is improved.

【0040】また、本発明の請求項2記載の半導体発光
装置によれば、前記化合物半導体発光素子の1辺の長さ
をaとする時、該第1の透光性封止材料による封止構造
の大きさは、化合物半導体発光素子の発光点の中央を中
心とする半径rが、r>aである球状又はドーム状であ
ることを特徴とするものであり、化合物半導体発光素子
のどの発光位置からでた光も、第1の封止樹脂と第2の
封止樹脂との界面では全反射の臨界角内に入射し、効率
よく光を取り出すことが可能となる。更に、第1の封止
の形状を球状あるいはドーム状とすることで、化合物半
導体発光素子の界面での全反射を確実に防ぐことが可能
となる。
According to the semiconductor light emitting device of the second aspect of the present invention, when the length of one side of the compound semiconductor light emitting element is a, sealing with the first light-transmitting sealing material is performed. The size of the structure is characterized in that the compound semiconductor light-emitting element has a spherical shape or a dome shape with a radius r centered on the center of the light-emitting point where r> a. Light emitted from the position also enters the critical angle of total reflection at the interface between the first sealing resin and the second sealing resin, so that light can be extracted efficiently. Furthermore, by making the shape of the first seal spherical or dome-shaped, it is possible to reliably prevent total reflection at the interface of the compound semiconductor light emitting device.

【0041】また、本発明の請求項3記載の半導体発光
装置によれば、第1の透光性封止材料は屈折率N2
1.6以上である樹脂であり、第2の透光性封止材料が
エポキシ系樹脂であることを特徴とするものであり、光
の外部取り出し効率を高めることができる。
According to the semiconductor light emitting device of the third aspect of the present invention, the first light-transmitting sealing material is a resin having a refractive index N 2 of 1.6 or more, and the second light-transmitting sealing material is made of a resin. The characteristic sealing material is an epoxy-based resin, and the external light extraction efficiency can be increased.

【0042】また、本発明の請求項4記載の半導体発光
装置の製造方法によれば、射出成形法により第1の透光
性封止材料を封止する第1の封止工程と、キャスティン
グ法又はトランファーモールド成形法で第2の透光性封
止材料を封止する第2の封止工程とを含むことを特徴と
するものである。従って、従来の半導体発光装置の製造
工程に第1の封止工程を追加するだけで、半導体発光装
置の外形形状を変更することなしに、半導体発光装置の
明るさを増加することができる。更に、第1の封止工程
を射出成形法により行うので、封止形状が一定となり、
安定した光学特性が得られる。
Further, according to the method for manufacturing a semiconductor light emitting device according to claim 4 of the present invention, a first sealing step of sealing the first translucent sealing material by an injection molding method, and a casting method. Or a second sealing step of sealing the second translucent sealing material by a transfer molding method. Therefore, the brightness of the semiconductor light emitting device can be increased only by adding the first sealing step to the conventional semiconductor light emitting device manufacturing process without changing the external shape of the semiconductor light emitting device. Furthermore, since the first sealing step is performed by the injection molding method, the sealing shape becomes constant,
Stable optical characteristics can be obtained.

【0043】また、本発明の請求項5記載の半導体発光
装置の製造方法によれば、第1の透光性封止材料を加熱
溶融し、化合物半導体発光素子の周りに浸漬法又はポッ
ティング法により溶融状態の封止材料を付着させて封止
する第1の封止工程と、キャスティング法もしくはトラ
ンファーモールド成形法でエポキシ系樹脂を封止する第
2の封止工程を含むことを特徴とするものである。従っ
て、従来の半導体発光装置の製造工程に第1の封止工程
を追加するだけで、半導体発光装置の外形形状を変更す
ることなしに、半導体発光装置の明るさを増加すること
ができる。更に、第1の封止工程を浸漬法又はポッティ
ング法により行うので、安価な封止工程を得ることがで
きる。
According to the method of manufacturing a semiconductor light emitting device according to the fifth aspect of the present invention, the first light-transmitting sealing material is heated and melted, and is immersed or potted around the compound semiconductor light emitting element. The method includes a first sealing step of attaching and sealing a sealing material in a molten state, and a second sealing step of sealing an epoxy resin by a casting method or a transfer molding method. Things. Therefore, the brightness of the semiconductor light emitting device can be increased only by adding the first sealing step to the conventional semiconductor light emitting device manufacturing process without changing the external shape of the semiconductor light emitting device. Further, since the first sealing step is performed by the dipping method or the potting method, an inexpensive sealing step can be obtained.

【0044】また、本発明の請求項6記載の半導体発光
装置の製造方法によれば、粉末状もしくは顆粒状の前記
第1の透光性封止材料で前記化合物半導体発光素子を覆
い且つ加熱溶融して化合物半導体発光素子を封止する第
1の封止工程と、キャスティング法もしくはトランファ
ーモールド成形法でエポキシ系樹脂を封止する第2の封
止工程とを含むことを特徴とするものである。従って、
従来の半導体発光装置の製造工程に第1の封止工程を追
加するだけで、半導体発光装置の外形形状を変更するこ
となしに、半導体発光装置の明るさを増加することがで
きる。更に、第1の封止工程を粉末状もしくは顆粒状の
透光性封止材料を化合物半導体発光素子に配し、加熱溶
融して化合物半導体発光素子を封止するため、一度に多
数の半導体発光装置の第1の封止工程を行うことができ
る。
Further, according to the method for manufacturing a semiconductor light emitting device according to claim 6 of the present invention, the compound semiconductor light emitting element is covered with the powdery or granular first light-transmitting sealing material and is heated and melted. A first sealing step of sealing the compound semiconductor light emitting element and a second sealing step of sealing the epoxy resin by a casting method or a transfer molding method. is there. Therefore,
The brightness of the semiconductor light emitting device can be increased without changing the external shape of the semiconductor light emitting device only by adding the first sealing step to the conventional semiconductor light emitting device manufacturing process. Furthermore, in the first sealing step, a powdery or granular translucent sealing material is disposed on the compound semiconductor light emitting device, and the compound semiconductor light emitting device is heated and melted to seal the compound semiconductor light emitting device. A first sealing step of the device can be performed.

【0045】また、本発明の請求項7記載の半導体発光
装置の製造方法によれば、前記第1の透光性封止材料を
有機溶剤に溶解させ、その溶液を前記化合物半導体発光
素子の周りに浸漬法又はポッティング法により付着さ
せ、該溶媒の溶剤を蒸発させて樹脂封止する第1の封止
工程と、キャスティング法もしくはトランファーモール
ド成形法でエポキシ系樹脂を封止する第2の封止工程と
を含むことを特徴とするものである。従って、従来の半
導体発光装置の製造工程に第1の封止工程を追加するだ
けで、半導体発光装置の外形形状を変更することなし
に、半導体発光装置の明るさを増加することができる。
更に、第1の封止工程を有機溶剤に溶解させた封止樹脂
を浸漬法又はポッティング法により行うため、特別な硬
化装置などの製造設備を必要としない。
Further, according to the method of manufacturing a semiconductor light emitting device according to claim 7 of the present invention, the first light-transmitting sealing material is dissolved in an organic solvent, and the solution is placed around the compound semiconductor light emitting element. A first sealing step of adhering to the resin by dipping or potting and evaporating the solvent of the solvent to seal the resin, and a second sealing of sealing the epoxy resin by casting or transfer molding. And a stopping step. Therefore, the brightness of the semiconductor light emitting device can be increased only by adding the first sealing step to the conventional semiconductor light emitting device manufacturing process without changing the external shape of the semiconductor light emitting device.
Further, since the first sealing step is performed by a dipping method or a potting method using a sealing resin dissolved in an organic solvent, no special equipment such as a curing device is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態よりなる半導体発光装置
の略断面図を示し、(a)はランプ型の発光装置を示す
図であり、(b)は面実装チップ部品型の発光装置を示
す図である。
1A and 1B are schematic cross-sectional views of a semiconductor light emitting device according to an embodiment of the present invention, wherein FIG. 1A is a diagram illustrating a lamp-type light emitting device, and FIG. FIG.

【図2】本発明の一実施の形態よりなる他の半導体発光
装置の略断面図を示し、(a)はランプ型の発光装置を
示す図であり、(b)は面実装チップ部品型の発光装置
を示す図である。
2A and 2B are schematic cross-sectional views of another semiconductor light emitting device according to an embodiment of the present invention, in which FIG. 2A is a diagram illustrating a lamp-type light emitting device, and FIG. It is a figure showing a light emitting device.

【図3】本発明の一実施の形態よりなる他の半導体発光
装置の略断面図を示し、ランプ型の発光装置を示す図で
ある。
FIG. 3 is a schematic cross-sectional view of another semiconductor light emitting device according to an embodiment of the present invention, showing a lamp-type light emitting device.

【図4】本発明の一実施の形態よりなる半導体発光装置
による光の外部取り出し効率の計算結果を示す図であ
る。
FIG. 4 is a diagram showing a calculation result of light extraction efficiency by a semiconductor light emitting device according to an embodiment of the present invention.

【図5】本発明の2重構造の封止における光の外部への
取り出し作用についての説明図である。
FIG. 5 is an explanatory diagram of an action of extracting light to the outside in the sealing of the double structure of the present invention.

【図6】従来例の半導体発光装置の略断面図を示し、
(a)はランプ型の発光装置を示す図であり、(b)は
面実装チップ部品型の発光装置を示す図である。
FIG. 6 is a schematic sectional view of a conventional semiconductor light emitting device;
(A) is a figure which shows a lamp type light emitting device, (b) is a figure which shows a surface mount chip component type light emitting device.

【図7】従来例の半導体発光装置の略断面図を示し、
(a)はその上面図を示す図であり、(b)はその断面
図を示す図である。
FIG. 7 is a schematic sectional view of a conventional semiconductor light emitting device;
(A) is a figure which shows the top view, (b) is a figure which shows the sectional view.

【図8】従来例の半導体発光素子を示す図であり、
(a)は断面図を示す図であり、(b)はAlGaAs
赤色発光ダイオードの断面構造を示す図である。
FIG. 8 is a diagram showing a conventional semiconductor light emitting device;
(A) is a figure which shows sectional drawing, (b) is AlGaAs.
It is a figure showing the section structure of a red light emitting diode.

【符号の説明】[Explanation of symbols]

10 化合物半導体発光素子 11 リードフレーム 12 金線 13 透光性高屈折率樹脂 14 透光性低屈折率樹脂 15 液晶ポリマー樹脂基板またはセラミックス基板 16 電気的導電層 17 半径rの球状またはドーム状の大きさを示す破線 a 化合物半導体発光素子の1辺の長さ r 半径 r0 第1の樹脂封止の半径 O 化合物半導体発光素子の発光点の中央 L1a、L1b、L1c 光線 L2a、L2b、L2c 光線 A、B、C、D 界面 θ1、θ3 光の入射角 θ2、θ4 光の出射角DESCRIPTION OF SYMBOLS 10 Compound semiconductor light emitting element 11 Lead frame 12 Gold wire 13 Translucent high refractive index resin 14 Translucent low refractive index resin 15 Liquid crystal polymer resin substrate or ceramics substrate 16 Electrically conductive layer 17 Spherical or dome-shaped with radius r Dashed line a indicating the length of one side of the compound semiconductor light emitting element r radius r 0 the radius of the first resin sealing O the center of the light emitting point of the compound semiconductor light emitting element L 1 a, L 1 b, L 1 c light ray L 2 a, L 2 b, L 2 c Light A, B, C, D Interfaces θ 1 , θ 3 Light incident angles θ 2 , θ 4 Light emission angles

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/56 H01L 23/29 H01L 23/31 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 33/00 H01L 21/56 H01L 23/29 H01L 23/31

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 化合物半導体発光素子を透光性封止材料
により封止してなる半導体発光装置において、該透光性
封止材料による封止構造が2重構造であり、且つ、該化
合物半導体発光素子の屈折率N1と、化合物半導体発光
素子に接する第1の透光性封止材料の屈折率N2と、更
にその外側を封止する第2の透光性封止材料の屈折率N
3との間に、N1>N2>N3>1の関係を有し、且つ、第
1の封止樹脂は、複数の凹凸が連なった形状の表面で、
厚さが一様でないことを特徴とする半導体発光装置。
1. A semiconductor light-emitting device in which a compound semiconductor light-emitting element is sealed with a light-transmitting sealing material, wherein the sealing structure with the light-transmitting sealing material is a double structure, and The refractive index N 1 of the light emitting element, the refractive index N 2 of the first translucent sealing material in contact with the compound semiconductor light emitting element, and the refractive index of the second translucent encapsulating material further sealing the outside. N
3 , the first sealing resin has a relationship of N 1 > N 2 > N 3 > 1, and the first sealing resin has a surface with a plurality of concavities and convexities,
A semiconductor light emitting device having a non-uniform thickness.
【請求項2】 請求項1記載の半導体発光装置におい
て、前記化合物半導体発光素子の1辺の長さをaとする
時、該第1の透光性封止材料による封止構造の大きさ
は、化合物半導体発光素子の発光点の中央を中心とする
半径rがr>aである球状又はドーム状を包含する大き
さであることを特徴とする半導体発光装置。
2. The semiconductor light-emitting device according to claim 1, wherein when a length of one side of the compound semiconductor light-emitting element is a, the size of the sealing structure made of the first light-transmitting sealing material is A semiconductor light-emitting device characterized in that the compound semiconductor light-emitting element has a size including a spherical shape or a dome shape in which a radius r centered on the center of a light-emitting point of the compound semiconductor light-emitting element is r> a.
【請求項3】 請求項1記載の半導体発光装置におい
て、第1の透光性封止材料は屈折率N2が1.6以上で
ある樹脂であり、第2の透光性封止材料がエポキシ系樹
脂であることを特徴とする半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the first light-transmitting sealing material is a resin having a refractive index N 2 of 1.6 or more, and the second light-transmitting sealing material is A semiconductor light emitting device, which is an epoxy resin.
【請求項4】 請求項1記載の半導体発光装置の製造方
法において、射出成形法により第1の透光性封止材料を
封止する第1の封止工程と、キャスティング法又はトラ
ンファーモールド成形法で第2の透光性封止材料を封止
する第2の封止工程とを含むことを特徴とする半導体発
光装置の製造方法。
4. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein a first sealing step of sealing the first translucent sealing material by an injection molding method, and a casting method or transfer molding. A second sealing step of sealing the second light-transmitting sealing material by a method.
【請求項5】 請求項1記載の半導体発光装置の製造方
法において、第1の透光性封止材料を加熱溶融し、化合
物半導体発光素子の周りに浸漬法又はポッティング法に
より溶融状態の封止材料を付着させて封止する第1の封
止工程と、キャスティング法もしくはトランファーモー
ルド成形法でエポキシ系樹脂を封止する第2の封止工程
を含むことを特徴とする半導体発光装置の製造方法。
5. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the first light-transmitting sealing material is heated and melted, and the molten sealing is performed around the compound semiconductor light-emitting element by a dipping method or a potting method. A method for manufacturing a semiconductor light emitting device, comprising: a first sealing step in which a material is adhered and sealed; and a second sealing step in which an epoxy resin is sealed by a casting method or a transfer molding method. Method.
【請求項6】 請求項1記載の半導体発光装置の製造方
法において、粉末状もしくは顆粒状の前記第1の透光性
封止材料で前記化合物半導体発光素子を覆い且つ加熱溶
融して化合物半導体発光素子を封止する第1の封止工程
と、キャスティング法もしくはトランファーモールド成
形法でエポキシ系樹脂を封止する第2の封止工程とを含
むことを特徴とする半導体発光装置の製造方法。
6. The method of manufacturing a semiconductor light emitting device according to claim 1, wherein the compound semiconductor light emitting element is covered with the powdery or granular first light-transmitting sealing material and melted by heating. A method for manufacturing a semiconductor light emitting device, comprising: a first sealing step of sealing an element; and a second sealing step of sealing an epoxy-based resin by a casting method or a transfer molding method.
【請求項7】 請求項1記載の半導体発光装置の製造方
法において、前記第1の透光性封止材料を有機溶剤に溶
解させ、その溶液を前記化合物半導体発光素子の周りに
浸漬法又はポッティング法により付着させ、該溶媒の溶
剤を蒸発させて樹脂封止する第1の封止工程と、キャス
ティング法もしくはトランファーモールド成形法でエポ
キシ系樹脂を封止する第2の封止工程とを含むことを特
徴とする半導体発光装置の製造方法。
7. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the first light-transmitting sealing material is dissolved in an organic solvent, and the solution is dipped or potted around the compound semiconductor light emitting element. A first sealing step of applying a resin and evaporating the solvent of the solvent to seal the resin, and a second sealing step of sealing the epoxy resin by a casting method or a transfer molding method. A method for manufacturing a semiconductor light emitting device, comprising:
JP22194596A 1996-08-23 1996-08-23 Semiconductor light emitting device and method of manufacturing the same Expired - Fee Related JP3310551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22194596A JP3310551B2 (en) 1996-08-23 1996-08-23 Semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22194596A JP3310551B2 (en) 1996-08-23 1996-08-23 Semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1065220A JPH1065220A (en) 1998-03-06
JP3310551B2 true JP3310551B2 (en) 2002-08-05

Family

ID=16774625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22194596A Expired - Fee Related JP3310551B2 (en) 1996-08-23 1996-08-23 Semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3310551B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150965A (en) * 1998-11-11 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device
DE10163116B4 (en) 2001-12-24 2008-04-10 G.L.I. Global Light Industries Gmbh Method for producing light-conducting LED bodies in two spatially and temporally separate stages
US7042020B2 (en) * 2003-02-14 2006-05-09 Cree, Inc. Light emitting device incorporating a luminescent material
WO2005027576A2 (en) * 2003-09-08 2005-03-24 Nanocrystal Lighting Corporation Light efficient packaging configurations for led lamps using high refractive index encapsulants
US7189591B2 (en) 2003-12-19 2007-03-13 Nitto Denko Corporation Process for producing light-emitting semiconductor device
JP2005209795A (en) * 2004-01-21 2005-08-04 Koito Mfg Co Ltd Light emitting module and lighting tool
JP2005251875A (en) 2004-03-02 2005-09-15 Toshiba Corp Semiconductor light emitting device
US7279346B2 (en) 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
US7326583B2 (en) 2004-03-31 2008-02-05 Cree, Inc. Methods for packaging of a semiconductor light emitting device
US7517728B2 (en) 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
JP2005294733A (en) 2004-04-05 2005-10-20 Nitto Denko Corp Sheet for sealing optical semiconductor element, and manufacturing method for optical semiconductor device using the sheet
JP4747726B2 (en) * 2004-09-09 2011-08-17 豊田合成株式会社 Light emitting device
JP4624069B2 (en) * 2004-10-27 2011-02-02 京セラ株式会社 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2006140362A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Optical semiconductor device sealing sheet and optical semiconductor device manufacturing method using the same
US7939842B2 (en) 2005-01-27 2011-05-10 Cree, Inc. Light emitting device packages, light emitting diode (LED) packages and related methods
KR101111747B1 (en) * 2005-05-16 2012-06-12 삼성엘이디 주식회사 A composite nano particle and electronic device using the same
JP2007324417A (en) * 2006-06-01 2007-12-13 Sharp Corp Semiconductor light-emitting device and manufacturing method therefor
JP2007324475A (en) 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
JP4984824B2 (en) 2006-10-26 2012-07-25 豊田合成株式会社 Light emitting device
US7808013B2 (en) 2006-10-31 2010-10-05 Cree, Inc. Integrated heat spreaders for light emitting devices (LEDs) and related assemblies
JP5028562B2 (en) 2006-12-11 2012-09-19 株式会社ジャパンディスプレイイースト LIGHTING DEVICE AND DISPLAY DEVICE USING THE LIGHTING DEVICE
TWI442595B (en) * 2007-07-25 2014-06-21 Everlight Electronics Co Ltd Light emitting diode device
JP5380027B2 (en) * 2008-09-25 2014-01-08 株式会社フジクラ Method for manufacturing light emitting device
US9752925B2 (en) * 2015-02-13 2017-09-05 Taiwan Biophotonic Corporation Optical sensor

Also Published As

Publication number Publication date
JPH1065220A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP3310551B2 (en) Semiconductor light emitting device and method of manufacturing the same
US10158050B2 (en) Light-emitting device and method of manufacturing the same
KR101143207B1 (en) Semiconductor light emitting devices including flexible film having therein an optical element, and methods of assembling same
US9263658B2 (en) Light-emitting device and method of manufacturing the same
JP3685018B2 (en) Light emitting device and manufacturing method thereof
US7667224B2 (en) Semiconductor light emitting device and semiconductor light emitting apparatus
US8324646B2 (en) Chip coated light emitting diode package and manufacturing method thereof
KR100653497B1 (en) Light-emitting chip device with case
EP2441098B1 (en) Light-emitting diode with remote porous layer, remote phosphor layer and reflective submount
JP3492178B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3667125B2 (en) Optical semiconductor device and manufacturing method thereof
US7488622B2 (en) Method for producing a surface-mountable semiconductor component
US20060208364A1 (en) LED device with flip chip structure
US20090212316A1 (en) Surface-mounted optoelectronic semiconductor component and method for the production thereof
KR20010114224A (en) Semiconductor radiation emitter package
KR20130028160A (en) Optoelectronic component with a wireless contacting
JPH11177138A (en) Surface-mounting type device and light emitting device or light receiving device using the device
KR20120119395A (en) Light emitting device package and method of manufacturing the same
JP2001024228A (en) Light emitting device
US20220131056A1 (en) UV LED Package Having Encapsulating Extraction Layer
JP2781475B2 (en) Optical device
US10424694B2 (en) Light emitting device package
JP2006269783A (en) Optical semiconductor package
KR20050017979A (en) Light emitting diode package and method for manufacturing light emitting diode package
KR100878327B1 (en) Wafer level packaged light emitting diode and fabrication method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees