JP3297027B2 - High strength and high ductility α + β type titanium alloy - Google Patents

High strength and high ductility α + β type titanium alloy

Info

Publication number
JP3297027B2
JP3297027B2 JP31581099A JP31581099A JP3297027B2 JP 3297027 B2 JP3297027 B2 JP 3297027B2 JP 31581099 A JP31581099 A JP 31581099A JP 31581099 A JP31581099 A JP 31581099A JP 3297027 B2 JP3297027 B2 JP 3297027B2
Authority
JP
Japan
Prior art keywords
strength
titanium alloy
ductility
cold
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31581099A
Other languages
Japanese (ja)
Other versions
JP2000204425A (en
Inventor
英人 大山
貴之 木田
一己 舊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002272730A external-priority patent/CA2272730C/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31581099A priority Critical patent/JP3297027B2/en
Publication of JP2000204425A publication Critical patent/JP2000204425A/en
Application granted granted Critical
Publication of JP3297027B2 publication Critical patent/JP3297027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度で且つ溶接
性(溶接熱影響部の延性を意味する:以下同じ)に優れ
ると共に、延性が良好でコイル製造の可能な高強度チタ
ン合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength titanium alloy having high strength and excellent weldability (meaning the ductility of a weld heat affected zone: the same applies hereinafter), good ductility, and capable of producing coils. It is.

【0002】[0002]

【従来の技術】チタン合金は、軽量で且つ強度、靭性、
耐食性に優れたものであることから、近年、航空宇宙産
業や化学工業等の分野で広く実用化されている。しかし
ながらチタン合金は元々加工性の悪い材料であり、それ
ゆえ成形加工のためのコストが他の材料に比較して非常
に高くつくという大きな欠点がある。例えば代表的なα
+β型チタン合金であるTi−6Al−4V合金は難加
工材であって冷間加工性が悪く、冷間加工によってコイ
ル化することは実質的に不可能とされている。
2. Description of the Related Art Titanium alloys are lightweight, strong, tough,
Due to its excellent corrosion resistance, it has recently been widely used in the fields of the aerospace industry, the chemical industry, and the like. However, titanium alloys are inherently poor workable materials, and therefore have a major drawback in that the cost for forming is very high compared to other materials. For example, typical α
Ti-6Al-4V alloy, which is a + β-type titanium alloy, is a difficult-to-work material and has poor cold workability, and it is virtually impossible to form a coil by cold working.

【0003】そこでTi−6Al−4V合金を板状に加
工する際には、パック圧延と呼ばれる手法が採用されて
いる。即ちパック圧延とは、熱間圧延によって得たTi
−6Al−4V合金板を層状に重ね合わせて軟鋼製の箱
に入れ、所定の温度より下がらない様に保温しつつ熱間
圧延により薄板を製造する方法であるが、この方法で
は、パックを製造するための軟鋼カバーやパック溶接が
必要になる他、チタン合金板同士の拡散接合を阻止する
ため離型剤を塗布しなければならないなど、冷間圧延に
比べて作業が極めて煩雑で多大な費用を要する上に、熱
間圧延に適した温度域が限られているため加工上の制約
も多い。
[0003] When a Ti-6Al-4V alloy is processed into a plate shape, a technique called pack rolling is adopted. That is, pack rolling refers to Ti obtained by hot rolling.
This is a method in which -6Al-4V alloy sheets are stacked in layers and placed in a mild steel box, and a thin sheet is manufactured by hot rolling while keeping the temperature below a predetermined temperature. In this method, a pack is manufactured. In addition to the need for mild steel cover and pack welding to perform welding, a release agent must be applied to prevent diffusion bonding between titanium alloy plates, and the work is extremely complicated and costly compared to cold rolling. In addition, the temperature range suitable for hot rolling is limited, so that there are many restrictions on processing.

【0004】これに対し特開平3−274238号公報
や同3−166350号公報には、チタン母材中のA
l,VおよびMoの含有量を規定し、且つ、Fe,N
i,Co,Crから選ばれる少なくとも一種の合金元素
を適量含有させることによって、上記Ti−6Al−4
V合金並みの強度を有すると共に、超塑性加工性や熱間
加工性においてTi−6Al−4V合金よりも優れたチ
タン合金が得られると記述されている。
On the other hand, Japanese Patent Application Laid-Open Nos. 3-274238 and 3-166350 disclose A in a titanium base material.
The contents of l, V and Mo are defined, and Fe, N
By containing at least one alloying element selected from i, Co, and Cr in an appropriate amount, the Ti-6Al-4
It is described that a titanium alloy having a strength comparable to that of a V alloy and being superior in superplastic workability and hot workability to a Ti-6Al-4V alloy can be obtained.

【0005】更に特開平7−54081号公報や同7−
54083号公報には、Al含有量を1.0〜4.5%
レベルに低減すると共に、V含有量を1.5〜4.5
%、Mo含有量を0.1〜2.5%に規定し、或いは更
に少量のFeやNiを含有させることによって、高強度
を維持しつつ冷間加工性を高め、更には溶接性(特に溶
接熱影響部の強度)も高めたチタン合金が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 7-54081 and
No. 54083 discloses an Al content of 1.0 to 4.5%.
And the V content is 1.5-4.5.
%, The Mo content is regulated to 0.1 to 2.5%, or by further containing a small amount of Fe or Ni, the cold workability is enhanced while maintaining high strength, and further, the weldability (particularly, There is disclosed a titanium alloy having an increased strength of the heat affected zone.

【0006】このチタン合金は、冷間加工性と高強度を
兼ね備え且つ溶接性も改善されている点で優れたものと
考えられる。ところがこれらの発明では、優れた冷間加
工性を確保することの必要上、塑性加工時の変形抵抗が
抑えられているため強度はかなり低くなり、高強度とは
いえ焼鈍後の0.2%耐力で784MPa(80kgf
/mm2)レベルが限度であって、それ以上に強度を高
めると冷間加工性が低下するため、コイル製造は殆ど不
可能になる。
[0006] This titanium alloy is considered to be excellent in that it has both cold workability and high strength and also has improved weldability. However, in these inventions, since it is necessary to ensure excellent cold workability, since the deformation resistance at the time of plastic working is suppressed, the strength is considerably low, and even though the strength is high, 0.2% after annealing. 784MPa (80kgf)
/ Mm 2 ) level is the limit, and if the strength is further increased, the cold workability is reduced, so that coil production is almost impossible.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、α+
β型チタン合金を対象とし、優れた強度特性と冷間加工
性を有し、具体的には、焼鈍後の0.2%耐力で813
MPa(83kgf/mm2)程度以上、抗張力で882M
Pa(90kgf/mm2)程度以上を有すると共に、限
界冷延率が40%程度以上でコイル製造の可能な延性を
備えたα+β型チタン合金を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and its object is to provide α +
It is intended for β-type titanium alloys and has excellent strength properties and cold workability. Specifically, it has a resistance of 813% with a 0.2% proof stress after annealing.
MPa (83kgf / mm 2 ) or more, 882M in tensile strength
An object of the present invention is to provide an α + β-type titanium alloy having a Pa (90 kgf / mm 2 ) or more, a critical cold rolling reduction of about 40% or more, and a ductility capable of producing a coil.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る高強度・高延性α+β型チタン合
金とは、全率固溶型β安定化元素の少なくとも1種をM
o当量で2.0〜4.5質量%(以下、特記しない限り
質量%を表わす)、共析型β安定化元素の少なくとも1
種をFe当量で0.3〜2.0%を含み、更にSi:
0.1〜1.5質量%、およびC:0.01〜0.15
質量%を含有すると共に、Al当量が3質量%超5.5
質量%以下であり、限界冷延率が40%以上でコイル製
造の可能なチタン合金である。
The high-strength and high-ductility α + β-type titanium alloy according to the present invention, which can solve the above-mentioned problems, is characterized in that at least one kind of the all-solution solid-solution β-stabilizing element is M
o 2.0 to 4.5% by mass (hereinafter referred to as% by mass unless otherwise specified), at least one of the eutectoid β-stabilizing elements
The seed contains 0.3 to 2.0% by Fe equivalent and further comprises Si:
0.1-1.5% by mass, and C: 0.01-0.15
% By weight and an Al equivalent of more than 3% by weight 5.5
Mass% or less, and a critical cold rolling reduction of 40% or more.

