JP3299250B2 - Pure water electrolysis tank with an intermediate chamber - Google Patents

Pure water electrolysis tank with an intermediate chamber

Info

Publication number
JP3299250B2
JP3299250B2 JP2000249261A JP2000249261A JP3299250B2 JP 3299250 B2 JP3299250 B2 JP 3299250B2 JP 2000249261 A JP2000249261 A JP 2000249261A JP 2000249261 A JP2000249261 A JP 2000249261A JP 3299250 B2 JP3299250 B2 JP 3299250B2
Authority
JP
Japan
Prior art keywords
pure water
electrolytic cell
water
intermediate chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000249261A
Other languages
Japanese (ja)
Other versions
JP2001096275A (en
Inventor
修生 澄田
寿正 橋本
Original Assignee
修生 澄田
寿正 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修生 澄田, 寿正 橋本 filed Critical 修生 澄田
Priority to JP2000249261A priority Critical patent/JP3299250B2/en
Publication of JP2001096275A publication Critical patent/JP2001096275A/en
Application granted granted Critical
Publication of JP3299250B2 publication Critical patent/JP3299250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、純水または超純水と呼
ばれる電導率の小さい水を対象とし、プラス・マイナス
二つの電極が設けられた槽の中間に新たな中間室を設け
ることで、電解効率を向上させた電解槽、及びこれを用
いて溶液中の不純物を除去する方法に関し、より詳しく
は、カソード室とアノード室の間に粒状の固体電解質、
例えばH−型のふっ素樹脂系陽イオン交換樹脂などを充
填した中間槽を設けることにより、アノード極で生成し
た、酸素、オゾン、などの酸化作用の強い物質がカソー
ド室に拡散移動する事を防止し、かつカソード室での水
素発生を容易なものとして、還元性の強いカソード液を
得ることができる電解槽に関する。
BACKGROUND OF THE INVENTION The present invention is directed to pure water or ultrapure water, which has a small electric conductivity, and is provided with a new intermediate chamber in the middle of a tank provided with two positive and negative electrodes. An electrolytic cell with improved electrolysis efficiency, and a method for removing impurities in a solution using the same, more specifically, a granular solid electrolyte between a cathode chamber and an anode chamber,
For example, by providing an intermediate tank filled with H-type fluororesin cation exchange resin, etc., it is possible to prevent highly oxidizing substances such as oxygen and ozone generated at the anode from diffusing and moving to the cathode chamber. The present invention also relates to an electrolytic cell capable of easily generating hydrogen in a cathode chamber and obtaining a catholyte having a strong reducing property.

【0002】[0002]

【発明の背景と従来の技術】近年、各種洗浄剤の環境に
対する悪影響が問題となり、さまざまな角度から検討が
進められている。その代表例がフロンで、洗浄力の強さ
から、半導体そのほか多くの分野で使用されてきた。と
ころが、フロンを始めとするフッ素系溶剤は、地球のオ
ゾン層を破壊する危険性を有することが報告されて以
来、世界的な規模で使用の制限が進んでいる。これらの
溶剤の代替として、最も安全な溶剤である水が再び脚光
を浴びている。半導体分野などで用いられる洗浄用の水
は、いわゆる純水である。純水は一般に電気伝導度で確
認され、伝導率ρが10μS・cmより小さな値のもの
を純水、更に0.055μS・cmより小さなものを超
純水と呼ぶことが多いので本明細書においてもこれに従
う。以下、これらの純水の酸化還元性および純度とくに
極性有機物質などの不純物について説明する。
BACKGROUND OF THE INVENTION In recent years, adverse effects on the environment of various cleaning agents have become a problem, and studies have been made from various angles. A typical example is chlorofluorocarbon, which has been used in semiconductors and many other fields due to its strong cleaning power. However, since it has been reported that fluorinated solvents such as chlorofluorocarbons have a risk of destroying the ozone layer of the earth, the use thereof has been increasingly restricted on a global scale. As an alternative to these solvents, the safest solvent, water, is again in the limelight. Cleaning water used in the semiconductor field and the like is so-called pure water. Pure water is generally confirmed by electric conductivity, and a substance having a conductivity ρ smaller than 10 μS · cm is often referred to as pure water, and a substance smaller than 0.055 μS · cm is referred to as ultrapure water. Follow this. The redox properties and purity of these pure waters, particularly impurities such as polar organic substances, will be described below.

【0003】水の酸化還元性は、含まれる物質に大いに
依存する。通常の純水または超純水にも溶存酸素(D
O)が約8ppm含まれ、このためシリコンなどの表面
をこの純水で洗浄すると、部分的に酸化溶解することが
知られている。このために、DOを低減する目的で窒素
ガスをバブリング(泡立て)して低DOを達成する超純
水製造装置が開発されている。しかしこの脱気法を用い
た場合、DOは、50ppb(0.005ppm)まで
は比較的速やかに低減するが、50ppb以下に低減す
るためには、時間がかかる。その上、脱気用のガスに
は、超純水を汚染しないような極めて高純度のものが要
求される。このために、より効率的な方法が要求されて
いる。
[0003] The redox properties of water are highly dependent on the substances involved. Dissolved oxygen (D
O) is contained in about 8 ppm. Therefore, it is known that when a surface such as silicon is washed with the pure water, the surface is partially oxidized and dissolved. For this reason, an ultrapure water production apparatus that achieves low DO by bubbling (foaming) nitrogen gas for the purpose of reducing DO has been developed. However, when this degassing method is used, DO decreases relatively quickly to 50 ppb (0.005 ppm), but it takes time to reduce DO to 50 ppb or less. In addition, the gas for degassing is required to be of extremely high purity so as not to contaminate ultrapure water. For this, a more efficient method is required.

【0004】また別の分野として原子力発電所のうち沸
騰水型原子炉(BWR)では、冷却水として、超純水レ
ベルに近い水が用いられている。BWRの一次系のステ
ンレス鋼製配管の内面に形成される酸化被膜には、発電
中に生じるコバルト60などの放射性核種が取り込まれ
ることが知られている。このように、配管にC 60
付着すると配管の周囲の線量率が上昇するので、C
60 をときどき除去することが望ましい。C 60
除去するためには、C 60を取り込んでいる酸化被膜
を溶解除去することが必要である。BWR環境下で生成
したステンレス鋼の酸化被膜は、DOを1ppbの還元
性の条件下で、溶解速度が増大することが知られてい
る。通常は化学薬品を添加してC 60を除去している
が、一次系が化学薬品で汚染されて浄化作業に多大の時
間がかかる上、放射性廃棄量が増大する。そこで超純水
に近い冷却水の還元性を強化させることにより、C
60の除去速度を増加させる技術が確立できれば、安全
性の観点からこの技術は非常に有望である。またこの技
術はBWRに留まらず、鉄系の酸化被膜を除去する際、
化学薬品の廃棄物が排出されないので、還流対策の面で
有利な技術となる。
[0004] As another field, a boiling water reactor (BWR) of nuclear power plants uses water near the ultrapure water level as cooling water. It is known that a radionuclide such as cobalt 60 generated during power generation is taken into an oxide film formed on the inner surface of a BWR primary stainless steel pipe. Since the dose rate around the pipe C o 60 adheres to the piping is increased, C o
It is desirable to remove 60 occasionally. In order to remove Co 60 , it is necessary to dissolve and remove the oxide film incorporating Co 60 . It is known that the oxide film of stainless steel formed in a BWR environment has an increased dissolution rate under a reducing condition of 1 ppb of DO. Normally, chemicals are added to remove Co 60 , but the primary system is contaminated with the chemicals, and the purification operation takes a lot of time, and the amount of radioactive waste increases. Therefore, by enhancing the reducibility of cooling water close to ultrapure water, Co
If a technique to increase the removal rate of 60 can be established, this technique is very promising from the viewpoint of safety. In addition, this technology is not limited to BWR, and when removing iron-based oxide film,
Since no waste of chemicals is discharged, this is an advantageous technique in terms of measures against reflux.

【0005】現在、超純水の製造装置は、イオン交換樹
脂塔、ポリッシャー樹脂塔、フィルター、逆浸透圧装
置、限外ろ過モジュールおよび紫外線殺菌などから構成
されている。超純水の純度のうち、電導度は水分子の一
部が解離して生成されるHとOHイオンのみによる
理論的な値に近づいている。K ,Na ,Cu
及びZn2+イオンなどの不純物濃度は数ppbオーダ
にまで低減されているが、完全に除去されているわけで
はない。特に遷移金属イオンは、加水分解により全体と
して電気的に中性となり、イオン交換樹脂で除去するこ
とが困難になる。有機物の不純物は約50ppbとなっ
ており、イオン性不純物に比較して残留量は大きい。し
たがって超純水の純度をさらに向上させるためには、新
しい浄化法を開発することが必要であった。
At present, an apparatus for producing ultrapure water comprises an ion exchange resin tower, a polisher resin tower, a filter, a reverse osmotic pressure apparatus, an ultrafiltration module, and an ultraviolet sterilizer. Among the purity of ultrapure water, the electrical conductivity is approaching the theoretical value of only H + and OH ions generated by dissociation of a part of water molecules. K + , Na + , Cu 2 +
And the concentration of impurities such as Zn 2+ ions is reduced to the order of several ppb, but is not completely removed. In particular, the transition metal ion becomes electrically neutral as a whole due to the hydrolysis, and it becomes difficult to remove it with an ion exchange resin. The organic impurities are about 50 ppb, and the residual amount is larger than the ionic impurities. Therefore, in order to further improve the purity of ultrapure water, it was necessary to develop a new purification method.

【0006】新しい浄化法の候補としてJ.H. St
rohlとK.L.Dunlapにより報告(下記*参
照)されている電気化学プロセスを利用する方法があ
る。この報告によれば、非イオン性極性有機物の吸着現
象は、被吸着物質の電位に依存し、有機物に固有の電位
で特異的に吸着する。しかし、この報告は電解質溶液を
用いており、超純水の浄化にそのまま応用することはで
きない(*J.H.Strohland K.L.Dunlap Anal.Chem.,44(A
72)2166、 Elechosorption AND Separation ofQuinones
on a Column of graphite particles) 。
[0006] As a candidate for a new purification method, J.-K. H. St
rohl and K.R. L. There is a method utilizing an electrochemical process reported by Dunlap (see * below). According to this report, the adsorption phenomenon of a nonionic polar organic substance depends on the potential of the substance to be adsorbed, and specifically adsorbs at a potential specific to the organic substance. However, this report uses an electrolyte solution and cannot be applied directly to purification of ultrapure water (* JHStrohland KLDunlap Anal.Chem., 44 (A
72) 2166, Elechosorption AND Separation of Quinones
on a Column of graphite particles).

【0007】薬品を使用せずに水のDOを下げ、還元性
を向上させる技術に電解還元法が知られているが、しか
し、純水または超純水の伝導度は10μS・cm以下と
極めて小さいので、電解効果を得るためには、電解電圧
は数100V以上になって工業的な実施には適さず、従
来、純水または超純水に電解還元法は応用されていな
い。
[0007] An electrolytic reduction method is known as a technique for reducing the DO of water and improving the reducibility without using chemicals. However, the conductivity of pure water or ultrapure water is extremely low at 10 µS · cm or less. Since it is small, in order to obtain an electrolytic effect, the electrolysis voltage is several hundred volts or more, which is not suitable for industrial implementation. Conventionally, the electrolytic reduction method has not been applied to pure water or ultrapure water.

【0008】ところで、純水を低電圧で電解して気体状
のオゾン(O )または高濃度のオゾン水を得る技術
が最近開発されており、本発明とは目的が異なるが低電
圧で純水を電解する技術の一つとして注目に値する。
A technique for obtaining gaseous ozone (O 3 ) or high-concentration ozone water by electrolyzing pure water at a low voltage has recently been developed. It is noteworthy as one of the technologies for electrolyzing water.

【0009】以下、本発明の目的とは関係しないが、こ
のオゾン水を得る上記提案内容の概要を簡単に説明す
る。この方法では、図7に示すように、例えばイオン交
換樹脂101の両側にカソード電極102とアノード電
極103を密着させた構造の電解槽104が用いられ
る。そしてカソード室109には入口105及び出口1
06が設けられ、またアノード室110には入口107
及び出口108が設けられる。このような構成におい
て、例えばフッ素樹脂に陽イオン交換基(−SO
基)を導入した陽イオン交換膜を用いると、電解電圧を
数ボルト(V)にまで下げることができる。このような
構造の電解槽においては、アノード電極103でオゾン
を生成するための電流効率は電極材質に依存することが
知られ、一般的には白金(Pt)、鉛酸化物(β‐Pb
)などが用いられる場合が多い。
Although not related to the object of the present invention, the outline of the above proposal for obtaining the ozone water will be briefly described below. In this method, as shown in FIG. 7, for example, an electrolytic cell 104 having a structure in which a cathode electrode 102 and an anode electrode 103 are adhered to both sides of an ion exchange resin 101 is used. The cathode chamber 109 has an inlet 105 and an outlet 1
06 is provided, and the anode chamber 110 has an inlet 107.
And an outlet 108 is provided. In such a configuration, for example, a cation exchange group (—SO 3 H
The use of a cation-exchange membrane into which the base has been introduced allows the electrolysis voltage to be reduced to several volts (V). In an electrolytic cell having such a structure, it is known that the current efficiency for generating ozone at the anode electrode 103 depends on the electrode material. In general, platinum (Pt), lead oxide (β-Pb
O 2 ) and the like are often used.

【0010】この構造の電解槽に通電すると、アノード
電極103で(O )と(O)が発生し、カソード
電極102で水素(H)が発生する。これらの電気
化学プロセスに対応して、以下の化学反応式が推定され
ている。
When electricity is supplied to the electrolytic cell having this structure, (O 3 ) and (O 2 ) are generated at the anode electrode 103, and hydrogen (H 2 ) is generated at the cathode electrode 102. The following chemical reaction formulas have been estimated for these electrochemical processes.

【0011】 H O+O →O +2H+2e Eo =2.07V (1) 3HO →O +6H+6e Eo =1.51V (2) 2H O →O +4H+4e Eo =1.23V (3) ここでEo は標準酸化還元電位である。[0011] H 2 O + O 2 → O 3 + 2H + + 2e - Eo = 2.07V (1) 3H 2 O → O 3 + 6H + + 6e - Eo = 1.51V (2) 2H 2 O → O 2 + 4H + + 4e - Eo = 1.23V (3) where Eo is a standard oxidation-reduction potential.

【0012】これらの化学式にしたがって生成されたH
イオンは、陽イオン交換膜を介してカソード電極側
に移動してH ガスに還元されると考えられている。
The H formed according to these chemical formulas
It is considered that + ions move to the cathode electrode side through the cation exchange membrane and are reduced to H 2 gas.

【0013】ところで、この電解槽104を用いると、
低電圧で純水を電解する事が可能であるが、しかし、固
体電解質である陽イオン交換膜は、部分的にO など
を透過させるので、カソード電解液の還元性能は低下
し、そのままでは本発明の目的に応用できない。
By the way, when this electrolytic cell 104 is used,
Although it is possible to electrolyze pure water at a low voltage, however, the cation exchange membrane, which is a solid electrolyte, partially permeates O 2 and the like, so that the reduction performance of the cathode electrolyte is reduced. It cannot be applied for the purpose of the present invention.

【0014】[0014]

【発明が解決しようとする課題】本発明は、オゾン(O
)の生成でなく、純水の酸化還元性および純度をコ
ントロールする事が可能な電解槽を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention relates to ozone (O
An object of the present invention is to provide an electrolytic cell capable of controlling the oxidation-reduction property and purity of pure water, not the production of 3 ).

【0015】上記の図7に示した構造を有する電解
用いた場合、アノード電極103にはO3またはO2が発
生するのでアノード室に酸化性の水が得られ一方、
カソード電極102にはH2が発生するのでカソード室
に還元性の水が得られる。ここでカソード側でより強い
還元性の水を得たい場合、H2などの還元性物質の生成
に加えて、O2 などの酸化性物質を除去することが必
要である。そして、純水でも一般にO2 が溶存してお
更にアノード極側で生成された酸化性物質がカソード
側に移動するので、還元性向上のためにはこのO2 の
除去が望まれる。
[0015] When using the electrolytic cell having the structure shown in FIG. 7 described above, the O 3 or O 2 is generated in the anode electrode 103, oxidizing water gives the anode compartment, whereas,
Since H 2 is generated in the cathode electrode 102, reducing water is obtained in the cathode chamber. Here, if the wish to obtain a greater reduction of the water at the cathode side, in addition to the generation of a reducing agent such as H 2, it is necessary to remove the oxidizing agent, such as O2. O2 is generally dissolved even in pure water, and oxidizing substances generated on the anode
Therefore , the removal of O2 is desired in order to improve the reducibility.

【0016】O は以下の化学反応式で示されるよう
に、還元反応により還元性物質に変わるので、電解還元
法はO 除去に有力な方法の一つである。
As shown in the following chemical reaction formula, O 2 is converted into a reducing substance by a reduction reaction, and thus the electrolytic reduction method is one of the effective methods for removing O 2 .

【0017】 O+4H+4e →2H O Eo = 1.23V (4) O + H +e →HO Eo =−0.13V (5) O +2H+2e →H Eo =−0.69V (6) ところで、電解法ではアノード電極における酸化反応
と、カソード電極における還元反応が対になっているの
で、電極間に陽イオン交換膜にガス透過性があると、酸
化反応で発生したOなどの酸化性物質が、イオン交
換膜を介してカソード電極側に移動することは既に述べ
た。この現象が電解還元法の欠点となる。
O 2 + 4H + + 4e → 2H 2 O Eo = 1.23V (4) O 2 + H + + e → HO 2 Eo = −0.13V (5) O 2 + 2H + + 2e → H 2 O 2 Eo = −0.69 V (6) By the way, in the electrolysis method, the oxidation reaction at the anode electrode and the reduction reaction at the cathode electrode are paired, so if the cation exchange membrane has gas permeability between the electrodes, As described above, the oxidizing substance such as O 2 generated by the oxidation reaction moves to the cathode electrode side via the ion exchange membrane. This phenomenon is a disadvantage of the electrolytic reduction method.

【0018】図7に示す電解槽104を用いると、純水
中の微量金属イオンはマイナス極であるカソード電極側
に、反対に陰イオンはプラス極のアノード電極側に移行
する
When the electrolytic cell 104 shown in FIG. 7 is used, trace metal ions in pure water move to the cathode electrode side which is a negative electrode, and conversely, anions move to the anode electrode side which is a positive electrode .

【0019】[0019]

【課題を解決するための手段】このように、上述の高濃
度のオゾン水を製造するために提案された上記図7の構
造の電解槽104では、アノード電極で生成されたO
及びO がカソード電極側に移行することが避けられ
ず、本発明の目的にこれを適用する場合にはこの点が大
きな間題となる。
As described above, in the electrolytic cell 104 having the structure shown in FIG. 7 proposed for producing the above-described high-concentration ozone water, O 3 generated at the anode electrode is used.
Inevitably, O 2 and O 2 move to the cathode electrode side, and this is a major problem when this is applied to the object of the present invention.

【0020】そこで本発明者は、この問題を回避するこ
とについて研究を重ね、上記特許請求の範囲の各請求項
に記載の本発明を完成した。
Therefore, the inventor has conducted research on avoiding this problem, and has completed the present invention described in each of the claims.

【0021】本発明の原理を、図1を用いて以下説明す
る。この図1の電解槽15において、1および2はイオ
ン交換膜、3はカソード電極、4はアノード電極、5は
カソード室11の入口、6は同出口、7はアノード室1
2の入口、8は同出口、9は中間室13の入口、10は
同出口である。
The principle of the present invention will be described below with reference to FIG. In the electrolytic cell 15 of FIG. 1, 1 and 2 are ion exchange membranes, 3 is a cathode electrode, 4 is an anode electrode, 5 is an inlet of the cathode chamber 11, 6 is an outlet thereof, and 7 is an anode chamber 1
Reference numeral 2 denotes an inlet, 8 denotes the same outlet, 9 denotes an inlet of the intermediate chamber 13, and 10 denotes the same outlet.

【0022】中間室に通水する純水は、例えば高純度の
窒素N(またはアルゴンAr)ガスをバブリングする
事により溶存酸素濃度(DO)を十分に低下(一般的に
は伝導度50ppb以下、好ましくは10ppb程度以
下とすることが望ましい)させた純水が用いられる。こ
の純水を循環使用する場合には、アノード室12から中
間室13に移行するO 及びO は、このバブリング
操作により除去される。
The pure water passing through the intermediate chamber can sufficiently lower the dissolved oxygen concentration (DO) by bubbling high-purity nitrogen N 2 (or argon Ar) gas (generally, conductivity of 50 ppb or less). , Preferably 10 ppb or less). When this pure water is used in a circulating manner, O 2 and O 3 that migrate from the anode chamber 12 to the intermediate chamber 13 are removed by this bubbling operation.

【0023】本発明の特徴の一つは、上記の中間室13
に固体電解質を充填することにある。これは同中間室1
3に純水のみを充填した場合には、純水の電導度が10
μS・cm以下と小さいために電解電圧が非常に大きく
なるのに対し、中間室に固体電解質(例えばイオン交換
樹脂)を充填することにより電導度を増加させ、電解電
圧を低減することが有効となるからである。この電解電
圧を下げるための固体電解質としては、イオン交換膜と
同様にフツ素のイオン交換樹脂が中間室充填用として適
し、特にフッ素樹脂に−SO H基が結合したイオン
交換樹脂、具体的にはデュポン社製のナフィオンNR−
50等を代表的なものとして挙げることができるがこれ
に限定されるものではない。上記固体電解質の他のもの
としては、例えばポリスチレン樹脂にスルホン酸基(−
SO H)が結合したイオン交換樹脂、具体的にはア
ンバーライトIR−116,IR−118,IR−12
1,IR−122,252,200C,200CT(オ
ルガノ社製)、ダイアイオンSK102,SK104,
SK10,SK110,SK116,SK208,PK
208,PK212,PK216,PK220,PK2
28(三菱樹脂社製)、ダウエックスHCR ,HC
R−S,HGR−W,MSH−1(ダウケミカル社製)
が挙げられ、またメタクリル酸,又はアクリル酸とジビ
ニルベンゼンよりなる樹脂にカルボン酸基(−COO
H)が結合した樹脂、具体的にはアンバーライトIRC
−50,DP−1,IRC−84(オルガノ社製)、ダ
イアイオンWK10,WK11,WK20(三菱樹脂社
製)、ダウエックスCCR−2(ダウケミカル社製)な
どを挙げることができる。また固体電解質の充填の程度
は、電解単位面積当り1g/cm 〜10g/cm
が適当である。固体電解質は粒状のものである他、例え
ば適当な通水が可能な50μm以上の孔径を有するブロ
ック状の多孔質体も好ましく用いられる。
One of the features of the present invention is that the above-described intermediate chamber 13 is provided.
To fill the solid electrolyte. This is the middle room 1
When the pure water is filled into the sample No. 3, the conductivity of the pure water becomes 10%.
While the electrolysis voltage is extremely large because it is as small as μS · cm or less, it is effective to reduce the electrolysis voltage by increasing the conductivity by filling the intermediate chamber with a solid electrolyte (for example, ion exchange resin). Because it becomes. As the solid electrolyte for lowering the electrolysis voltage, a fluorine ion exchange resin is suitable for filling the intermediate chamber as in the case of the ion exchange membrane. In particular, an ion exchange resin in which a —SO 3 H group is bonded to a fluorine resin, specifically, The Nafion NR- made by DuPont
50 and the like can be cited as typical examples, but are not limited thereto. Other examples of the solid electrolyte include a sulfonic acid group (-
Ion exchange resins to which SO 3 H) is bound, specifically Amberlite IR-116, IR-118, IR-12
1, IR-122, 252, 200C, 200CT (manufactured by Organo Corporation), Diaion SK102, SK104,
SK10, SK110, SK116, SK208, PK
208, PK212, PK216, PK220, PK2
28 (manufactured by Mitsubishi Plastics), Dowex HCR 2 , HC
RS, HGR-W, MSH-1 (manufactured by Dow Chemical Company)
And a carboxylic acid group (—COO) is added to a resin composed of methacrylic acid or acrylic acid and divinylbenzene.
H) bonded resin, specifically Amberlite IRC
-50, DP-1, IRC-84 (manufactured by Organo), Diaion WK10, WK11, WK20 (manufactured by Mitsubishi Plastics), Dowex CCR-2 (manufactured by Dow Chemical), and the like. The solid degree of filling of the electrolyte, the electrolyte per unit area 1g / cm 2 ~10g / cm 2
Is appropriate. In addition to the solid electrolyte being granular, for example, a block-shaped porous body having a pore diameter of 50 μm or more that allows appropriate water flow is also preferably used.

【0024】この中間室に通水する速度は、線速度で
0.1cm/sec〜100cm/sec程度とするこ
とがよい。
The speed at which water passes through the intermediate chamber is a linear speed.
It is preferable that the thickness be about 0.1 cm / sec to 100 cm / sec.

【0025】なお、中間室の個数は1個に限定されるも
のではなく、酸化性物質の拡散を抑制する必要性が高い
ときには、複数個にする事が望ましい。例えば純水の温
度を上げた場合(例えば80〜100℃)には隔膜を通
過するO の通度が大きくなるから、中間室を複数設
けることでO の拡散をより効果的に防止することが
できる。
The number of intermediate chambers is not limited to one, but it is desirable to increase the number of intermediate chambers when it is highly necessary to suppress the diffusion of oxidizing substances. For example, when the temperature of pure water is increased (for example, 80 to 100 ° C.), the permeability of O 2 passing through the diaphragm increases. Therefore, the diffusion of O 2 is more effectively prevented by providing a plurality of intermediate chambers. be able to.

【0026】中間室の粒状イオン交換樹脂に通電する事
により、電圧が印加される得る。この結果、粒状イオン
交換樹脂表面の電位はプラスからマイナスまで幅広く分
布することになる。更に中間室充填物が、粒状であるた
め有機物との接触機会の確率が大きくなる。これらの点
から中間室を使用することにより、複数個の非イオン性
極性有機物の吸着除去が容易となる。なお、不純物とし
て含まれる陽イオンはカソード電極側に陰イオンはアノ
ード電極側に移行するので中間室はイオン性物質の除去
にも適している。
A voltage can be applied by energizing the granular ion exchange resin in the intermediate chamber. As a result, the potential on the surface of the granular ion exchange resin is widely distributed from plus to minus. Furthermore, since the filling of the intermediate chamber is granular, the probability of contact with organic matter increases. From these points, the use of the intermediate chamber facilitates adsorption and removal of a plurality of nonionic polar organic substances. Since the cations contained as impurities move to the cathode electrode side and the anions move to the anode electrode side, the intermediate chamber is also suitable for removing ionic substances.

【0027】また、図1の構造の電解槽15において一
方のイオン交換膜1を除いた構成も有効に用いられ、こ
れによりカソード電極と粒状または多孔質の固体電解質
を密着させた構造は、遷移金属イオンの捕集量が向上す
る。その具体的な構造例は図2の電解槽31によって示
され、図1と共通の部材には符号に10を加えて示し
た。すなわち図2中の22はカソード電極、23はアノ
ード電極、21は陽イオン交換膜、24は粒状または多
孔質の固体電解質を充填した中間室を夫々示している。
なお25は、浄化を目的とする中間室24への水の入口
であり、26は生成水のカソード室29からの出口、2
7はアノード室30への水の入口、28は同出口であ
る。
In addition, the configuration in which one of the ion exchange membranes 1 is removed from the electrolytic cell 15 having the structure shown in FIG. 1 is also effectively used, whereby the structure in which the cathode electrode and the granular or porous solid electrolyte are in close contact with each other is a transition type. The collection amount of metal ions is improved. A specific example of the structure is shown by the electrolytic cell 31 in FIG. 2, and members common to those in FIG. That is, 22 in FIG. 2 is a cathode electrode, 23 is an anode electrode, 21 is a cation exchange membrane, and 24 is an intermediate chamber filled with a granular or porous solid electrolyte.
Reference numeral 25 denotes an inlet of water to the intermediate chamber 24 for the purpose of purification, and reference numeral 26 denotes an outlet of the generated water from the cathode chamber 29.
7 is an inlet of water to the anode chamber 30, and 28 is an outlet thereof.

【0028】固体電解質は上記図1の場合と同様であ
り、フッ素系の陽イオン交換樹脂が適している。この構
造の電解槽を用いて電解還元すると、不純物の金属イオ
ンは、まず電極表面に析出し、その後、固体電解質上に
も析出する。この結果金属イオンの捕集量が向上し、装
置の寿命が延長される。
The solid electrolyte is the same as that shown in FIG. 1, and a fluorine-based cation exchange resin is suitable. When electrolytic reduction is performed using an electrolytic cell having this structure, metal ions as impurities are first deposited on the electrode surface and then also deposited on the solid electrolyte. As a result, the collection amount of metal ions is improved, and the life of the device is extended.

【0029】[0029]

【発明の効果】従来の純水の電解法では溶存酸素等の溶
存ガスを溶液中から除去することが容易でなく、また加
水分解により電気的に中性化した金属イオン及び膜の孔
を通過する程小さいクラスター状の金属イオンはイオン
交換樹脂や膜により除去することが困難であり、さらに
活性炭は吸着量に限界があるが、本発明の電解槽と純水
製造装置を組み合わせて用いれば、従来の純水製造装置
や超純水製造装置では除去できなかった不純物を効率的
に除去できる上、電解により活性な還元性物質を溶液中
に注入することが可能となり、また半導体等の洗浄に適
した水を得ることができるという効果がある。
According to the conventional electrolysis method of pure water, it is not easy to remove dissolved gas such as dissolved oxygen from the solution, and it passes through metal ions and pores of the membrane which are electrically neutralized by hydrolysis. It is difficult to remove cluster-like metal ions as small as possible by using an ion exchange resin or a membrane, and activated carbon has a limit in the amount of adsorption. However, if the electrolytic cell of the present invention and a pure water production apparatus are used in combination, Impurities that could not be removed by conventional pure water production equipment or ultrapure water production equipment can be efficiently removed, and an active reducing substance can be injected into the solution by electrolysis. There is an effect that suitable water can be obtained.

【0030】また本発明の電解槽を使用して製造した水
は、不純物を極度に低減することが必要であり、かつ表
面の酸化溶解の防止が必要なシリコンウエハーの最終段
階の洗浄に特に適している。
The water produced by using the electrolytic cell of the present invention is particularly suitable for the final stage cleaning of a silicon wafer which needs to extremely reduce impurities and needs to prevent the surface from being oxidized and dissolved. ing.

【0031】さらに又、沸騰水型原子力発電所の一次冷
却水に含まれる放射性物質の低減の上から求められる不
純物の低減化に有益であり、さらに炉内材料の腐食損傷
防止のためにも適している。
Further, the present invention is useful for reducing impurities required for reducing radioactive substances contained in primary cooling water of a boiling water nuclear power plant, and is also suitable for preventing corrosion damage to materials in a furnace. ing.

【0032】[0032]

【実施例】実施例1 図1に示した電解槽15において、カソード電極3とし
て多孔質直方体型のカーボン電極(90×70×30m
m)を用い、アノード電極4として80メッシュの網状
白金(80×60mm)を用いた。中間室にはデュポン
社製ナフィオンNR−50を約160g充填し、隔膜に
は同じくナフィオン117を用いた。水として、超純水
レベルの電導度で0.06μS・cmの純水を用いた。
カソード室及びアノード室の大きさは夫々(90×70
×30mm)、中間室の大きさは(90×70×25m
m)とした。
EXAMPLE 1 In the electrolytic cell 15 shown in FIG. 1, a porous rectangular carbon electrode (90 × 70 × 30 m) was used as the cathode electrode 3.
m), and 80 mesh mesh platinum (80 × 60 mm) was used as the anode electrode 4. About 160 g of Nafion NR-50 manufactured by DuPont was filled in the intermediate chamber, and Nafion 117 was used for the diaphragm. As the water, pure water having a conductivity of an ultrapure water level of 0.06 μS · cm was used.
The size of the cathode chamber and the size of the anode chamber are each 90 × 70
× 30mm), the size of the intermediate chamber is (90 × 70 × 25m)
m).

【0033】このような電解槽を第6図の純水製造装置
に組み合わせて純水の電解を行なった。
Such an electrolytic cell was combined with the pure water producing apparatus shown in FIG. 6 to perform pure water electrolysis.

【0034】なお純水中のDOは、事前にN ガスを
バブリングすることにより50ppbに下げておいた。
この低溶存酸素水をカソード室および中間室13に20
cc/secの流量で循環し、電流密度5〜20mA/
cmで通電した。
The DO in pure water was previously reduced to 50 ppb by bubbling N 2 gas.
This low dissolved oxygen water is added to the cathode chamber and the intermediate chamber 13 for 20 minutes.
circulating at a flow rate of cc / sec and a current density of 5-20 mA /
The current was supplied at cm 2 .

【0035】カソード室出口6で測定したDOと電流密
度の関係を図3の曲線に示す。この図から明らかなよ
うにカソード電解することにより、DOが低減すること
がわかる。
The relationship between the DO measured at the cathode chamber outlet 6 and the current density is shown by the curve in FIG. As is apparent from this figure, it is understood that the cathodic electrolysis reduces DO.

【0036】比較のために図1に示す中間室を除いた電
解槽を用いた実験を実施した。中間室がないこと以外
は、前述の試験条件と全く同様である。出口におけるD
O測定値は、図3の曲線に示すように変化した。DO
はカソード電解以前より低下するが、中間室を設けた場
合より、DO低減率は小さかった。
For comparison, an experiment using an electrolytic cell except for the intermediate chamber shown in FIG. 1 was performed. Except for the absence of an intermediate chamber, the test conditions were exactly the same as those described above. D at the exit
The O measurement changed as shown by the curve in FIG. DO
Was lower than before the cathode electrolysis, but the DO reduction rate was smaller than when the intermediate chamber was provided.

【0037】以上の結果から本発明の有効性が確認され
た。 実施例2 実施例1と同様に図1に示す電解槽15を用いた。中間
室13には、非イオン性極性有機分子を溶解させ、水を
流した。中間室の入口9と出口10で水を採取し、極性
有機分子濃度を測定した。極性有機分子としては2・ヒ
ドロキシ−1,4−ナフトキノン(HNQ)を用いた。
電解条件は次のように設定した。吸着現象は電位に依存
することが知られているので、この実験では定電流電解
ではなく定電位電解を行った。電解電圧は0から25V
の範囲で変化させた。用いた原液として10−6MのH
NQを超純水に溶解させた液を用いた。この原液を10
ml/minの速度で中間室に通水した。中間室出口で
サンプリングした溶液中の濃度を紫外線吸収すぺクトロ
メータを用いて測定した。
From the above results, the effectiveness of the present invention was confirmed. Example 2 As in Example 1, the electrolytic cell 15 shown in FIG. 1 was used. In the intermediate chamber 13, nonionic polar organic molecules were dissolved and water was flowed. Water was collected at the inlet 9 and outlet 10 of the intermediate chamber, and the concentration of polar organic molecules was measured. As the polar organic molecule, 2-hydroxy-1,4-naphthoquinone (HNQ) was used.
Electrolysis conditions were set as follows. Since the adsorption phenomenon is known to depend on the potential, in this experiment, constant potential electrolysis was performed instead of constant current electrolysis. Electrolysis voltage is 0 to 25V
Was changed within the range. H of 10 -6 M as a stock solution using
A solution in which NQ was dissolved in ultrapure water was used. 10 parts of this stock solution
Water was passed through the intermediate chamber at a rate of ml / min. The concentration in the solution sampled at the outlet of the intermediate chamber was measured using an ultraviolet absorption spectrometer.

【0038】図4に中間室出口10におけるHNQの濃
度の電解電圧依存性を示す。この図からわかるように中
間室13に電解を印加することにより、HNQが超純水
か90%以上除去された。換言すると、HNQのイオン
交換樹脂に対する吸着量が増加する。なお図1に示す電
解槽を用い、カソード電極側のイオン交換膜を取り除い
た他は実施例2と同じ条件下で実験したが、電解電圧0
から25Vの範囲でHNQの除去率は10%以下であっ
た。この結果から本発明の構造を有する電解槽が水溶液
中の極性有機分子の除去に有効であることがわかる。 実施例3 図2に示す電解槽31において、カソード電極22とし
て80メッシュの白金電極を用い、アノード電極23と
して同じ白金電極を用いた。固体電解質としてデュポン
社製のナフィオンNR50を充填し、隔膜21としてナ
フィオン117を用いた。比較例として図6に示す構造
の電解槽104を用いた。比較例の電解槽104はナフ
ィオンNR50を除いて本例の電解槽31と全く同じで
ある。
FIG. 4 shows the electrolytic voltage dependence of the concentration of HNQ at the outlet 10 of the intermediate chamber. As can be seen from this figure, HNQ was removed from ultrapure water or 90% or more by applying electrolysis to the intermediate chamber 13. In other words, the amount of HNQ adsorbed on the ion exchange resin increases. The experiment was performed under the same conditions as in Example 2 except that the ion exchange membrane on the cathode electrode side was removed using the electrolytic cell shown in FIG.
The HNQ removal rate was 10% or less in the range of 25 V to 25 V. These results show that the electrolytic cell having the structure of the present invention is effective for removing polar organic molecules in the aqueous solution. Example 3 In the electrolytic cell 31 shown in FIG. 2, an 80 mesh platinum electrode was used as the cathode electrode 22, and the same platinum electrode was used as the anode electrode 23. Nafion NR50 manufactured by DuPont was filled as the solid electrolyte, and Nafion 117 was used as the diaphragm 21. As a comparative example, an electrolytic cell 104 having a structure shown in FIG. 6 was used. The electrolytic cell 104 of the comparative example is exactly the same as the electrolytic cell 31 of the present example except for Nafion NR50.

【0039】原水として、超純水レベルの0.055μ
S/cmの水を用いた。この水に10ppbの鉄(Fe
3+)イオン溶解させた液を試験に供した。電流密度を
20mA/cmとし、流量を0.5l/minに設
定した。図5に、出口26における鉄イオン濃度の変化
を示した。この図のの曲線は本例の電解槽31を用い
た結果を示し、また曲線は、比較例の結果を示してい
る。この図から明らかなように本発明の金属イオン捕集
能力は優れていることが分かる。 実施例4 図1に示す電解槽15と、図2に示す電解槽31を直列
につないだシステムを用いることにより、純水中の非イ
オン性および非イオン性極性有機物を効果的に除去する
ことができる。
As raw water, an ultrapure water level of 0.055 μm
S / cm of water was used. 10 ppb of iron (Fe
3+ ) The solution in which the ions were dissolved was subjected to the test. The current density was set to 20 mA / cm 2 and the flow rate was set to 0.5 l / min. FIG. 5 shows a change in the iron ion concentration at the outlet 26. The curve in this figure shows the result using the electrolytic cell 31 of the present example, and the curve shows the result of the comparative example. As is apparent from this figure, the metal ion collecting ability of the present invention is excellent. Example 4 By using a system in which the electrolytic cell 15 shown in FIG. 1 and the electrolytic cell 31 shown in FIG. 2 are connected in series, nonionic and nonionic polar organic substances in pure water can be effectively removed. Can be.

【0040】具体的には、図1に示す電解槽15の出口
10と、図2における電解槽31の入口25をつないだ
システムを構成する。
Specifically, a system in which the outlet 10 of the electrolytic cell 15 shown in FIG. 1 is connected to the inlet 25 of the electrolytic cell 31 shown in FIG.

【0041】このシステムにより、第1段の電解槽15
で非イオン極性有機物を除去し、第2段の電解槽31で
金属イオンを電折により除去することができる。 実施例5 実施例3で説明した図2に示す電解槽31の出口26の
後にフィルターをつけることで、純水の純度を一層向上
させることができる。これは、カソード電極、粒状また
は多孔質の固体電解質に電析した金属は流れの作用によ
り一部はく離する危険性がある。そこで、この純水の流
れの後段にフィルターをつけておけば、かりに金属がは
く離してもこのフィルターで除去できるからである。フ
ィルターとしては、可能な限り孔径が0.45μmの小
さいものが望ましく、精密ろ過膜、限外ろ過膜または逆
浸透膜などを使用することができる。
With this system, the first-stage electrolytic cell 15
To remove non-ionic polar organic substances, and metal ions can be removed by electrophoresis in the second electrolytic bath 31. Fifth Embodiment By attaching a filter after the outlet 26 of the electrolytic cell 31 shown in FIG. 2 described in the third embodiment, the purity of pure water can be further improved. This is because there is a risk that metal deposited on the cathode electrode, the granular or porous solid electrolyte may be partially peeled off by the action of the flow. Therefore, if a filter is provided after the flow of the pure water, even if the metal is peeled off from the scale, it can be removed by the filter. The filter is desirably as small as possible with a pore size of 0.45 μm, and a microfiltration membrane, ultrafiltration membrane, reverse osmosis membrane, or the like can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解槽の構成概要一例を示した図。FIG. 1 is a diagram showing an example of a configuration outline of an electrolytic cell of the present invention.

【図2】本発明の電解槽の他の構成概要を示した図。FIG. 2 is a diagram showing another configuration outline of the electrolytic cell of the present invention.

【図3】実施例1の結果を示した図。FIG. 3 is a diagram showing the results of Example 1.

【図4】実施例2の結果を示した図。FIG. 4 is a diagram showing the results of Example 2.

【図5】実施例3の結果を示した図。FIG. 5 shows the results of Example 3.

【図6】図1の電解槽を有する純水製造装置の構成概要
一例を示した図。
FIG. 6 is a diagram showing an example of a configuration outline of a pure water production apparatus having the electrolytic cell of FIG.

【図7】比較例の電解槽の構成概要を示した図である。FIG. 7 is a diagram showing a schematic configuration of an electrolytic cell of a comparative example.

【符号の説明】[Explanation of symbols]

1,2…イオン交換膜、3…カソード電極、4…アノー
ド電極、5…カソード室入口、6…カソード室出口、7
…アノード室入口、8…アノード室出口、9…中間室入
口、10…中間室出口、11…カソード室、12…アノ
ード室、13…中間室、15…電解槽、21…イオン交
換膜、22…カソード電極、23…アノード電極、24
…中間室25…入口、26…出口、27…アノード室入
口、28…アノード室出口、29…カソード室、30…
アノード室、31…電解槽。
1, 2 ... ion exchange membrane, 3 ... cathode electrode, 4 ... anode electrode, 5 ... cathode chamber inlet, 6 ... cathode chamber outlet, 7
... Anode chamber inlet, 8 ... Anode chamber outlet, 9 ... Intermediate chamber inlet, 10 ... Intermediate chamber outlet, 11 ... Cathode chamber, 12 ... Anode chamber, 13 ... Intermediate chamber, 15 ... Electrolyzer, 21 ... Ion exchange membrane, 22 ... Cathode electrode, 23 ... Anode electrode, 24
... Intermediate chamber 25 ... Inlet, 26 ... Outlet, 27 ... Anode chamber inlet, 28 ... Anode chamber outlet, 29 ... Cathode chamber, 30 ...
Anode chamber, 31 ... electrolyzer.

フロントページの続き (56)参考文献 特開 昭64−90088(JP,A) 特開 昭61−14232(JP,A) 特開 昭54−15361(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 9/00 C25B 13/08 C02F 1/46 B01J 47/12 Continuation of front page (56) References JP-A-64-90088 (JP, A) JP-A-61-14232 (JP, A) JP-A-54-15361 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) C25B 9/00 C25B 13/08 C02F 1/46 B01J 47/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アノード電極の設けられたアノード室
と、カソード電極の設けられたカソード室とを、並設さ
れた一対の隔膜を間にして区分した構造を有する伝導率
ρが10μS・cmより小さい値の純水の電気分解槽で
あって、 上記一対の隔膜の間に、粒状または多孔質状の固体電解
質を充填した中間室を設け、この中間室通水する手段
を接続し、カソード室から液を回収する手段を設けたこ
とを特徴とする純水電解槽。
1. A structure in which an anode chamber provided with an anode electrode and a cathode chamber provided with a cathode electrode are separated by a pair of juxtaposed diaphragms and have a conductivity ρ of 10 μS · cm or more. A small value pure water electrolysis tank, wherein an intermediate chamber filled with a granular or porous solid electrolyte is provided between the pair of diaphragms, and a means for passing water through the intermediate chamber is connected; A pure water electrolytic cell provided with means for collecting a liquid from a chamber.
【請求項2】 請求項1において、隔膜が陽イオン交換
膜であることを特徴とする純水電解槽。
2. The pure water electrolytic cell according to claim 1, wherein the diaphragm is a cation exchange membrane.
【請求項3】 請求項1又は2において、中間室に充填
した固体電解質が陽イオン交換樹脂であることを特徴と
する純水電解槽。
3. The pure water electrolysis tank according to claim 1, wherein the solid electrolyte filled in the intermediate chamber is a cation exchange resin.
JP2000249261A 2000-08-21 2000-08-21 Pure water electrolysis tank with an intermediate chamber Expired - Lifetime JP3299250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249261A JP3299250B2 (en) 2000-08-21 2000-08-21 Pure water electrolysis tank with an intermediate chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249261A JP3299250B2 (en) 2000-08-21 2000-08-21 Pure water electrolysis tank with an intermediate chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21547191A Division JP3236315B2 (en) 1991-08-27 1991-08-27 Pure water electrolysis tank with an intermediate chamber

Publications (2)

Publication Number Publication Date
JP2001096275A JP2001096275A (en) 2001-04-10
JP3299250B2 true JP3299250B2 (en) 2002-07-08

Family

ID=18739027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249261A Expired - Lifetime JP3299250B2 (en) 2000-08-21 2000-08-21 Pure water electrolysis tank with an intermediate chamber

Country Status (1)

Country Link
JP (1) JP3299250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140218B2 (en) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use
WO2003048421A1 (en) 2001-12-05 2003-06-12 Micromed Laboratories, Inc. Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
EP1863502B1 (en) 2005-03-23 2018-09-12 Sonoma Pharmaceuticals, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
CN101189017B (en) 2005-05-02 2013-04-03 奥古露丝创新科学公司 Method of using oxidative reductive potential water solution in dental applications
JP5523665B2 (en) * 2007-12-04 2014-06-18 東芝燃料電池システム株式会社 Fuel cell system
JP5361325B2 (en) * 2008-10-17 2013-12-04 有限会社スプリング Dissolved hydrogen drinking water manufacturing apparatus and manufacturing method thereof
MX348304B (en) 2009-06-15 2017-06-02 Invekra S A P I De C V Solution containing hypochlorous acid and methods of using same.
KR20170004025U (en) * 2016-05-19 2017-11-29 임신교 Electrolytic bath for manufacturing acid water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution

Also Published As

Publication number Publication date
JP2001096275A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP3859358B2 (en) Electrolyzed water production equipment
JP2906986B2 (en) Wet treatment apparatus, electrolytic activated water generation method, and wet treatment method
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JPH08126886A (en) Production of ultrapure water and device therefor
CN106587472B (en) A kind of recycling recoverying and utilizing method of the electroplating wastewater containing palladium
JP3299250B2 (en) Pure water electrolysis tank with an intermediate chamber
JP3383334B2 (en) How to recycle sulfuric acid
KR19990023400A (en) Water electrolysis method
JP3236315B2 (en) Pure water electrolysis tank with an intermediate chamber
JPH07106349B2 (en) Electrolyzer
US7074316B2 (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JP5145305B2 (en) Electric deionized water production equipment
US6071401A (en) Electrolytic method for purifying gases
JP2007307502A (en) Method for generating electrolytic water and electrolytic water generator
CN106673285B (en) A kind of recycling recoverying and utilizing method containing golden electroplating wastewater
JP5285135B2 (en) Water treatment system and water treatment method
JP2010036173A (en) Water treatment system and water treatment method
JP2011121027A (en) Electric type deionized water producing apparatus
JP3338435B2 (en) Method for producing liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
JP2017225929A (en) Electric regeneration type deionization device
JP2022002829A (en) Hydrogen peroxide removal method, hydrogen peroxide removal apparatus, and pure water production apparatus
JP3645061B2 (en) Apparatus for decomposing organic components in aqueous solution and method for decomposing the same
JP4053805B2 (en) Functional water, production method and production apparatus thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10