JP3302433B2 - Observation device - Google Patents

Observation device

Info

Publication number
JP3302433B2
JP3302433B2 JP05638093A JP5638093A JP3302433B2 JP 3302433 B2 JP3302433 B2 JP 3302433B2 JP 05638093 A JP05638093 A JP 05638093A JP 5638093 A JP5638093 A JP 5638093A JP 3302433 B2 JP3302433 B2 JP 3302433B2
Authority
JP
Japan
Prior art keywords
transmission body
image transmission
face
light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05638093A
Other languages
Japanese (ja)
Other versions
JPH06250104A (en
Inventor
正男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scalar Corp
Original Assignee
Scalar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scalar Corp filed Critical Scalar Corp
Priority to JP05638093A priority Critical patent/JP3302433B2/en
Publication of JPH06250104A publication Critical patent/JPH06250104A/en
Priority to US08/738,409 priority patent/US6063024A/en
Application granted granted Critical
Publication of JP3302433B2 publication Critical patent/JP3302433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内視鏡のような医療用
の観察装置あるいは構造物や各種機器の内部構造等の観
察に用いる観察装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical observation apparatus such as an endoscope or an observation apparatus used for observing structures and internal structures of various devices.

【0002】[0002]

【従来の技術】医療用の内視鏡、あるいは構造物や各種
機器の内部構造等の観察に用いるボアスコープ乃至イメ
ージスコープ等の観察装置は、例えば屈折率分布型像伝
送体やイメージファイバあるいはリレーレンズ構造の像
伝送体のような細長い像伝送体を含む細身部分を有して
おり、この細身部分を体内や機器の内部に挿入して観察
するようになっている。それ故、その細身部分がより細
くあることがこれらの観察装置の性能要素の一つとな
る。
2. Description of the Related Art A medical endoscope or an observation apparatus such as a borescope or an image scope used for observing the internal structure of a structure or various devices is, for example, a gradient index image transmission body, an image fiber or a relay. It has a thin part including an elongated image transmitting body such as an image transmitting body having a lens structure, and the thin part is inserted into a body or the inside of a device for observation. Therefore, the thinner part is one of the performance factors of these observation devices.

【0003】また、これらの観察装置は、一般に、細身
部分に沿わせた光ファイバ束をライトガイドとする自己
照明系を備えており、この照明系の善し悪しがその性能
に大きく影響する。具体的には、例えば必要な部位を正
確に且つ効率的に照明できることが要求される。このた
め、ライトガイドの照明用端部の加工について高い精度
が要求され、その結果加工コストの増大を招くことにな
っている。
[0003] These observation apparatuses generally have a self-illumination system using a light fiber bundle along a narrow portion as a light guide, and the quality of the illumination system greatly affects the performance. Specifically, for example, it is required that a necessary portion can be illuminated accurately and efficiently. For this reason, high precision is required for the processing of the lighting end of the light guide, and as a result, the processing cost is increased.

【0004】さらに、医療用の内視鏡等の場合には、感
染等の防止のために出来れば人体組織や体液に触れるお
それのある部分、つまり細身部分を着脱ユニット化して
使い捨て式とすることが強く望まれる。ところが、従来
の内視鏡等においては、その自己照明系のライトガイド
が細身部分と機械的に一体化した構造となっているの
で、細身部分の着脱ユニット化に困難があり、またたと
え着脱ユニット化が可能であっても、そのユニットの高
価格化を避けられず、使い捨てとすることが難しくなっ
てしまう。
Furthermore, in the case of medical endoscopes and the like, if possible to prevent infection and the like, a part which may come into contact with human tissues or body fluids, that is, a thin part is made into a detachable unit to be a disposable type. Is strongly desired. However, in conventional endoscopes and the like, since the self-illuminating light guide has a structure that is mechanically integrated with the slender part, it is difficult to make the slender part detachable unit. Even if it is possible, the price of the unit cannot be avoided, and it becomes difficult to dispose it.

【0005】[0005]

【発明が解決しようとする課題】このような事情を背景
になされたのが本発明で、細長い像伝送体を含む細身部
分を有した観察装置用について、その細身部分をより細
いものにでき、また必要な部位のより正確且つ効率的な
照明が可能で、さらに細身部分の着脱ユニット化が容易
で、しかもこの着脱ユニットを使い捨てに適するような
低コストで加工可能とする構造を提供せんとするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. For an observation apparatus having a thin portion including an elongated image transmitting body, the thin portion can be made thinner. In addition, a structure that enables more accurate and efficient illumination of a necessary part, makes it easier to attach / detach the slender part, and can process the detachable unit at a low cost suitable for disposable is provided. Things.

【0006】[0006]