【0009】[0009]

【発明の実施の形態】上記の様に本発明のα+β型チタ
ン合金は、全率固溶型β安定化元素と共析型β安定化元
素の含有量が規定され、α安定化元素であるAlを含め
た好ましいAl当量の規定されたα+β型チタン合金を
基本組成とし、これに適量のSiとCを含有させること
により、優れた強度特性と冷間加工性を与え、高強度で
ありながら延性が良好でコイル製造を可能にしたもので
あり、以下、上記各構成元素の含有比率を規定した理由
を明らかにする。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the α + β type titanium alloy of the present invention is defined as the α-stabilizing element in which the contents of the solid solution β-stabilizing element and the eutectoid β-stabilizing element are specified. The base composition is an α + β-type titanium alloy having a preferable Al equivalent including Al and having an appropriate amount of Si and C, thereby providing excellent strength characteristics and cold workability, and having high strength. It has good ductility and enables coil production, and the reason for defining the content ratio of each of the above constituent elements will be clarified below.

【0010】全率固溶型β安定化元素の少なくとも1
種:Mo当量で2.0〜4.5% Mo等の全率固溶型β安定化元素は、β相の体積比を増
加させると共にβ相に固溶して強度上昇に寄与する。ま
た、チタン母材中に固溶して微細な等軸晶組織を作り易
くする性質もあり、強度・延性バランス向上の観点から
も有益な元素である。こうした全率固溶型β安定化元素
の作用を有効に発揮させるには2.0%以上、より好ま
しくは2.5%以上含有させるべきであるが、多過ぎる
とβ焼鈍後の延性低下に加えて、チタン合金の耐食性が
増大し、冷延後に行われる焼鈍時に生成する酸化スケー
ルおよびαケースと呼ばれる酸素が固溶した地金の除去
が困難になり、加工性を阻害するばかりでなくチタン合
金全体の密度を高め、チタン合金が本来有している高比
強度という特性が損なわれるので、4.5%以下、より
好ましくは3.5%以下に抑えるべきである。
[0010] At least one of the total solid solution type β stabilizing elements
Species: Mo-equivalent 2.0 to 4.5% Mo, for example, is a solid solution type β-stabilizing element that increases the volume ratio of the β-phase and dissolves in the β-phase to contribute to an increase in strength. In addition, it has the property of forming a fine equiaxed crystal structure by forming a solid solution in a titanium base material, and is a useful element from the viewpoint of improving the balance between strength and ductility. In order to effectively exert the effect of the solid solution type β stabilizing element, the content should be 2.0% or more, more preferably 2.5% or more. However, if it is too much, the ductility decreases after β annealing. In addition, the corrosion resistance of the titanium alloy increases, and it becomes difficult to remove the oxide scale generated during annealing after cold rolling and the base metal in which oxygen, which is referred to as α-case, is dissolved. Since the density of the entire alloy is increased and the characteristic of the titanium alloy inherently having high specific strength is impaired, it should be suppressed to 4.5% or less, more preferably 3.5% or less.

【0011】なお全率固溶型β安定化元素の中で最も代
表的なのはMoであるが、V,Ta,Nb等もこうした
Moと同様の効果を有しているので、これらを含有する
場合は、これらを含めたMo当量として[Mo+1/1.5
・V+1/5・Ta+1/3.6・Nb]が2.0〜4.5%の範
囲となる様に調整すべきである。
The most typical solid solution type β-stabilizing element is Mo, but V, Ta, Nb and the like have the same effect as Mo. Is expressed as Mo equivalent including these [Mo + 1 / 1.5
[V + 1 / 5.Ta + 1 / 3.6.Nb] should be adjusted in the range of 2.0 to 4.5%.

【0012】共析型β安定化元素の少なくとも1種:F
e当量で0.3〜2.0% Fe等の共析型β安定化元素は、少量の添加で強度を高
める他、熱間加工性を向上させる効果も有している。ま
た現時点で理由は明確にされていないが、特にMoとF
eを共存させると冷間加工性が高められる。こうした作
用を有効に発揮させるにはFeとして0.3%以上、よ
り好ましくは0.4%以上を含有させるべきである。し
かしながら、Fe含有量が多くなり過ぎると、β焼鈍後
の延性が大きく低下する他、鋳塊製造時の偏析が顕著に
なって品質安定性を阻害する原因になるので、2.0%
以下、より好ましくは1.5%以下に抑えるべきであ
る。
At least one of the eutectoid β-stabilizing elements: F
An eutectoid β-stabilizing element such as 0.3 to 2.0% Fe in e equivalent has an effect of improving the hot workability in addition to increasing the strength by adding a small amount. Although the reasons have not been clarified at this time, Mo and F
When e coexists, cold workability is enhanced. In order to effectively exhibit such an effect, Fe should be contained at 0.3% or more, more preferably 0.4% or more. However, if the Fe content is too large, the ductility after β annealing is greatly reduced, and segregation during the production of an ingot becomes remarkable, causing quality stability to be impaired.
It should be kept below, more preferably below 1.5%.

【0013】尚Cr,Ni,Co等もこうしたFeと同
様の効果を有しているので、Crを含有する場合は、こ
れらを含めたFe当量として[Fe+1/2・Cr+1/2・
Ni+1/1.5・Co+1/1.5・Mn]が0.3〜2.0%
の範囲となる様に調整しなければならない。
Since Cr, Ni, Co, etc. have the same effect as such Fe, when Cr is contained, the Fe equivalent including these is [Fe + 1 / 2.Cr + 1/2.
Ni + 1 / 1.5.Co + 1 / 1.5.Mn] is 0.3 to 2.0%
Must be adjusted to be within the range.

【0014】Al当量:3%超5.5%以下 Alは、α安定化元素として強度向上に寄与する元素で
あり、Al含有量が3%以下ではチタン合金が強度不足
となる。しかしAl含有量が5.5%以上になると限界
冷延率が低くなってコイル化が困難になるばかりでな
く、コイル製品としての冷間加工性も低下し、所定の厚
さに圧延するまでの冷延および焼鈍回数が増えるためコ
ストの上昇につながる。強度と冷間加工性の兼ね合いを
考慮してより好ましいAl当量の下限は3.5%であ
る。
Al equivalent: more than 3% to 5.5% or less Al is an element that contributes to strength improvement as an α-stabilizing element. If the Al content is 3% or less, the titanium alloy becomes insufficient in strength. However, when the Al content is 5.5% or more, not only does the limiting cold rolling rate decrease, making coiling difficult, but also the cold workability as a coil product decreases, and until the product is rolled to a predetermined thickness. The number of times of cold rolling and annealing increases, leading to an increase in cost. Considering the balance between strength and cold workability, a more preferable lower limit of the Al equivalent is 3.5%.

【0015】尚本発明においては、SnやZrについて
もAlと同様にα安定化元素としての作用を発揮すると
ころから、それらの元素を含有する場合は、それらの元
素を含めて、Al当量として[Al+1/3・Sn+1/6・Z
r]が3%超5.5%以下の範囲となる様に調整すべき
である。
In the present invention, Sn and Zr also exert an action as an α-stabilizing element in the same manner as Al. Therefore, when these elements are contained, they are included in the Al equivalent weight. [Al + 1/3 ・ Sn + 1/6 ・ Z
r] should be adjusted to be in the range of more than 3% and 5.5% or less.

【0016】本発明でベースチタン合金として用いられ
る上記成分組成の要件を満たす好ましいα+β型チタン
合金の代表例としては、Ti−(4〜5%)Al−(1.5〜3
%)Mo−(1〜2%)V−(0.3〜2.0%)Fe(特に、Ti−4.
5%Al−2%Mo−1.6%V−0.5%Fe)等が挙げられ
る。
Representative examples of preferable α + β type titanium alloys satisfying the requirements of the above component composition used as the base titanium alloy in the present invention include Ti- (4-5%) Al- (1.5-3
%) Mo- (1-2%) V- (0.3-2.0%) Fe (particularly Ti-4.
5% Al-2% Mo-1.6% V-0.5% Fe).

【0017】Si:0.1〜1.5%上記全率固溶型β
安定化元素と共析型β安定化元素、更にはAl当量の含
有率要件を満たすベース組成のα+β型チタン合金は、
限界冷延率が40%程度以上の優れた冷間加工性を有し
ておりコイル化が可能であるが、強度特性や溶接性は必
ずしも十分とはいえず、最近における高強度化の要請に
は応えることができない。
Si: 0.1-1.5% Above all solid solution type β
Α + β-type titanium alloy having a base composition that satisfies the stabilizing element and the eutectoid β-stabilizing element, and further, the content requirement of Al equivalent,
It has excellent cold workability with a critical cold rolling reduction of about 40% or more and can be made into a coil. However, strength properties and weldability are not always sufficient. Can not respond.

【0018】ところが、上記ベース組成のα+β型チタ
ン合金中に0.1〜1.5%のSiを含有させると、コ
イル化に必要な延性を低下させることなくチタン合金と
しての強度特性と溶接熱影響部の特性(強度と延性)を
著しく高め得ることが確認された。
However, when 0.1 to 1.5% of Si is contained in the α + β type titanium alloy having the above base composition, the strength characteristics and welding heat as a titanium alloy can be obtained without reducing the ductility required for coiling. It was confirmed that the characteristics (strength and ductility) of the affected area could be significantly improved.

【0019】即ちSiは、α+β型チタン合金の冷延性
に殆ど悪影響を及ぼすことなく強度特性を高める作用を
有し、しかも溶接熱影響部についても強度と延性を高め
る作用を発揮する。そしてこうしたSiの適量添加によ
って、チタン合金母材の強度や延性を一段と高めると共
に、溶接熱影響部についても高レベルの強度と延性を示
すものが得られるのである。
That is, Si has the effect of increasing the strength characteristics without substantially affecting the cold rolling properties of the α + β type titanium alloy, and also exhibits the effect of increasing the strength and ductility of the weld heat affected zone. By adding an appropriate amount of Si, the strength and ductility of the titanium alloy base material can be further improved, and a weld heat affected zone exhibiting a high level of strength and ductility can be obtained.

【0020】こうしたSiの作用をより効果的に発揮さ
せるには、Siを0.1〜1.5%という非常に限られ
た範囲で含有させることが必要であり、Siの含有率が
不足する場合は、強度不足になる傾向が現れる他、溶接
部の強度−延性バランス向上効果も不十分になり、逆に
1.5%を超えると、冷延性が乏しくなってコイル製造
が困難になる。上記Siの利害得失を考慮してより好ま
しいSiの下限値は0.2%、より好ましい上限値は
1.0%である。
In order to exert such an effect of Si more effectively, it is necessary to contain Si in a very limited range of 0.1 to 1.5%, and the Si content is insufficient. In this case, the strength tends to be insufficient, and the effect of improving the strength-ductility balance of the welded portion is also insufficient. Conversely, if it exceeds 1.5%, the cold-rolling property is poor and the coil production becomes difficult. The lower limit of Si is more preferably 0.2%, and the upper limit is more preferably 1.0% in consideration of the advantages and disadvantages of Si.

【0021】C:0.01〜0.15%Cは、α+β型
チタン合金の優れた延性を維持しつつ強度特性を更に高
める作用を有し、且つ溶接熱影響部については、若干の
延性低下を招くものの強度を著しく高める作用を有して
おり、こうしたCの添加効果によって、チタン合金母材
の強度や延性は一段と高められ、溶接熱影響部の強度と
延性を更に高めることができる。
C: 0.01 to 0.15% C has the effect of further improving the strength characteristics while maintaining the excellent ductility of the α + β type titanium alloy, and slightly reduces the ductility of the weld heat affected zone. However, the effect of adding C further increases the strength and ductility of the titanium alloy base material, and can further increase the strength and ductility of the weld heat affected zone.

【0022】こうしたCの作用をより効果的に発揮させ
るには、Cを0.01〜0.15%以下という非常に限
られた範囲で含有させることが必要であり、Cの含有率
が不足する場合は強度不足となり、逆に0.15%を超
えるとTiCの如き炭化物の顕著な析出硬化によって冷
延性が損なわれ、コイル圧延の障害となる。こうしたC
の利害得失を考慮してより好ましいCの下限値は0.0
2%、より好ましい上限値は0.12%である。
In order to exert such an effect of C more effectively, C must be contained in a very limited range of 0.01 to 0.15% or less, and the content of C is insufficient. If it exceeds 0.15%, on the contrary, if it exceeds 0.15%, remarkable precipitation hardening of a carbide such as TiC impairs the cold-rolling property and hinders coil rolling. Such C
The lower limit of C, which is more preferable in consideration of the interest and loss of
The upper limit is 2%, and a more preferred upper limit is 0.12%.

【0023】また本発明においては、上記SiやCに加
えて少量のO(酸素)を含有させると、チタン合金のコイ
ル化や延性に殆ど悪影響を及ぼすことなく強度を一段と
高めることができるので好ましい。こうした酸素の効果
はごく少量で発揮されるが、その効果をより確実に発揮
させるには、0.07%程度以上、より好ましくは0.
1%程度以上含有させるのがよい。ただし、酸素含有量
が多くなり過ぎると冷間加工性が低下する他、過度の強
度上昇により延性も低下してくるので、酸素含有量は
0.25%以下、より好ましくは0.18%以下に抑え
るべきである。
In the present invention, it is preferable to include a small amount of O (oxygen) in addition to the above Si and C, since the strength can be further increased without substantially adversely affecting the coiling and ductility of the titanium alloy. . Such an effect of oxygen is exerted in a very small amount, but in order to exert the effect more reliably, about 0.07% or more, more preferably 0.1% or more.
It is preferable to contain about 1% or more. However, when the oxygen content is too large, the cold workability is reduced, and the ductility is also reduced due to an excessive increase in strength. Therefore, the oxygen content is 0.25% or less, more preferably 0.18% or less. Should be kept to a minimum.

【0024】本発明において、ベースとなる前記α+β
型チタン合金中に適量のSiとC、更には適量の酸素を
含有させることによって上記の様な作用効果が発揮され
る理由は必ずしも明確にされた訳ではないが、次の様な
ことが考えられる。
In the present invention, the aforementioned α + β
It is not always clear why the above-mentioned effects are exerted by incorporating appropriate amounts of Si and C, and furthermore, an appropriate amount of oxygen into the titanium alloy. However, the following is considered. Can be

【0025】即ち、適量のSiを含有させることによっ
て冷延性を損なうことなく強度特性が高められる理由に
ついては、Siはβ相内に固溶して強度向上に寄与する
にも拘らず延性には大きな阻害要因とはならず、また固
溶限を超えてSiを含有させても、シリサイドが形成さ
れることによってβ相中のSi濃度はある一定以下に保
たれる。従って、過度のシリサイドの生成により延性が
阻害されない範囲にSi含有量を抑えてやれば、高延性
を維持しつつ強度特性が高められるものと考えられる。
That is, the reason why the strength properties can be improved without impairing the cold-rolling property by incorporating an appropriate amount of Si is that although Si is dissolved in the β phase and contributes to the strength improvement, It does not become a major inhibitory factor, and even if Si is contained beyond the solid solubility limit, the formation of silicide keeps the Si concentration in the β phase below a certain level. Therefore, it is considered that if the Si content is suppressed within a range in which ductility is not hindered by excessive silicide generation, strength characteristics can be improved while maintaining high ductility.

【0026】また適量のSiを含有させると、上記の様
にβ相内に生成するシリサイドによって溶接熱影響部に
おける結晶組織の粗大化が抑制され、且つシリサイドの
析出によってTiがトラップされてβ相が安定化し、あ
るいは固溶Siの変態抑制作用によって残留β相が増大
し、これらの効果が相俟って溶接性が改善されるものと
思われる。
When an appropriate amount of Si is contained, coarsening of the crystal structure in the heat affected zone by welding is suppressed by the silicide generated in the β phase as described above, and Ti is trapped by the precipitation of the silicide to form the β phase. It is thought that the residual β phase increases due to the stabilization of the dissolution or the transformation inhibiting action of the solid solution Si, and these effects are combined to improve the weldability.

【0027】またCもα相内に固溶して強度向上に寄与
するが、α相の延性にはそれほど大きな阻害要因とはな
らない。しかも固溶限を超えるCが含まれていても、カ
ーバイドが形成されることでα相内のC濃度はある一定
値以下に保たれる。従って、過度のカーバイドの生成に
より延性が阻害されない範囲にC含有量を抑えてやれ
ば、高延性を維持しつつ強度特性が高められるものと考
えられる。
C also forms a solid solution in the α phase and contributes to the improvement of the strength, but does not significantly affect the ductility of the α phase. Moreover, even when C exceeding the solid solubility limit is contained, the C concentration in the α phase is maintained at a certain fixed value or less due to the formation of carbide. Therefore, it is considered that if the C content is suppressed within a range in which ductility is not impaired by excessive carbide generation, strength properties can be enhanced while maintaining high ductility.

【0028】なおSiおよびCは、上記作用効果に加え
てTi合金の耐熱性を高める作用も発揮する。
Note that Si and C exert an effect of increasing the heat resistance of the Ti alloy in addition to the above-mentioned effects.

【0029】更にOは、α相、β相の双方に固溶(固溶
量自体はα相の方が多い)して固溶強化作用を発揮する
が、いずれの相においても固溶量が多くなると延性を阻
害するので、その含有量は前述の如く極少量に抑えるべ
きである。
Further, O forms a solid solution in both the α phase and the β phase (the solid solution itself is larger in the α phase) to exert a solid solution strengthening action. If the content increases, the ductility is impaired. Therefore, the content should be kept to an extremely small amount as described above.

【0030】本発明のチタン合金には、上記以外の元素
が不可避的に混入してくることがあるが、上記本発明合
金の特性を阻害しない限りそれら元素の微量の含有は許
容される。また、本発明の前記特性を維持しつつ更に他
の特性を与えるため、前述した以外の元素を積極的に含
有させることも可能である。その様な許容される積極添
加元素としては、耐食性向上効果を有する白金族元素
(Pb,Ru,Ir,Inなど:好ましくは0.03〜
0.2%程度)、耐熱性向上効果を有するP(好ましく
は0.05%程度以下)、強度向上効果を有するN(好
ましくは0.03%程度以下)などが例示される。
The titanium alloy of the present invention may inevitably contain elements other than those described above. However, as long as the properties of the alloy of the present invention are not impaired, the inclusion of trace amounts of these elements is permissible. Further, in order to provide still other characteristics while maintaining the above characteristics of the present invention, it is possible to positively contain elements other than those described above. Platinum group elements (Pb, Ru, Ir, In, etc.) having an effect of improving corrosion resistance as such acceptable active addition elements: preferably 0.03 to
P having an effect of improving heat resistance (preferably about 0.05% or less), N having an effect of improving strength (preferably about 0.03% or less), and the like.

【0031】前述の如く構成元素の特定された本発明の
α+β型チタン合金は、全率固溶型β安定化元素と共析
型β安定化元素、更にはAl当量の規定されたα+β型
チタン合金を基本組成とし、これに適量のSiとCを含
有させ、あるいは更に適量のOを含有させることによっ
て、高レベルの強度特性を有しながらコイル製造の可能
な優れた延性を有し、更には溶接性においても優れた特
性を有するものであり、具体的には、α+β温度域で焼
鈍した後の0.2%耐力が813MPa(83kgf/m
2)程度以上、抗張力が882MPa(90kgf/m
2)程度以上を有すると共に、40%以上の限界冷延
率を示すものとなる。
The α + β-type titanium alloy of the present invention, whose constituent elements are specified as described above, is a solid-solution β-stabilizing element and a eutectoid-type β-stabilizing element, and furthermore, an α + β-type titanium having a specified Al equivalent. By using an alloy as a basic composition, containing an appropriate amount of Si and C, or further containing an appropriate amount of O, it has excellent ductility that enables coil production while having a high level of strength characteristics, Has excellent properties in terms of weldability. Specifically, the 0.2% proof stress after annealing in the α + β temperature range is 813 MPa (83 kgf / m2).
m 2 ) or more, and the tensile strength is 882 MPa (90 kgf / m
m 2 ) or more and a critical cold rolling reduction of 40% or more.

【0032】ちなみに、α+β型チタン合金であっても
該限界冷延率が40%未満のものでは、連続法によりコ
イル製造を行うと、冷間圧延−焼鈍の繰り返し数が多く
なるためコスト的に実情にそぐわなくなるばかりでな
く、再結晶組織が得られ難くなって板材としてT方向・
L方向の異方性が大きくなるなどの問題が生じてくる。
ところが、上記限界冷延率が40%以上を示すもので
は、連続法によって支障なくコイル製造を行うことがで
き、生産性の向上によりコストを大幅に低減することが
可能となる。
In the case of an α + β type titanium alloy having a critical cold rolling reduction of less than 40%, if the coil is manufactured by a continuous method, the number of repetitions of cold rolling and annealing increases, so that the cost is reduced. Not only does it not fit the actual situation, but also it is difficult to obtain a recrystallized structure,
Problems such as anisotropy in the L direction increase.
However, when the critical cold rolling rate is 40% or more, the coil can be manufactured by the continuous method without any trouble, and the cost can be significantly reduced by improving the productivity.

【0033】ここで限界冷延率とは、工業的観点からす
ると、僅かな割れが発生してもその割れがある程度(例
えば5mm程度)で進展が止まっている段階から、板面
にまで割れが進展し始める限界の板厚減少率をいう。
Here, from the industrial viewpoint, the critical cold rolling rate means that even if a slight crack occurs, the crack is reduced to a certain extent (for example, about 5 mm) from the stage where the growth is stopped, to the sheet surface. It refers to the rate of thickness reduction at the limit at which development begins.

【0034】尚、本発明のα+β型チタン合金を用いた
冷延までの上流側加工条件は特に制限されないが、一般
的には次の様な条件で行なわれる。即ち、鋳塊を変態温
度以上で分塊(鍛造または圧延)して圧延スラブを得
る。この時、マクロ組織を微細にする必要がある場合
は、最終スラブを得るまでに分塊圧延などを意図的に2
回以上に分けて行なうこともある。次いで、得られた熱
延スラブを変態温度以下のα+β温度域(通常、[β変
態点−30]±20℃程度)に加熱して熱間圧延した
後、700℃〜変態温度以下の温度範囲(但し、850
℃前後は避けた方がよい)で焼鈍し、脱スケール処理を
行なって熱延材を得る。該熱延材を用いた冷延は、圧下
率で40%前後を目安とし、700℃〜変態温度以下の
温度域(但し、850℃前後は避けた方がよい)で焼鈍
する操作を繰り返して所定の板厚を得る。
The upstream processing conditions up to cold rolling using the α + β type titanium alloy of the present invention are not particularly limited, but are generally performed under the following conditions. That is, the ingot is divided (forged or rolled) at a transformation temperature or higher to obtain a rolled slab. At this time, if it is necessary to make the macrostructure fine, two or more lumps are intentionally performed until the final slab is obtained.
It may be done more than once. Next, the obtained hot-rolled slab is heated to an α + β temperature range below the transformation temperature (usually, [β transformation point−30] ± 20 ° C.) and hot-rolled, and then a temperature range from 700 ° C. to the transformation temperature or lower. (However, 850
(It is better to avoid around ℃.), And descaling is performed to obtain a hot-rolled material. The cold rolling using the hot-rolled material is performed by repeating the operation of annealing in a temperature range of 700 ° C. to the transformation temperature or less (however, it is better to avoid around 850 ° C.) with a draft of about 40% as a guide. Obtain a predetermined thickness.

【0035】ところで冷延によってコイルを得るには、
ホットコイルに巻くことを想定して熱延性にも優れてお
り、温度低下により内部割れや耳割れを起こし難いこと
が望まれる。しかし本発明では、前述の如く適量のSi
やCを含有させると共にβ安定化元素量を低減してお
り、β変態温度を十分に高めているので、変態温度以下
でホットコイルに巻く時の熱間加工性にも優れている。
なお等軸組織化させるには、一般にβ変態点以下での熱
延が必要とされている。熱間加工性の観点からすると、
β変態点は900℃以上、より好ましくは950℃以上
にすることが望ましい。
In order to obtain a coil by cold rolling,
It is desirable to have excellent hot ductility assuming that it is wound around a hot coil, and to be less likely to cause internal cracks and ear cracks due to a temperature drop. However, in the present invention, as described above, an appropriate amount of Si
In addition to containing C and C, the amount of β-stabilizing elements is reduced, and the β transformation temperature is sufficiently increased, so that the hot workability when wound around a hot coil at a temperature lower than the transformation temperature is also excellent.
In order to form an equiaxed structure, hot rolling at a temperature not higher than the β transformation point is generally required. From the viewpoint of hot workability,
The β transformation point is desirably 900 ° C. or higher, more preferably 950 ° C. or higher.

【0036】ところで本発明においては、上記の様にα
+β型チタン合金のベース組成を特定すると共に、Si
とCの含有率、好ましくは更にOの含有率を規定するこ
とによって、高レベルの強度特性を維持しつつコイル製
造の可能な優れた冷延性を確保できるが、これらのチタ
ン合金について溶接熱影響部の強度特性をより確実に保
証するための要件について更に検討を行ったところ、β
温度域で焼鈍した後の0.2%耐力(YS)と伸び率
(El)の関係が下記式(1)の関係を満たすものは、溶
接熱影響部の強度-伸びバランスが良好であり、安定し
て高い溶接性が発揮されることが確認された。この点に
ついては、後記実施例で図1を示して詳細に説明する。
In the present invention, as described above, α
+ Base alloy of β-type titanium alloy
And C content, preferably O content, can provide excellent cold rollability for coil production while maintaining a high level of strength properties. After further study on the requirements to more reliably guarantee the strength characteristics of the part,
When the relationship between the 0.2% proof stress (YS) and the elongation (El) after annealing in the temperature range satisfies the relationship of the following formula (1), the strength-elongation balance of the weld heat affected zone is good. It was confirmed that high weldability was exhibited stably. This point will be described in detail in a later embodiment with reference to FIG.

【0037】 6.9×(YS−85.2)+25×(El−8.2)≧0……(1) 上記の様に本発明のα+β型チタン合金は、限界冷延率
が40%程度以上といった従来のTi−6Al−4V合
金等にはみられない優れた冷延性を有しているので、従
来では殆ど不可能であったコイル製造が可能であると共
に、冷間加工によって様々の形状、例えば薄板、波板、
パイプ状などに容易に加工することができる。
6.9 × (YS-85.2) + 25 × (El−8.2) ≧ 0 (1) As described above, the α + β type titanium alloy of the present invention has a conventional Ti having a critical cold rolling reduction of about 40% or more. -6Al-4V alloy has excellent cold-rolling properties not found in alloys and the like, so that it is possible to manufacture coils that were hardly possible in the past, and to perform various shapes by cold working, for example, thin sheets and waves. Board,
It can be easily processed into a pipe shape.

【0038】この時、冷間加工物の種類によっては、上
記限界冷延率を超えて圧延しなければならないこともあ
るが、この場合は冷間圧延の途中で1回若しくは複数回
の軟化焼鈍処理を行い、加工硬化を緩和しながら任意の
厚さにまで冷間圧延を行えばよい。いずれにしても本発
明のチタン合金は40%程度以上の高い限界冷延率を有
しているので、前述した様なパック圧延等を要すること
なく冷間圧延のみによって任意の厚さや形状に加工する
ことができる。
At this time, depending on the type of the cold-worked product, it may be necessary to perform rolling beyond the above-mentioned limit cold rolling reduction. In this case, one or more softening annealings are performed during the cold rolling. The treatment may be performed and cold rolling may be performed to an arbitrary thickness while relaxing work hardening. In any case, since the titanium alloy of the present invention has a high critical cold rolling reduction of about 40% or more, it is processed into an arbitrary thickness and shape only by cold rolling without the need for pack rolling as described above. can do.

【0039】尚、必要により冷間加工途中で行われる焼
鈍の条件は特に限定されないが、通常はβトランザス
(Tb)を基準にして(Tb−300℃)〜(Tb-25℃)の
範囲で3〜120分程度の条件が採用される。
The conditions of the annealing performed during the cold working as necessary are not particularly limited, but usually, (T b -300 ° C.) to (T b -25 ° C.) based on β transus (T b ). And a condition of about 3 to 120 minutes is adopted.

【0040】この様な焼鈍処理を施すことによって得ら
れるα+β型チタン合金は、前述の如く、α+β温度域
で焼鈍した後の常温における0.2%耐力が813MP
a(83kgf/mm2)程度以上で且つ抗張力が882M
Pa(90kgf/mm2)程度以上を示し、且つ溶接し
た後の溶接熱影響部の強度・延性バランスも優れたもの
である点で、従来のチタン合金には見られない卓越した
物理的特性を有するものとなる。
As described above, the α + β type titanium alloy obtained by performing such an annealing treatment has a 0.2% proof stress at room temperature after annealing in the α + β temperature range of 813MP.
a (83 kgf / mm 2 ) or more and tensile strength of 882M
It exhibits excellent physical properties not found in conventional titanium alloys, because it exhibits a Pa (90 kgf / mm 2 ) or more and has a good balance between strength and ductility of the weld heat affected zone after welding. Will have.

【0041】かくして得られる本発明のα+β型チタン
合金は、その優れた冷間加工性を生かしてコイル製造が
可能であり、また冷間加工の有る無しに拘らず、線棒、
管など任意の形状に容易に加工することができる。ま
た、上記の様に優れた強度特性と延性を兼備しており且
つ溶接性が良好で溶接熱影響部は高レベルの延性を示す
ので、最終製品に加工するまでに溶接が行われる用途、
例えば熱交換器用のプレート材、Tiゴルフヘッド材
料、溶接管、各種線材、棒材、極細線材、航空機部品、
登山用品、釣り具など、更にはこれら以外の超塑性成形
材や各種複合材等として幅広く有効に活用できる。
The α + β type titanium alloy of the present invention thus obtained can be used for coil production by utilizing its excellent cold workability.
It can be easily processed into any shape such as a tube. In addition, because it has both excellent strength properties and ductility as described above, and has good weldability and the weld heat affected zone exhibits a high level of ductility, applications where welding is performed before processing into a final product,
For example, plate materials for heat exchangers, Ti golf head materials, welded pipes, various wires, rods, ultrafine wires, aircraft parts,
It can be used widely and effectively as mountain climbing equipment, fishing gear, and other superplastic molding materials and various composite materials.

【0042】[0042]

【実施例】以下、実施例を挙げて本発明の構成と作用効
果をより具体的に説明するが、本発明はもとより下記実
施例によって制限を受ける訳ではなく、前・後記の趣旨
に適合し得る範囲で適当に変更して実施することも可能
であり、それらはいずれも本発明の技術的範囲に包含さ
れる。
EXAMPLES Hereinafter, the structure and operation and effect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention is applicable to the above and following points. The present invention can be appropriately modified and implemented within the scope of the invention, and all of them are included in the technical scope of the present invention.

【0043】実施例1 表1に示す成分組成のチタン合金鋳塊(60×130×
260mm)をインダクトスカル溶解で製造し、次にβ
温度域(約1100℃)に加熱してから厚さ40mmの
板に分塊圧延した後、β温度域(約1100℃)加熱で
30分間保持してから空冷する。次いでβ変態点以下の
α+β域(900〜920℃)加熱で熱間圧延し、厚さ
4.5mmの熱延板を製造した。その後、再びα+β域
(約760℃)で30分間焼鈍してから、0.2%耐
力、抗張力、伸び率を測定した。なお試験片は、供試板
の表面を機械加工し、標点間距離50mm、平行部の巾
を12.5mmに加工した。
Example 1 An ingot of a titanium alloy having the composition shown in Table 1 (60 × 130 ×
260 mm) by induct skull dissolution and then β
After being heated to a temperature range (about 1100 ° C.) and then subjected to slab rolling to a plate having a thickness of 40 mm, it is kept at a β temperature range (about 1100 ° C.) for 30 minutes and then air-cooled. Subsequently, hot rolling was performed by heating in an α + β region (900 to 920 ° C) below the β transformation point to produce a hot-rolled sheet having a thickness of 4.5 mm. Then, after annealing again in the α + β region (about 760 ° C.) for 30 minutes, the 0.2% proof stress, tensile strength, and elongation were measured. In addition, the test piece machined the surface of the test plate and processed the gauge length to 50 mm and the width of the parallel portion to 12.5 mm.

【0044】次いで、ショットブラスト処理および酸洗
を行なって表面の酸化層を除去した後引張特性を評価し
た。またこれを冷延素材とし、1パス当たりの圧下量を
約0.2mmとして板面割れが発生するまで冷延を続け
て冷延性を評価した。また溶接性を評価するため、各供
試材をTβ以上である1000℃で5分間加熱してから
空冷し、針状組織での引張特性を調べた。
Next, a shot blast treatment and pickling were performed to remove an oxide layer on the surface, and then the tensile properties were evaluated. Using this as a cold-rolled material, the rolling amount was reduced to about 0.2 mm per pass, and cold-rolling was continued until a sheet surface crack occurred to evaluate the cold-rolling property. Further, in order to evaluate the weldability, each test material was heated at 1000 ° C., which is equal to or higher than Tβ, for 5 minutes and then air-cooled, and the tensile properties of the needle-like structure were examined.

【0045】結果を表2に一括して示す。The results are collectively shown in Table 2.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】また図1は、上記表1に示した実験データ
のうち、溶接熱影響部の物性に対応するβ焼鈍後の0.
2%耐力と伸び率の関係をグラフ化して示したものであ
る。
FIG. 1 shows the experimental data shown in Table 1 above showing the values of 0.2% after β annealing corresponding to the physical properties of the heat affected zone.
It is a graph showing the relationship between 2% proof stress and elongation.

【0049】このグラフにおいて、実線Yは、比較材の
うち冷延性が×(限界冷延率が40%未満)以外のもの
の0.2%耐力と伸び率の関係を結んだものであり、鎖
線Xは、[6.9×(YS−85.2)+25×(El−8.2)]
で示される関係式を表わしている。
In this graph, the solid line Y shows the relationship between the 0.2% proof stress and the elongation of the comparative materials other than those having a cold rollability other than x (the critical cold rolling reduction is less than 40%). X is [6.9 × (YS-85.2) + 25 × (El-8.2)]
Represents a relational expression represented by.

【0050】このグラフからも明らかである様に、実線
Yと鎖線Xは0.2%耐力が813MPa(83kgf/
mm2)の点で交差しており、該耐力よりも高耐力の領域
における実線Y(比較材)の傾斜勾配は鎖線Xよりも急
激であり、このグラフより、比較材では高耐力領域にお
いて耐力の上昇に伴って伸び率が急激に低下することを
確認できる。これに対し本発明の実施例では、耐力と伸
び率の関係がいずれも鎖線Xよりも右上側に位置してお
り、耐力の上昇に伴う伸び率の低下が相対的に少なく、
高強度で且つ高延性を示すものであることを確認でき
る。
As is clear from this graph, the solid line Y and the chain line X have a 0.2% proof stress of 813 MPa (83 kgf /
mm 2 ), the slope of the solid line Y (comparative material) in the region where the proof stress is higher than the proof stress is steeper than the dashed line X. It can be confirmed that the elongation rate sharply decreases with the rise of. On the other hand, in the example of the present invention, the relationship between the proof stress and the elongation rate is located on the upper right side of the chain line X, and the decrease in the elongation rate with the increase in the proof stress is relatively small.
It can be confirmed that the material has high strength and high ductility.

【0051】また図2は、α+β焼鈍後の0.2%耐力
と伸び率の関係を整理して示したグラフであり、このグ
ラフからは、813MPa(83kgf/mm2)の耐力を
境にして、比較材はいずれも上記耐力に達していないの
に対し、実施例材ではいずれもこれ以上の耐力を示して
おり、このグラフからも、本発明材は高強度で且つ優れ
た延性を有していることが分かる。
FIG. 2 is a graph showing the relationship between the 0.2% proof stress after α + β annealing and the elongation rate. The graph shows the relationship between the proof stress of 813 MPa (83 kgf / mm 2 ). In contrast, none of the comparative materials reached the above-mentioned proof stress, whereas all of the example materials showed a higher proof stress, and from this graph, the material of the present invention has high strength and excellent ductility. You can see that it is.

【0052】実施例2 前記実施例1で用いた符号Mのチタン合金(Ti-2Mo-1.6
V-0.5Fe-4.5Al-0.3Si-0.03C)と、これに耐食性向上元
素として白金族元素のRuを0.05%添加したチタン
合金(Ti-2Mo-1.6V-0.5Fe-4.5Al-0.3Si-0.03C-0.05R
u)、および従来品としてTi−6Al−4V合金を使
用し、これらを実施例1と同様にして分塊圧延→熱延→
焼鈍を順次行ない、更に前処理として湿式研磨(#40
0)および脱脂処理を行なって得た冷延素材について、
実施例1と同様にして冷延性、強度、溶接性を調べると
共に、耐隙間腐食性(20%NaCl水溶液に100℃
で1週間浸漬)を調べた。
Embodiment 2 The titanium alloy (Ti-2Mo-1.6
V-0.5Fe-4.5Al-0.3Si-0.03C) and a titanium alloy (Ti-2Mo-1.6V-0.5Fe-4.5Al-) added with 0.05% of a platinum group element Ru as a corrosion resistance improving element. 0.3Si-0.03C-0.05R
u) and a Ti-6Al-4V alloy as a conventional product, and these were subjected to slab rolling → hot rolling →
Annealing is performed sequentially, and wet polishing (# 40
0) and the cold rolled material obtained by performing the degreasing treatment,
The cold rolling property, strength and weldability were examined in the same manner as in Example 1, and crevice corrosion resistance (100 ° C. in 20% NaCl aqueous solution).
For one week).

【0053】結果は下記表3に示す通りであり、符合X
の本発明材は、符合Zの従来材に比べて耐隙間腐食性に
劣るが、これに白金族元素として微量のRuを添加した
符号Yの本発明材は、符号Xの優れた冷延性、強度、溶
接性を維持しつつ、卓越した耐隙間腐食性を示すことが
分かる。
The results are as shown in Table 3 below.
The material of the present invention is inferior in crevice corrosion resistance as compared with the conventional material of the symbol Z, but the material of the present invention of the symbol Y to which a trace amount of Ru is added as a platinum group element has an excellent cold rolling property of the symbol X, It can be seen that excellent crevice corrosion resistance is exhibited while maintaining strength and weldability.

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【発明の効果】本発明は以上の様に構成されており、全
率固溶型β安定化元素と共析型β安定化型元素の含有率
を規定したα+β型Ti合金をベース組成とし、これに
特定量のSiとCを含有させ、或いは更に少量の酸素を
含有させることによって、最も汎用されているチタン合
金であるTi-6Al-4V合金に勝るとも劣らない強度
特性を有すると共に、該合金に欠けていた冷間加工性を
著しく高めてコイル圧延を可能にすると共に、溶接熱影
響部の強度および延性を著しく改善し、成形加工性と強
度、溶接性の全てを兼ね備えたチタン合金を提供し得る
ことになった。
The present invention is constituted as described above, and is based on an α + β-type Ti alloy in which the contents of the total solid solution type β-stabilizing element and the content of the eutectoid type β-stabilizing element are defined, By containing specific amounts of Si and C or a small amount of oxygen, it has strength characteristics not inferior to Ti-6Al-4V alloy, which is the most widely used titanium alloy. Titanium alloy, which has all of the formability, strength and weldability while significantly improving the cold workability lacking in the alloy and enabling coil rolling, and significantly improving the strength and ductility of the weld heat affected zone. Can be provided.

【0056】従って本発明のチタン合金は、その特徴を
生かして様々の用途に広く活用できるが、特にその優れ
た耐食性、軽量性、電熱特性を活かし、且つその優れた
冷延性を活用することにより、例えば熱交換器用のプレ
ート材などとして極めて有効に利用できる。
Therefore, the titanium alloy of the present invention can be widely used in various applications by utilizing its features. In particular, by taking advantage of its excellent corrosion resistance, light weight, and electrothermal properties, and utilizing its excellent cold rolling property. For example, it can be used very effectively as a plate material for a heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】β温度域での焼鈍後(溶接熱影響部に相当)の
0.2%耐力と伸び率の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between 0.2% proof stress and elongation after annealing in a β temperature range (corresponding to a welding heat affected zone).

【図2】α+β温度域での焼鈍後の0.2%耐力と伸び
率の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between 0.2% proof stress and elongation after annealing in an α + β temperature range.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−301536(JP,A) 特開 平4−202729(JP,A) 特開 平8−120373(JP,A) 特開 平9−31572(JP,A) 特開 平7−54083(JP,A) 特開 平3−274238(JP,A) 特開 平1−242743(JP,A) 特公 昭51−17489(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-301536 (JP, A) JP-A-4-202729 (JP, A) JP-A-8-120373 (JP, A) JP-A-9-1997 31572 (JP, A) JP-A-7-54083 (JP, A) JP-A-3-274238 (JP, A) JP-A-1-242743 (JP, A) JP-B-51-17489 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 1/00-49/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 全率固溶型β安定化元素の少なくとも1
種をMo当量で2.0〜4.5質量%、共析型β安定化
元素の少なくとも1種をFe当量で0.3〜2.0質量
%を含み、更にSi:0.1〜1.5質量%、および
C:0.01〜0.15質量%を含有すると共に、Al
当量が3質量%超5.5質量%以下であることを特徴と
する高強度・高延性α+β型チタン合金。
At least one of the total solid-solution β-stabilizing elements
The seed contains 2.0 to 4.5% by mass of Mo equivalent, at least one of the eutectoid β stabilizing elements contains 0.3 to 2.0% by mass of Fe equivalent, and further contains Si: 0.1 to 1 %. 0.5% by mass, and
C: contains 0.01 to 0.15% by mass and Al
A high-strength and high-ductility α + β-type titanium alloy having an equivalent weight of more than 3% by mass and 5.5% by mass or less .
【請求項2】 コイル製造の可能なものである請求項1
に記載の高強度・高延性α+β型チタン合金。
2. The method according to claim 1, wherein the coil can be manufactured.
High-strength and high-ductility α + β-type titanium alloy described in 1.
【請求項3】 α+β温度域での焼鈍後の0.2%耐力
が813MPa以上である請求項1または2に記載の高
強度・高延性α+β型チタン合金。
3. The 0.2% proof stress after annealing in the α + β temperature range.
3 is 813 MPa or more.
High strength and high ductility α + β type titanium alloy.
JP31581099A 1998-11-12 1999-11-05 High strength and high ductility α + β type titanium alloy Expired - Lifetime JP3297027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31581099A JP3297027B2 (en) 1998-11-12 1999-11-05 High strength and high ductility α + β type titanium alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10-322673 1998-11-12
JP32267398 1998-11-12
CA002272730A CA2272730C (en) 1998-05-26 1999-05-25 .alpha. + .beta. type titanium alloy, a titanium alloy strip, coil-rolling process of titanium alloy, and process for producing a cold-rolled titanium alloy strip
JP31581099A JP3297027B2 (en) 1998-11-12 1999-11-05 High strength and high ductility α + β type titanium alloy

Publications (2)

Publication Number Publication Date
JP2000204425A JP2000204425A (en) 2000-07-25
JP3297027B2 true JP3297027B2 (en) 2002-07-02

Family

ID=32096424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31581099A Expired - Lifetime JP3297027B2 (en) 1998-11-12 1999-11-05 High strength and high ductility α + β type titanium alloy

Country Status (1)

Country Link
JP (1) JP3297027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677052A1 (en) 2012-06-18 2013-12-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium alloy product having high strength and excellent cold rolling property
CN103556094A (en) * 2013-11-04 2014-02-05 攀钢集团江油长城特殊钢有限公司 Method for forging and producing TC4 titanium alloy bars by using precision forging machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041148A1 (en) 1998-05-26 2001-11-15 Kabushiki Kaisha Kobe Seiko Sho Alpha + beta type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
JP4257581B2 (en) 2002-09-20 2009-04-22 株式会社豊田中央研究所 Titanium alloy and manufacturing method thereof
JP4264411B2 (en) 2004-04-09 2009-05-20 新日本製鐵株式会社 High strength α + β type titanium alloy
JP4507094B2 (en) * 2005-02-14 2010-07-21 株式会社神戸製鋼所 Ultra high strength α-β type titanium alloy with good ductility
JP4517095B2 (en) * 2005-10-07 2010-08-04 新日本製鐵株式会社 High strength titanium alloy automotive engine valve
JP2009299110A (en) * 2008-06-11 2009-12-24 Kobe Steel Ltd HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
DE112010002758B4 (en) 2009-06-29 2021-01-21 Borgwarner Inc. FATIGUE-RESISTANT CASTED OBJECTS MADE OF TITANIUM ALLOY
JP5421873B2 (en) * 2010-07-30 2014-02-19 株式会社神戸製鋼所 High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate
JP5421872B2 (en) * 2010-07-30 2014-02-19 株式会社神戸製鋼所 High strength α + β type titanium alloy plate excellent in bending workability and bending anisotropy and method for producing high strength α + β type titanium alloy plate
JP5592818B2 (en) * 2010-08-03 2014-09-17 株式会社神戸製鋼所 Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
JP5182452B2 (en) 2011-02-24 2013-04-17 新日鐵住金株式会社 Α + β-type titanium alloy plate excellent in cold-rolling property and cold handling property and its manufacturing method
JP5662928B2 (en) * 2011-12-26 2015-02-04 株式会社神戸製鋼所 Support device for solar cell module
KR101831548B1 (en) 2014-04-10 2018-02-22 신닛테츠스미킨 카부시키카이샤 α+β TYPE COLD-ROLLED AND ANNEALED TITANIUM ALLOY SHEET HAVING HIGH STRENGTH AND HIGH YOUNG'S MODULUS, AND METHOD FOR PRODUCING SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677052A1 (en) 2012-06-18 2013-12-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium alloy product having high strength and excellent cold rolling property
CN103556094A (en) * 2013-11-04 2014-02-05 攀钢集团江油长城特殊钢有限公司 Method for forging and producing TC4 titanium alloy bars by using precision forging machine

Also Published As

Publication number Publication date
JP2000204425A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
EP0969109B1 (en) Titanium alloy and process for production
US6726784B2 (en) α+β type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
EP1726670B1 (en) Use of a heat resistant titanium alloy sheet excellent in cold workability in an exhaust system of a vehicle
JP3297027B2 (en) High strength and high ductility α + β type titanium alloy
US10913242B2 (en) Titanium material for hot rolling
US20070131314A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
JP5796810B2 (en) Titanium alloy material with high strength and excellent cold rolling properties
JP5201202B2 (en) Titanium alloy for golf club face
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
JP6187679B2 (en) Α + β type titanium alloy welded pipe excellent in strength and rigidity in the longitudinal direction of the pipe, and method for producing the same
JP2000273598A (en) Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP5421873B2 (en) High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JP3297012B2 (en) High strength titanium alloy with excellent cold rollability
JP2004183079A (en) Titanium alloy and method for manufacturing titanium alloy material
US20110318220A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
JP4102224B2 (en) High strength, high ductility β-type titanium alloy
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil
JP2024076767A (en) Titanium alloy plate manufacturing method
JPH0794701B2 (en) Manufacturing method of aluminum alloy soft material for welded structure
WO2004027103A1 (en) Magnesium thin plate for spread product being excellent in workability and method for production thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

R150 Certificate of patent or registration of utility model

Ref document number: 3297027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

EXPY Cancellation because of completion of term