【課題を解決するための手段】本発明では、観察物の像
を取り込むための細長い像伝送体を備えると共に、観察
物を照明するための照明系を備えてなる観察装置につい
て、光源系にて与えられる照明光を像伝送体の射出端面
に集光させて像伝送体に入射させ、この像伝送体に入射
した照明光を像伝送体中の伝搬により観察物に照射する
ようにその照明系を形成するものとしており、そのため
に、一つの構造として、発光源とこの発光源から照明光
を導光する複数の光ファイバとにより光源系を形成し且
つ、複数の光ファイバを適宜の本数で単位束とし、この
各単位束の先端を環状に配列する一方で、この単位束の
環状配列に対応させて集光用レンズを設け、この環状配
列の集光用レンズにて光ファイバよりの照明光を像伝送
体の射出端面の周縁部に環状に集光させるようにし、ま
た他の構造として、細長い細径部とこの細径部の一端に
一体的に形成された大径部とを含むと共に、細径部と大
径部の間に、連続的に径が変化し且つこの径の連続的変
化に対応した屈折率分布状態の連続的変化を伴う連続的
径変化部を有してなる屈折率分布型の光伝送体を光源系
に用い、この光伝送体に大径部の端面から入射させた発
光源よりの照明光を細径部の端面から像伝送体の射出端
面に照射するようにしている。
According to the present invention, there is provided an observation apparatus including an elongated image transmitting body for capturing an image of an observation object and an illumination system for illuminating the observation object. The provided illumination light is condensed on the exit end face of the image transmission body and made incident on the image transmission body, and the illumination system is arranged so that the illumination light incident on the image transmission body is irradiated on an observation object by propagation in the image transmission body. Therefore, as one structure, a light source system is formed by a light emitting source and a plurality of optical fibers for guiding illumination light from the light emitting source, and a plurality of optical fibers are provided in an appropriate number. A unit bundle is provided, and while the tips of the unit bundles are arranged in a ring, a condensing lens is provided corresponding to the ring arrangement of the unit bundle, and illumination from an optical fiber is performed by the condensing lens in the ring arrangement. Light is emitted around the exit end face of the image transmitter. In order to converge annularly on the portion, as another structure, it includes an elongated small diameter portion and a large diameter portion integrally formed at one end of the small diameter portion, and includes a small diameter portion and a large diameter portion. In the meantime, a refractive index distribution type optical transmission body having a diameter continuously changing and having a continuous diameter changing portion accompanied by a continuous change of a refractive index distribution state corresponding to the continuous change of the diameter is used as a light source. In this system, illumination light from a light emitting source, which is incident on the optical transmission body from the end face of the large-diameter portion, is applied to the emission end face of the image transmission body from the end face of the small-diameter portion.

【0007】これらの各構造は、像の伝送路である像伝
送体を照明光の伝送路にも兼用するようにしたもので、
像伝送体の射出端面から入射した照明光は、像伝送体中
を像光とは逆方向で伝搬し、像伝送体の入射端面から射
出して観察物を照明することになる。この結果、像取込
み範囲と照明範囲が一致し、必要な部位のより正確且つ
効率的な照明が可能となる。また、従来のように照明系
のライトガイドを細身部分に沿わせる必要がなくなり、
その細身部分をより細いものにできる。さらに、細身部
分の着脱ユニット化の場合に、その主な要素が像伝送体
だけで済むので、着脱ユニット化が容易であり、しかも
その低コスト化を図れる。
In each of these structures, an image transmission body, which is an image transmission path, is also used as an illumination light transmission path.
Illumination light incident from the exit end face of the image transmission body propagates through the image transmission body in a direction opposite to that of the image light, exits from the entrance end face of the image transmission body, and illuminates the observation object. As a result, the image capturing range and the illumination range match, and more accurate and efficient illumination of a necessary part is enabled. In addition, there is no need to make the light guide of the illumination system along the slender part as in the past,
The slender part can be made thinner. Furthermore, in the case of the detachable unit of the slender part, the main element is only the image transmission body, so that the detachable unit can be easily formed and the cost can be reduced.

【0008】特に、光ファイバと集光用レンズを組み合
わせた構造の場合には、より強力な照明光を像伝送系に
対し障害となるような干渉を生じることなく像伝送体中
に送り込むことができる。即ち、環状配列の集光用レン
ズにて光ファイバよりの照明光を像伝送体の射出端面の
周縁部に環状に集光させて像伝送体の周縁を有効に利用
するようにしているので、像伝送体の射出端面から射出
する像光に影響を与えることなく、強力な照明光の像伝
送体中への送り込みが可能となる。
In particular, in the case of a structure in which an optical fiber and a condensing lens are combined, it is possible to send more powerful illumination light into the image transmission body without causing interference that may hinder the image transmission system. it can. That is, since the illumination light from the optical fiber is converged annularly on the periphery of the exit end face of the image transmission body by the condensing lens in the annular arrangement, the periphery of the image transmission body is effectively used, The strong illumination light can be sent into the image transmission body without affecting the image light emitted from the exit end face of the image transmission body.

【0009】また、連続的径変化部を有する光伝送体を
用いる場合には、非常に強力な照明光を簡単な構造で、
しかも像伝送系に対し障害となるような干渉を生じるこ
となく、像伝送体中に送り込むことができる。即ち、こ
の光伝送体は、その連続的径変化部により自己集光機能
を持ち、大径部の断面積と細径部の断面積との比率に応
じた倍率での集光を可能とし、例えば大径部の径をcm
オーダーとし細径部の径をmm以下のオーダーとするこ
とにより、数百〜数千倍の集光力での照明光の供給が可
能である。また、細径部がmm以下というように極めて
細いと、この細径部が像伝送体の射出端面に被さるよう
になっても像伝送体の射出端面から射出する像光への影
響は無視し得るものとなるので、細径部の端面を像伝送
体の射出端面の中心部に直接臨ませて像伝送体中への照
明光の照射を行うという、最も簡単な構造を採ることが
可能となる。
In the case of using an optical transmission body having a continuous diameter changing portion, a very strong illumination light can be provided with a simple structure,
Moreover, the light can be sent into the image transmission body without causing interference that may interfere with the image transmission system. That is, this optical transmission body has a self-focusing function by its continuous diameter change portion, and enables light collection at a magnification corresponding to the ratio of the cross-sectional area of the large-diameter portion to the cross-sectional area of the small-diameter portion, For example, the diameter of the large diameter part is cm
By setting the diameter of the small-diameter portion on the order of mm or less, it is possible to supply illumination light with a condensing power of several hundred to several thousand times. Also, if the small-diameter portion is extremely thin, such as not more than mm, even if the small-diameter portion covers the exit end face of the image transmission body, the effect on the image light emitted from the exit end face of the image transmission body is ignored. Therefore, it is possible to adopt the simplest structure of irradiating illumination light into the image transmission body with the end face of the narrow diameter part directly facing the center of the emission end face of the image transmission body. Become.

【0010】上記の集光用レンズを用いる構造及び自己
集光型の光伝送体を用いる構造の何れについても、細長
い像伝送体には、屈折率分布型の像伝送体を用いるのが
好ましいが、この屈折率分布型像伝送体の他にも、例え
ば前記イメージファイバやリレータイプの像伝送体等を
用いることができる。
In both of the structure using the condensing lens and the structure using the self-condensing type optical transmitter, it is preferable to use a gradient index type image transmitter as the elongated image transmitter. In addition to the refractive index distribution type image transmitter, for example, the above-mentioned image fiber or relay type image transmitter can be used.

【0011】屈折率分布型の像伝送体には、細長い細径
部とこの細径部の一端に一体的に形成された大径部とを
含むと共に、細径部と大径部の間に、連続的に径が変化
し且つこの径の連続的変化に対応した屈折率分布状態の
連続的変化を伴う連続的径変化部を有してなる屈折率分
布型の像伝送体を用いれば、さらに好ましい。即ち、こ
のような屈折率分布型像伝送体によると、射出端面の径
が大きいのでより多く照明光を効率的に入射させること
ができ、より強力な照明力を得ることができる。
[0011] The image transmission body of the refractive index distribution type includes an elongated small diameter portion and a large diameter portion integrally formed at one end of the small diameter portion. By using a refractive index distribution type image transmission body having a continuous diameter changing portion with a continuously changing diameter and a continuously changing refractive index distribution state corresponding to the continuous change of the diameter, More preferred. That is, according to such a refractive index distribution type image transmission body, since the diameter of the exit end face is large, more illumination light can be efficiently incident, and a stronger illumination power can be obtained.

【0012】上記のような異径構造の屈折率分布型の光
伝送体は、ポリマー原料を用いる場合には界面ゲル重合
法により形成することができる。この界面ゲル重合法の
基本的プロセスは以下の通りである。
The above-described refractive index distribution type optical transmission body having a different diameter structure can be formed by an interfacial gel polymerization method when a polymer material is used. The basic process of this interfacial gel polymerization method is as follows.

【0013】即ち、界面ゲル重合法は、それぞれ屈折率
及び分子サイズのそれぞれ異なる複数のモノマー又は未
反応性分子の混合液を、混合液中のモノマーや未反応性
分子と親和性の高い材料、例えば混合液の特定のモノマ
ーや未反応性分子又は混合液自体と同系のポリマー原料
で形成した重合管内でゲル効果の利用により特定の方向
性をもって重合させ、この重合過程における各モノマー
又は未反応性分子の拡散性の相違により、それぞれ屈折
率の異なった複数のモノマー又は未反応性分子を最終的
に重合管の中心軸から周辺にかけて異なった比率で混合
分布させることにより半径方向での屈折率分布を与える
ようにしたものである(例えば、特開平4−97302
号、特開平4−97303号)。
That is, in the interfacial gel polymerization method, a mixture of a plurality of monomers or unreacted molecules, each having a different refractive index and a different molecular size, is converted into a material having high affinity for the monomers and unreacted molecules in the mixture, For example, polymerization is performed in a specific direction by using the gel effect in a polymerization tube formed of a specific monomer or unreacted molecule of the mixed solution or a polymer raw material of the same type as the mixed solution itself. The refractive index distribution in the radial direction is obtained by mixing and distributing a plurality of monomers or unreacted molecules having different refractive indexes at different ratios from the central axis to the periphery of the polymerization tube due to the difference in the diffusivity of the molecules. (For example, Japanese Patent Laid-Open No. 4-97302).
No. JP-A-4-97303).

【0014】このような界面ゲル重合法を実施する手法
としては、例えば、注入法と滴下法がある。注入法は、
必要な量のモノマー又は未反応性分子の混合液を全部一
度に重合管内に注入し、それから重合管を回転させつつ
重合を行う方法である。一方、滴下法は、モノマー又は
未反応性分子の混合液を重合管内に所定量で滴下しつ
つ、各滴下ごとに重合を進め、最終的に重合管をポリマ
ー固体で満たすようにした方法である。
As a method for carrying out such an interfacial gel polymerization method, there are, for example, an injection method and a dropping method. The injection method is
This is a method in which a required amount of a mixture of monomers or unreacted molecules is injected all at once into a polymerization tube, and then polymerization is performed while rotating the polymerization tube. On the other hand, the dropping method is a method in which a predetermined amount of a mixed solution of a monomer or unreacted molecules is dropped into a polymerization tube, the polymerization is advanced for each drop, and the polymerization tube is finally filled with a polymer solid. .

【0015】以上のような界面ゲル重合法を用いて本発
明による光伝送体を形成する方法には、以下の2通りの
方法が可能である。一つは純延伸法で、従来の光ファイ
バの製法として常用されている手法を応用した方法であ
る。具体的には、先ず注入法又は滴下法を用いて中間体
(プリフォームとも呼ばれる)を均一な太さの円柱状に
形成し、次いでこの中間体の一端側を加熱軟化させて部
分的に引き伸ばすことにより、細長い細径部を形成す
る。ここで本発明として大事なことは、径の太い中間体
の一部をそのまま大径部として細径部と一体的に残すよ
うにし、且つ大径部と細径部との間に引き伸ばしによる
径変化の状態を制御した連続的径変化部を形成すること
である。このように所定の状態に制御された連続的径変
化部では中間体における屈折率分布状態が径の連続変化
に対応して言わば相似状に連続的に変化する。
The following two methods are possible for forming the optical transmission body according to the present invention using the above-described interfacial gel polymerization method. One is a pure drawing method, which is a method to which a method commonly used as a conventional optical fiber manufacturing method is applied. Specifically, first, an intermediate (also referred to as a preform) is formed into a columnar shape having a uniform thickness by using an injection method or a dropping method, and then one end side of the intermediate is heated and softened and partially stretched. Thereby, an elongated narrow diameter portion is formed. Here, what is important as the present invention is to leave a part of the intermediate having a large diameter as a large diameter portion and to leave it integrally with the small diameter portion, and to expand the diameter between the large diameter portion and the small diameter portion by stretching. The purpose is to form a continuous diameter change portion in which the state of change is controlled. As described above, in the continuous diameter changing portion controlled to a predetermined state, the refractive index distribution state in the intermediate body continuously changes in a similar manner in a manner corresponding to the continuous change in the diameter.

【0016】他の一つはミックス法で、中間体の加工に
成形的な要素を取り入れる点で前記純延伸法と異なる。
具体的には、最終的に得ようとする光伝送体の形状の骨
格となる予備的形状に成形した重合管を用いて中間体を
形成し、この中間体を前記の純延伸法と同様に処理して
目的の光伝送体を得るようにする。この場合の中間体の
形成には滴下法が用いられる。つまり、予備的形状に成
形した重合管内にモノマー又は未反応性分子の混合液を
所定の制御条件下で順次滴下しつつポリマー固体を形成
する。この過程では、予め与えられている重合管の連続
的径変化部において、順次滴下されるモノマー又は未反
応性分子の混合液が各滴下ごとに異なる径の条件下で重
合をなし、この重合における径条件の相違に応じて異種
モノマー又は未反応性分子の混合分布比率が異なり、こ
れが積み重なって屈折率分布状態の連続的変化が得られ
る。
The other is a mixing method, which differs from the pure stretching method in that a molding element is incorporated into the processing of an intermediate.
Specifically, an intermediate is formed by using a polymerization tube molded into a preliminary shape serving as a skeleton of the shape of the optical transmission body to be finally obtained, and the intermediate is formed in the same manner as in the pure stretching method described above. Processing to obtain the desired optical transmitter. In this case, a dropping method is used for forming the intermediate. That is, a polymer solid is formed while a mixture of monomers or unreacted molecules is sequentially dropped under a predetermined control condition into a polymerization tube formed in a preliminary shape. In this process, in the continuous diameter changing portion of the polymerization tube provided in advance, the mixed solution of the monomer or unreacted molecule which is sequentially dropped forms polymerization under the condition of a different diameter for each drop, and in this polymerization, The mixing distribution ratio of different monomers or unreacted molecules differs according to the difference in the diameter condition, and the mixture ratios are stacked to obtain a continuous change in the refractive index distribution state.

【0017】界面ゲル重合法で用いることができるポリ
マー原料としては、以下のようなものが可能である。M
MA(Methyl Methacrylate,分子サイズ;104.4, 屈折
率;1.492) 、BBP(Benzyl n−Butyl Phthalate,分子
サイズ;301.1, 屈折率;1.541)、BzMA(Benzyl Meth
acrylate,分子サイズ;180.0, 屈折率;1.562) 、VB(V
inyl Benzoate, 分子サイズ;145.9, 屈折率;1.578) 、
PhMA(Phenyl Methacrylate,分子サイズ;162.8, 屈
折率;1.570) 、VPAc(Vinyl Phenylacetate,分子サ
イズ;163.2, 屈折率;1.567) 。
The following can be used as the polymer raw material that can be used in the interfacial gel polymerization method. M
MA (Methyl Methacrylate, molecular size; 104.4, refractive index; 1.492), BBP (Benzyl n-Butyl Phthalate, molecular size; 301.1, refractive index; 1.541), BzMA (Benzyl Meth
acrylate, molecular size; 180.0, refractive index; 1.562), VB (V
inyl Benzoate, molecular size; 145.9, refractive index; 1.578),
PhMA (Phenyl Methacrylate, molecular size; 162.8, refractive index; 1.570), VPAc (Vinyl Phenylacetate, molecular size; 163.2, refractive index; 1.567).

【0018】[0018]

【実施例】以下、本発明の実施例を説明する。この実施
例は固体撮像素子を用いた図1に示す撮像具1とこの撮
像具1で捉えた観察物の像を再生表示する図外のモニタ
ディスプレイからなるビデオ式の観察装置に関する例
で、本発明の特徴が含まれる撮像具1は、本体部2と像
伝送体ユニット3よりなっている。
Embodiments of the present invention will be described below. This embodiment is an example relating to a video-type observation apparatus including an imaging device 1 shown in FIG. 1 using a solid-state imaging device and a monitor display (not shown) for reproducing and displaying an image of an observation object captured by the imaging device 1. The imaging device 1 including the features of the present invention includes a main body 2 and an image transmission unit 3.

【0019】本体部2は、筒状で、その内部にカメラユ
ニット4を内蔵すると共に、照明系の一部である光源系
を形成する光源系ユニット5を内蔵し、また撮像ユニッ
ト4からの信号ケーブル6及び光源系ユニット5に含ま
れる多数の光ファイバ7、7、……を束ねた光源ケーブ
ル8がそれぞれ外部へ延設されている。
The main body 2 has a cylindrical shape and incorporates a camera unit 4 therein, a light source system unit 5 forming a light source system which is a part of an illumination system, and a signal from the imaging unit 4. A light source cable 8 in which a large number of optical fibers 7, 7,... Included in the cable 6 and the light source system unit 5 are bundled extends to the outside.

【0020】撮像ユニット4は、図2に示すように、前
端部分が円錐状に細くなっている遮光筒9の内部にカメ
ラユニットの固体撮像素子10やフレア等の防止のため
の絞り11、11、……等を設けてなっている。
As shown in FIG. 2, the image pickup unit 4 has apertures 11, 11 for preventing a solid-state image pickup device 10 and a flare of a camera unit inside a light-shielding tube 9 having a conically narrow front end portion. , ..., etc. are provided.

【0021】光源系ユニット5は、外部の発光源から照
明光を導光する多数の光ファイバ7、7、……と、これ
らの光ファイバ7、7、……の先端面つまり照射端面か
ら射出される照明光を後述の像伝送体19の射出端面1
9iの周縁部に円環状に結像させて集光するための集光
系ユニット12とよりなっている。
The light source system unit 5 has a number of optical fibers 7, 7,... For guiding illumination light from an external light source, and emits light from the distal end surface of the optical fibers 7, 7,. The illumination light to be emitted is transmitted to an exit end face 1 of an image transmission body 19 described later.
The light-collecting system unit 12 forms an annular image on the periphery of the light-receiving surface 9i and collects light.

【0022】集光系ユニット12は、結像レンズ13を
適宜の個数と、この結像レンズ13の各々に対応させて
設けたコリメータレンズ14とを図示を省略したフレー
ム体に組み付けてなるもので、各コリメータレンズ14
には光ファイバ7、7、……から適宜の本数で単位とし
た光ファイバ束7bが対応するようにされている。そし
て、この集光系ユニット12により結像された照明光L
は、射出端面19iの周縁部から像伝送体19に入射
し、その内部を伝搬して観察物Mを照射することにな
る。
The condensing system unit 12 is formed by assembling an appropriate number of imaging lenses 13 and a collimator lens 14 provided corresponding to each of the imaging lenses 13 to a frame body (not shown). , Each collimator lens 14
, An optical fiber bundle 7b in units of an appropriate number of optical fibers 7, 7,... Then, the illumination light L imaged by the light collecting unit 12
Is incident on the image transmission body 19 from the periphery of the exit end face 19i, propagates through the inside, and irradiates the observation object M.

【0023】像伝送体ユニット3は、細長い保護筒16
内に先端から順にカバーガラス17、対物レンズ18、
及び屈折率分布型の像伝送体19を配列すると共に、保
護筒16の基端部に螺合部材20を取り付けてなってお
り、この螺合部材20を介して本体部2に着脱できるよ
うにされている。
The image transmission unit 3 includes an elongated protective cylinder 16.
A cover glass 17, an objective lens 18,
In addition, an image transmission body 19 of a refractive index distribution type is arranged, and a screw member 20 is attached to the base end of the protective tube 16 so that the screw member 20 can be attached to and detached from the main body 2 via the screw member 20. Have been.

【0024】図3に示すのは、上記実施例の変形として
特殊な構造の屈折率分布型像伝送体30を用いた例であ
る。即ち、この像伝送体30は、その端面が射出端面3
1とされた短い大径部32と、その端面が入射端面33
とされた細長い細径部34との間に大径部32側から細
径部34側に向けて連続的に径が小さくなる連続的径変
化部35を形成した構造となっている。
FIG. 3 shows an example in which a gradient index image transmission body 30 having a special structure is used as a modification of the above embodiment. That is, the end face of the image transmission body 30 is the exit end face 3.
1 and a large-diameter portion 32 whose end face is the incident end face 33
A continuous diameter changing portion 35 whose diameter continuously decreases from the large-diameter portion 32 side to the small-diameter portion 34 side is formed between the small-diameter portion 34 and the elongated small-diameter portion 34.

【0025】この像伝送体30は、図中に1点鎖線で示
すような光路軌跡T′で像の伝送がなされ、細径部34
においては通常の屈折率分布型像伝送体と同様に入射端
面33から入射した像が等倍で伝送されるが、連続的径
変化部35から大径部32にかけて徐々に拡大し、最終
的には射出端面31と入射端面33の径の比率に応じた
倍率の像として固体撮像素子10の受光面10fに結像
するものである。
The image transmission body 30 transmits an image along an optical path trajectory T 'as shown by a one-dot chain line in FIG.
In the case of, the image incident from the incident end face 33 is transmitted at the same magnification as in the ordinary refractive index distribution type image transmission body, but gradually expands from the continuous diameter changing portion 35 to the large diameter portion 32, and finally, Is formed on the light receiving surface 10f of the solid-state imaging device 10 as an image having a magnification corresponding to the ratio of the diameter of the exit end surface 31 to the diameter of the incident end surface 33.

【0026】一方、この像伝送体30に射出端面31か
ら入射する集光系ユニット12よりの照明光Lは、上記
像伝送とは逆向きで像伝送体30内を伝搬して入射端面
33から観察物を照射することになる。つまり、大径の
射出端面31から入射した照明光が連続的径変化部35
において集光されつつ小径の入射端面33から観察物を
照射することになる。このような像伝送体30による
と、集光系ユニット12からの照明光を効率よく入射さ
せることができ、しかも像伝送体30自体が集光力を持
つので、極めて強力な照明力を得ることができる。
On the other hand, the illuminating light L from the light condensing system unit 12 which enters the image transmission body 30 from the exit end face 31 propagates through the image transmission body 30 in the opposite direction to the above-described image transmission and from the incidence end face 33. The observation object is irradiated. In other words, the illumination light incident from the large-diameter exit end face 31 is
The object is irradiated from the small-diameter incident end face 33 while being focused. According to such an image transmission body 30, the illumination light from the light condensing system unit 12 can be efficiently incident, and since the image transmission body 30 itself has a condensing power, an extremely strong illumination power can be obtained. Can be.

【0027】尚、この例では像伝送体30の結像面が射
出端面31から離れた位置にある固体撮像素子10の受
光面10fに生じるようにされているが、入射端面33
と射出端面31との距離と光路軌跡T′のピッチ数との
関係を調整することにより、射出端面31上に結像面を
生じさせるようにすることもできる。ただ、その場合に
は固体撮像素子10との間に結像系を設ける必要があ
る。また、この例の像伝送体30にはある長さを持つ大
径部32が形成されているが、必ずしもこのような大径
部32を設ける必要はなく、連続的径変化部35の一端
に射出端面31を与えるような構造も可能である。
In this example, the image forming surface of the image transmission body 30 is formed on the light receiving surface 10f of the solid-state image pickup device 10 located at a position away from the exit end surface 31, but the incident end surface 33 is provided.
By adjusting the relationship between the distance between the light source and the exit end face 31 and the pitch number of the optical path locus T ′, an image plane can be formed on the exit end face 31. However, in that case, it is necessary to provide an imaging system between the solid-state imaging device 10 and the solid-state imaging device 10. Further, the large-diameter portion 32 having a certain length is formed in the image transmission body 30 in this example, but it is not always necessary to provide such a large-diameter portion 32, and one end of the continuous diameter changing portion 35 is provided. A structure that provides the emission end face 31 is also possible.

【0028】図4に示すのは、上記第2の実施例におけ
る像伝送体30と同様の構造の光伝送体40を光源系の
集光系に用いた例である。即ち、集光系に用いた光伝送
体40は、約1cmの直径とされた第1端面41(像伝
送体30の射出端面31に対応する)を有する短い大径
部42と、約0.5 mmの直径とされた第2端面43(像
伝送体30の入射端面33に対応する)を有する細長い
細径部44との間に連続的径変化部45を形成した構造
であり、像伝送体30と同様にして照明光を集光的に伝
送するようになっている。
FIG. 4 shows an example in which an optical transmission body 40 having the same structure as the image transmission body 30 in the second embodiment is used as a light-collecting system. That is, the light transmitting body 40 used for the light condensing system has a short large-diameter portion 42 having a first end face 41 (corresponding to the exit end face 31 of the image transmitting body 30) having a diameter of about 1 cm, and about 0.5 mm. A continuous diameter changing portion 45 is formed between the elongated portion 44 having a second end surface 43 (corresponding to the incident end surface 33 of the image transmission body 30) having a diameter of In the same manner as described above, the illumination light is condensedly transmitted.

【0029】この光伝送体40は、それが持つ柔軟性で
その細径部44を曲折させることにより、第1端面41
が光ファイバ束47の射出端面と向かい合い、一方第2
端面43が像伝送体19の射出端面19iの略中心部に
向かい合う状態にして、光ファイバ束47の射出端面と
像伝送体19の射出端面19iとの間に介在させられて
いる。つまり、光ファイバ束47からの照明光Lは、第
1端面41から光伝送体40に入射し、連続的径変化部
45において単純計算で約400倍に集光された強力な
照明光として第2端面43から像伝送体19の射出端面
19iに射出し、さらに像伝送体19内を伝搬して観察
物を照射する。
The light transmitting body 40 is formed by bending the small diameter portion 44 by the flexibility of the first end face 41.
Faces the exit end face of the optical fiber bundle 47, while the second
The end face 43 is disposed between the exit end face of the optical fiber bundle 47 and the exit end face 19i of the image transmission body 19 with the end face 43 facing a substantially central portion of the exit end face 19i of the image transmission body 19. That is, the illumination light L from the optical fiber bundle 47 is incident on the optical transmission body 40 from the first end face 41 and is converted into a strong illumination light that is condensed about 400 times by the simple calculation in the continuous diameter changing section 45. The light is emitted from the second end face 43 to the emission end face 19i of the image transmission body 19, and further propagates in the image transmission body 19 to irradiate the observation object.

【0030】図5に示すのは、図4の実施例の変形例
で、十分に長い細径部54を有する光伝送体50を光源
系に用いた例である。即ち、この例では、図4の実施例
における光伝送体40が光源系の集光系として用いられ
ていたのと異なり、光伝送体50の大径部52が外部の
発光源Lsに直接臨むようにされ、大径部52の第1端
面51から入射した発光源Lsからの照明光Lが連続的
径変化部55が集光された後、十分に長い細径部54に
より像伝送体19の射出端面19iにまで導かれるよう
にされている。
FIG. 5 shows a modification of the embodiment shown in FIG. 4, in which an optical transmission body 50 having a sufficiently long narrow portion 54 is used as a light source system. That is, in this example, the large diameter portion 52 of the light transmission body 50 directly faces the external light source Ls, unlike the light transmission body 40 in the embodiment of FIG. After the illumination light L from the light emitting source Ls incident from the first end face 51 of the large diameter portion 52 is collected by the continuous diameter changing portion 55, the image transmission body 19 is formed by the sufficiently small diameter portion 54. Is guided to the emission end face 19i.

【0031】以上の各実施例では像伝送体に屈折率分布
型の像伝送体を用いていたが、この他に、例えばよく知
られているイメージファイバ、あるいは図6に示すよう
なリレー構造の像伝送体60、つまり直列に配列した複
数のレンズ61a、61bで等倍結像を繰り返して像の
伝送を行う像伝送体等を用いることができる。
In each of the embodiments described above, a gradient index type image transmitting member is used as the image transmitting member. Alternatively, for example, a well-known image fiber or a relay having a relay structure as shown in FIG. An image transmitting body 60, that is, an image transmitting body or the like that transmits an image by repeating the same-magnification imaging with a plurality of lenses 61a and 61b arranged in series can be used.

【0032】[0032]

【発明の効果】本発明による観察装置は、以上説明して
きた如く、像の伝送路である細長い像伝送体を照明光の
伝送路にも兼用するようにしているので、必要な部位の
より正確且つ効率的な照明が可能であり、また細身部分
をより細いものにでき、さらに細身部分の低コストでの
着脱ユニット化を可能とする。そして、特に、光ファイ
バと集光用レンズを組み合わせた構造及び連続的径変化
部を有する光伝送体を用いる構造とすることにより、よ
り強力な照明光を像伝送系に対し障害となるような干渉
を生じることなく像伝送体中に送り込むことができるの
で、上記の長所をより有効に発揮させることができる。
As described above, the observing device according to the present invention uses the elongated image transmitting body, which is the image transmitting path, also as the transmitting path for the illumination light, so that the required portion can be more accurately determined. In addition, efficient illumination is possible, the slender part can be made thinner, and the slender part can be made into a detachable unit at low cost. In particular, by using a structure combining an optical fiber and a condensing lens and a structure using an optical transmission body having a continuous diameter changing portion, more powerful illumination light may be an obstacle to the image transmission system. Since the image can be fed into the image transmission body without causing interference, the above advantages can be more effectively exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による撮像具の一部断面を含
む側面図。
FIG. 1 is a side view including a partial cross section of an imaging device according to an embodiment of the present invention.

【図2】図1の撮像具の部分拡大断面図。FIG. 2 is a partially enlarged cross-sectional view of the imaging device of FIG.

【図3】本発明の第2の実施例による撮像具の部分構成
図。
FIG. 3 is a partial configuration diagram of an imaging device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例による撮像具の部分構成
図。
FIG. 4 is a partial configuration diagram of an imaging device according to a third embodiment of the present invention.

【図5】本発明の第4の実施例による撮像具の部分構成
図。
FIG. 5 is a partial configuration diagram of an imaging device according to a fourth embodiment of the present invention.

【図6】他の例による像伝送体の断面図。FIG. 6 is a sectional view of an image transmission body according to another example.

【符号の説明】[Explanation of symbols]

1 撮像具 2 本体部 3 像伝送体ユニット 5 光源系ユニット 7 光ファイバ 7b 光ファイバ束(単位束) 10 撮像素子 10f 受光面 13 結像用レンズ 19 像伝送体 19i 射出端面 30 像伝送体 31 射出端面 33 入射端面 35 連続的径変化部 40 光伝送体 41 第1端面 43 第2端面 45 連続的径変化部 M 観察物 L 照明光 REFERENCE SIGNS LIST 1 imaging device 2 main body unit 3 image transmission unit 5 light source system unit 7 optical fiber 7 b optical fiber bundle (unit bundle) 10 imaging element 10 f light receiving surface 13 imaging lens 19 image transmission unit 19 i emission end face 30 image transmission unit 31 emission End face 33 Incident end face 35 Continuous diameter changing part 40 Optical transmission body 41 First end face 43 Second end face 45 Continuous diameter changing part M Observation object L Illumination light

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 23/26 A61B 1/06 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 23/26 A61B 1/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 観察物の像を取り込むための細長い像伝
送体を備えると共に、観察物を照明するための照明系を
備えてなり、その照明系は、光源系にて与えられる照明
光を像伝送体の射出端面から像伝送体に集光的に入射さ
せ、この像伝送体に入射した照明光を像伝送体中の伝搬
により観察物に照射するように形成されている観察装置
であって、発光源とこの発光源から照明光を導光する複
数の光ファイバとにより光源系を形成し且つ、複数の光
ファイバを適宜の本数で単位束とし、この各単位束の先
端を環状に配列する一方で、この単位束の環状配列に対
応させて集光用レンズを設け、この環状配列の集光用レ
ンズにて光ファイバよりの照明光を像伝送体の射出端面
の周縁部に環状に集光させるようにしたことを特徴とす
る観察装置。
An illumination system for illuminating an observation object is provided. The illumination system is provided with an illumination system for illuminating the observation object. An observation apparatus which is formed so as to collectively enter an image transmission body from an exit end face of the transmission body and irradiate an illumination object incident on the image transmission body to an observation object by propagation in the image transmission body. A light source system is formed by a light emitting source and a plurality of optical fibers for guiding illumination light from the light emitting source, and a plurality of optical fibers are formed into an appropriate number of unit bundles, and the ends of each unit bundle are arranged in a ring. On the other hand, a condensing lens is provided corresponding to the annular arrangement of the unit bundle, and the illumination light from the optical fiber is annularly formed on the periphery of the exit end face of the image transmission body by the condensing lens having the annular arrangement. An observation apparatus characterized in that light is condensed.
【請求項2】 観察物の像を取り込むための細長い像伝
送体を備えると共に、観察物を照明するための照明系を
備えてなり、その照明系は、光源系にて与えられる照明
光を像伝送体の射出端面から像伝送体に集光的に入射さ
せ、この像伝送体に入射した照明光を像伝送体中の伝搬
により観察物に照射するように形成されている観察装置
であって、細長い細径部とこの細径部の一端に一体的に
形成された大径部とを含むと共に、細径部と大径部の間
に、連続的に径が変化し且つこの径の連続的変化に対応
した屈折率分布状態の連続的変化を伴う連続的径変化部
を有してなる屈折率分布型の光伝送体を光源系に用い、
この光伝送体に大径部の端面から入射させた発光源より
の照明光を細径部の端面から像伝送体の射出端面に照射
するようにしたことを特徴とする観察装置。
2. An illumination system for illuminating an observation object, comprising an elongated image transmission body for capturing an image of the observation object, and an illumination system for illuminating the observation object. An observation apparatus which is formed so as to collectively enter an image transmission body from an exit end face of the transmission body and irradiate an illumination object incident on the image transmission body to an observation object by propagation in the image transmission body. , An elongated narrow portion and a large diameter portion integrally formed at one end of the small diameter portion, wherein the diameter continuously changes between the small diameter portion and the large diameter portion and the diameter is continuously changed. Using a refractive index distribution type optical transmission body having a continuous diameter change portion with a continuous change of the refractive index distribution state corresponding to the change in the light source system,
An observation apparatus characterized in that illumination light from a light emitting source, which is made incident on the light transmitting body from the end face of the large diameter part, is emitted from the end face of the small diameter part to the emission end face of the image transmitting body.
【請求項3】 像伝送体として、屈折率分布型の像伝送
体を用いた請求項1〜請求項2の何れかに記載の観察装
置。
3. The observation device according to claim 1, wherein a refractive index distribution type image transmission body is used as the image transmission body.
【請求項4】 屈折率分布型の像伝送体が、細長い細径
部とこの細径部の一端に一体的に形成された大径部とを
含むと共に、細径部と大径部の間に、連続的に径が変化
し且つこの径の連続的変化に対応した屈折率分布状態の
連続的変化を伴う連続的径変化部を有してなるものであ
る請求項3に記載の観察装置。
4. An image transmission body of a refractive index distribution type includes an elongated small diameter portion and a large diameter portion integrally formed at one end of the small diameter portion, and a portion between the small diameter portion and the large diameter portion. 4. The observation apparatus according to claim 3, further comprising a continuous diameter changing portion having a continuously changing diameter and a continuous change in a refractive index distribution state corresponding to the continuous change in the diameter. .
JP05638093A 1992-11-19 1993-02-23 Observation device Expired - Fee Related JP3302433B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05638093A JP3302433B2 (en) 1993-02-23 1993-02-23 Observation device
US08/738,409 US6063024A (en) 1992-11-19 1996-10-25 Observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05638093A JP3302433B2 (en) 1993-02-23 1993-02-23 Observation device

Publications (2)

Publication Number Publication Date
JPH06250104A JPH06250104A (en) 1994-09-09
JP3302433B2 true JP3302433B2 (en) 2002-07-15

Family

ID=13025660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05638093A Expired - Fee Related JP3302433B2 (en) 1992-11-19 1993-02-23 Observation device

Country Status (1)

Country Link
JP (1) JP3302433B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE449560T1 (en) * 1999-09-13 2009-12-15 Visionscope Technologies Llc MINIATURE ENDOSCOPE ARRANGEMENT
US20070167681A1 (en) 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
US10595710B2 (en) 2001-10-19 2020-03-24 Visionscope Technologies Llc Portable imaging system employing a miniature endoscope
KR100446717B1 (en) * 2002-03-21 2004-09-01 정하철 Suction borescope for medical treatment
JP5650551B2 (en) * 2011-01-14 2015-01-07 リコー光学株式会社 Fiberscope device
JP5587818B2 (en) * 2011-03-25 2014-09-10 リコー光学株式会社 Fiberscope device
JP5772362B2 (en) * 2011-08-03 2015-09-02 株式会社リコー Fiberscope
JP5925303B2 (en) * 2012-05-17 2016-05-25 パイオニア株式会社 Endoscope

Also Published As

Publication number Publication date
JPH06250104A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
US9561078B2 (en) Multi-cladding optical fiber scanner
JP5274719B2 (en) Endoscope and endoscope illumination device
US8842208B2 (en) Optical fiber scanning probe
US20090180197A1 (en) Grin lens microscope system
JP2005512746A (en) Confocal imaging device especially for endoscope
JP3302433B2 (en) Observation device
CN104271025B (en) Endoscope apparatus
US6063024A (en) Observation apparatus
JP2012055342A (en) Luminaire of fiberscope apparatus
CN101461985A (en) Plug and play medical laser acupuncture
CA2358558A1 (en) An image guide and method for sub-micron imaging and picosecond timing
JP2967368B2 (en) Objective of dental magnifying observation device
JP6463218B2 (en) Laser therapy apparatus and photodynamic therapy apparatus for esophageal cancer
JP2934024B2 (en) Coaxial illumination observation device
JP5587818B2 (en) Fiberscope device
JP2007135777A (en) Switching type imaging fiber apparatus
JP2994229B2 (en) Endoscope
KR101911352B1 (en) Multi-fluorescence detection device
JP3120445B2 (en) Objective of magnification observation device
JP3241051B2 (en) Objective of magnification observation device
WO2024014180A1 (en) Disposable endoscope using plastic gradient-index lens
JP3097929B2 (en) Transmitted light-incident light selection type condensing guide
EP3773163B1 (en) Fiber endoscope
CN219109367U (en) Structure for realizing parallel movement restoration and endoscope close-range image observation device
RU2192029C1 (en) Gradient optical system of superthin endoscope

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees