JP3293846B2 - Method for producing spherical Raney alloy for catalyst - Google Patents

Method for producing spherical Raney alloy for catalyst

Info

Publication number
JP3293846B2
JP3293846B2 JP20658491A JP20658491A JP3293846B2 JP 3293846 B2 JP3293846 B2 JP 3293846B2 JP 20658491 A JP20658491 A JP 20658491A JP 20658491 A JP20658491 A JP 20658491A JP 3293846 B2 JP3293846 B2 JP 3293846B2
Authority
JP
Japan
Prior art keywords
alloy
disk
catalyst
raney
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20658491A
Other languages
Japanese (ja)
Other versions
JPH0523597A (en
Inventor
則子 石原
賢治 根岸
学 関本
実 長澤
勝能 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Rica Corp
Original Assignee
Nikko Rica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Rica Corp filed Critical Nikko Rica Corp
Priority to JP20658491A priority Critical patent/JP3293846B2/en
Publication of JPH0523597A publication Critical patent/JPH0523597A/en
Application granted granted Critical
Publication of JP3293846B2 publication Critical patent/JP3293846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、触媒用球状ラネ−合金
の製造方法及び得られた球状ラネ−合金を展開してラネ
−触媒を製造する方法に関し、特に、粒径範囲がコント
ロ−ルされた流動床反応に好適に使用される触媒の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spherical Raney alloy for a catalyst and a method for producing a Raney catalyst by expanding the obtained spherical Raney alloy. The present invention relates to a method for producing a catalyst suitably used for a fluidized bed reaction.

【0002】[0002]

【従来の技術】従来、ラネ−触媒は、還元用粉末触媒と
して広く用いられているが、一般に、ラネ−合金のイン
ゴットを粉砕する粉砕法及びアトマイズ法により合金粉
末を造り、これらをアルカリ液で展開して調製されてい
る。
2. Description of the Related Art Conventionally, Raney catalysts have been widely used as powder catalysts for reduction. However, generally, an alloy powder is produced by a pulverizing method for pulverizing an ingot of a Raney alloy and an atomizing method, and these are made of an alkaline solution. It is developed and developed.

【0003】しかし、粉砕法は、粉砕手段によって多少
異なるが、おおむね粉砕された粒子の粒度分布は広く、
微細粉も多量に形成される。微細粉は活性化工程におい
ては厄介な存在であり、更に流動床においては逸流して
ロスとなるので著しく不利である。それ故、所望の粒度
範囲のものを得るために、通常、篩い分けされるが、そ
のための手数を要するだけでなく、歩留まりは悪く、ま
た個々の粉末粒子は不規則形状であるからラネ−触媒と
して必ずしも満足し得るものではない。特に、展延性を
有する合金類には粉砕法を適用することが実質的に困難
である。
[0003] However, the pulverization method is slightly different depending on the pulverization means, but generally the particle size distribution of the pulverized particles is wide,
A large amount of fine powder is also formed. Fines are a significant disadvantage in the activation process, as they can be bothersome and lost in fluidized beds. Therefore, sieving is usually carried out to obtain the desired particle size range, but not only takes time but also the yield is low, and since the individual powder particles are irregularly shaped, the Raney-catalyst is used. Is not always satisfactory. In particular, it is substantially difficult to apply the pulverization method to alloys having ductility.

【0004】また、例えば、特開平2−126940号
公報に開示されるようなアトマイズ法によって形成され
るラネ−合金粒子は、粉砕法に比較すれば、粒径及び粒
度分布はある程度コントロ−ルされているが、球がつぶ
れたり引き延ばされたような不定形の曲面形状体であっ
て、粒子径の拡がりはまだかなり大きい。特に、流動床
反応用等のラネ−触媒としては沈降性が悪く、また触媒
粒子の偏在化による輸送配管の目詰まり等のトラブルを
起こし易く、しばしば篩い分けが必要となるなど、狭い
粒径範囲で且つ可及的球状の粒子に調整することが要求
される。
[0004] For example, the Raney alloy particles formed by the atomizing method as disclosed in Japanese Patent Application Laid-Open No. 2-126940 have a somewhat controlled particle size and particle size distribution as compared with the pulverizing method. However, it is an irregularly-shaped curved body in which a sphere is crushed or elongated, and the particle diameter spread is still considerably large. In particular, a narrow particle size range, such as poor sedimentation as a Raney catalyst for fluidized bed reactions and the like, which easily causes troubles such as clogging of transport piping due to uneven distribution of catalyst particles, and often requires sieving. It is required that the particles be adjusted to be as spherical as possible.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の課題
は、篩い分け処理を必要としない所望の狭い粒径範囲に
コントロ−ルされたラネ−合金粒子の形成方法を提供す
ることにある。また、本発明の他の課題は、実質的に球
形を有する触媒用合金粒子、及び展開により流動床反応
に極めて望ましい触媒を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for forming Raney alloy particles which are controlled to a desired narrow particle size range without the need for sieving. Another object of the present invention is to provide a catalyst alloy particle having a substantially spherical shape and a catalyst which is highly desirable for a fluidized bed reaction by development.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく、触媒用ラネ−合金の直接粉末化方法に関
し、各種の技術的要因について検討を重ねた結果、特
に、遠心力を利用する球状化が好適であり、実用的に極
めて望ましい結果が得られることを見出し、本発明に至
った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have repeatedly studied various technical factors regarding a method for directly pulverizing a Raney alloy for a catalyst. It has been found that spheroidization using is preferred, and practically extremely desirable results can be obtained, leading to the present invention.

【0007】すなわち、本発明は、触媒活性金属にアル
ミニウム又はシリコンを含有せしめた合金の溶融液を高
速回転体の円盤上面に滴下し、遠心力により飛散させ
て、微細液滴を不活性ガス雰囲気中において冷却凝固さ
せることを特徴とする粒径のコントロ−ルされた触媒用
球状ラネ−合金の製造方法及びそれを展開して、特に流
動床反応用として好適なラネ−触媒を製造する方法の提
案に係るものである。
That is, according to the present invention, a melt of an alloy containing a catalytically active metal containing aluminum or silicon is dropped on the upper surface of a disk of a high-speed rotating body and scattered by centrifugal force to form fine droplets in an inert gas atmosphere. A method for producing a controlled catalyst-shaped spherical Raney alloy having a particle size characterized by being cooled and solidified in a medium, and a method for producing a Raney catalyst suitable particularly for a fluidized bed reaction by developing the same. It is a proposal.

【0008】本発明の方法に係る触媒用ラネ−合金は、
触媒活性金属に、あるいは該触媒活性金属と必要に応じ
て少量の助触媒金属とに、展開時に溶出されるアルミニ
ウム又はシリコンを含有せしめて成る合金類である。該
合金を構成する触媒活性金属としては、触媒能を有する
金属、例えばニッケル,コバルト,鉄,銅,銀,ルテニ
ウム及びパラジウム等の金属類が代表的に挙げられる。
また、助触媒金属としては、例えば、クロム,鉄,モリ
ブデン,タングステン及び錫等が挙げられる。これら触
媒金属と助触媒金属は、好ましくは、合金を基準にし
て、それぞれ30〜60重量%及び0〜10重量%の割合で含
有させることが好ましく、残部は展開溶出させるアルミ
ニウム又はシリコンである。
[0008] The catalyst alloy according to the method of the present invention comprises:
Alloys comprising a catalytically active metal or, if necessary, a small amount of a promoter metal containing aluminum or silicon which are eluted during development. Representative examples of the catalytically active metal constituting the alloy include metals having catalytic ability, for example, metals such as nickel, cobalt, iron, copper, silver, ruthenium, and palladium.
Examples of the promoter metal include chromium, iron, molybdenum, tungsten, and tin. These catalyst metal and cocatalyst metal are preferably contained in proportions of 30 to 60% by weight and 0 to 10% by weight, respectively, based on the alloy, and the remainder is aluminum or silicon which is developed and eluted.

【0009】上記触媒金属類は、目的とする有機化学反
応等に応じた触媒活性を有する金属の一種又は二種以上
が選択されるが、合金中のその含有量が30重量%より少
ないと展開して形成される粉粒状多孔体触媒としての強
度が不足するので好ましくなく、60重量%を超えるとそ
の触媒としての多孔体表面積が不足し、触媒活性が低減
するので不適切である。また、助触媒金属は、通常、該
触媒金属の触媒活性を促進させる金属成分であって、一
般に触媒金属の10重量%以下程度の少量が好ましく添加
使用される。更に、合金の残部を構成するアルミニウム
又はシリコンは、これを展開して広い表面積と粒子強度
を持った触媒金属の多孔質体を形成させるためのもの
で、通常、合金粒子をアルカリ液で処理することにより
溶解除去される成分である。その含有量は、合金に基づ
いて約30〜70重量%程度である。
As the above-mentioned catalytic metals, one or more metals having catalytic activity according to the intended organic chemical reaction or the like are selected. It is not preferable because the strength of the powdery and granular porous catalyst formed by the above becomes insufficient, and if it exceeds 60% by weight, the surface area of the porous material as the catalyst becomes insufficient and the catalytic activity is reduced, which is inappropriate. The promoter metal is usually a metal component that promotes the catalytic activity of the catalyst metal. Generally, a small amount of about 10% by weight or less of the catalyst metal is preferably used. Further, aluminum or silicon constituting the remainder of the alloy is used to form a porous body of a catalytic metal having a large surface area and particle strength by expanding the aluminum or silicon. Usually, the alloy particles are treated with an alkali solution. It is a component that is dissolved and removed as a result. Its content is on the order of about 30-70% by weight based on the alloy.

【0010】本発明の方法においては、選択された触媒
活性金属,助触媒金属及び溶出用金属の所望量を混合
し、これを加熱溶融して、その融液が高速回転している
円盤状回転体の上面に滴下される。合金の融液は、通
常、その融点より50〜150℃程度高めの温度範囲に加熱
保持される。その温度があまり低すぎると融液が遠心飛
散する前に凝固する恐れがあるので不都合であり、ま
た、あまり高すぎると遠心飛散する融液滴が落下の間に
冷却凝固しきれずにチャンバ−内壁に衝突して変形する
ので好ましくない。
In the method of the present invention, a desired amount of the selected catalytically active metal, cocatalyst metal and eluting metal is mixed, heated and melted, and the melt is rotated at a high speed. It is dripped on the upper surface of the body. Usually, the melt of the alloy is heated and held in a temperature range higher by about 50 to 150 ° C. than its melting point. If the temperature is too low, the melt may solidify before centrifugal scattering, which is disadvantageous.If the temperature is too high, the centrifugally scattered melt droplets cannot be cooled and solidified during the fall, and the inner wall of the chamber cannot be cooled. It is not preferable because it collides with and deforms.

【0011】このような合金融液を遠心飛散させるに
は、本発明のラネ−合金粒子の形成においては、円盤を
高速で回転させることが重要である。その回転速度は、
融液の粘度等により、また200μm以下の所望の微細な粒
子径によって選択されるが、例えば、毎分10000回転な
いし50000回転(rpm)程度であり、本発明方法におい
て高速回転とは、上記範囲が実用的に包含される。この
ような高速で回転する回転体の水平な円形上面に溶融合
金液を、例えば、2cmないし20cm上方から少量ずつ滴下
すると、その融液粘度と回転速度に関連してそれぞれの
場合に対応するコントロ−ルされた狭い粒度範囲の粒子
が遠心飛散する。その粒子径は、融液の粘度が低いほ
ど、また回転体の回転速度が大きいほど小さくなるの
で、調製しようとする所望粒径に応じてそれらの条件は
選択され、適宜コントロ−ルされる。
[0011] In order to form such Raney alloy particles according to the present invention, it is important to rotate the disk at a high speed in order to scatter such a liquid mixture by centrifugation. The rotation speed is
It is selected depending on the viscosity of the melt or the like and the desired fine particle diameter of 200 μm or less, for example, about 10,000 to 50,000 revolutions per minute (rpm). Is practically included. When the molten alloy liquid is dropped little by little, for example, from 2 cm to 20 cm above the horizontal circular upper surface of the rotating body rotating at such a high speed, the control corresponding to the melt viscosity and the rotating speed in each case is performed. The particles of a narrow size range are centrifugally scattered. The particle size decreases as the viscosity of the melt decreases and as the rotation speed of the rotating body increases, and these conditions are selected and controlled as appropriate according to the desired particle size to be prepared.

【0012】本発明の方法に用いられる上記円盤状回転
体は、溶融合金の温度に対して充分な耐熱性を有する素
材であれば特に制限はないが、各種合金の融点より高い
耐熱温度を有する耐摩耗性の優れた物質、例えば、チタ
ンナイトライド,ボロンナイトライド,シリコンカ−バ
イド及びタングステンカ−バイド等のセラミック類が好
都合に使用される。また、球状微粒合金の粒径は、操作
条件のみならず、円盤状回転体の表面の粗さや周縁エッ
ジの鋭さ、そのエッジ角度等によって左右され、特に、
狭い粒径範囲のものを得るには、円盤状回転体の表面
を、例えばダイヤモンド砥粒等で研磨して、その粗さを
Rmax1μm以下とすることが望ましく、また、円盤状回
転体のエッジの角度は、所望する平均粒径範囲に応じて
選択することが望ましい。それらの円盤状回転体の条件
は簡単な実験等により容易に選択決定される。
The disk-shaped rotating body used in the method of the present invention is not particularly limited as long as it is a material having sufficient heat resistance to the temperature of the molten alloy, but has a heat-resistant temperature higher than the melting points of various alloys. Materials with good wear resistance, for example ceramics such as titanium nitride, boron nitride, silicon carbide and tungsten carbide, are advantageously used. In addition, the particle size of the spherical fine-grained alloy depends not only on the operating conditions, but also on the roughness of the surface of the disk-shaped rotating body, the sharpness of the peripheral edge, the edge angle, and the like.
In order to obtain a material having a narrow particle size range, it is desirable that the surface of the disk-shaped rotating body is polished with, for example, diamond abrasive grains to reduce the roughness to Rmax 1 μm or less. The angle is desirably selected according to the desired average particle size range. The conditions of the disk-shaped rotator can be easily selected and determined by a simple experiment or the like.

【0013】本発明の方法は、合金融液を遠心飛散させ
るので、通常、閉じたチャンバ−内で操作され、凝固粒
子はチャンバ−底部に収集される。その際、微粒状溶融
液はチャンバ−壁に接触する前に冷却凝固することが極
めて重要であり、その冷却のためにチャンバ−内に適度
の低温に温度コントロ−ルされた不活性ガスが連続的に
吹き込まれる。そのような不活性ガスとしては、例え
ば、窒素,アルゴン又はヘリウムが挙げられる。本発明
の方法においては、これらの不活性ガスは単独でもよい
が、2種以上を組み合わせて混合ガスの熱伝導度を好都
合に利用して冷却条件を選択することが実用上望まし
い。
[0013] The method of the present invention is typically operated in a closed chamber, as the centrifuged liquid is scattered, and the solidified particles are collected at the bottom of the chamber. At this time, it is extremely important that the fine-grained molten liquid be cooled and solidified before coming into contact with the chamber wall, and for the cooling, an inert gas controlled to a moderately low temperature is continuously introduced into the chamber. Is blown in. Such inert gases include, for example, nitrogen, argon or helium. In the method of the present invention, these inert gases may be used alone, but it is practically desirable to select two or more kinds of the inert gases and to utilize the thermal conductivity of the mixed gas in a favorable manner to select cooling conditions.

【0014】本発明の方法を図面により説明する。図1
は、本発明の方法により球状ラネ−合金粒子を製造する
装置の一例の説明用模式的断面図である。上部がド−ム
状にカバ−された逆円錐状の大型チャンバ−1のカバ−
部の中央に、加熱機構を備えた保持炉2が該カバ−壁を
貫通して取り付けられ、その炉内に触媒用合金の融液3
が保持される。また該チャンバ−1内の中央上部にはモ
−タ6によって回転駆動する高速回転円盤5が配置され
ている。上記保持炉内の融液3は、その炉の底部中央に
形成された融液滴下孔4から高速回転している円盤5の
中央部に連続的に滴下される。高速回転円盤面に落下接
触した融液は、その円盤の遠心力によって外周にはじき
飛ばされて微細球状液滴を形成する。
The method of the present invention will be described with reference to the drawings. FIG.
FIG. 1 is a schematic cross-sectional view for explaining an example of an apparatus for producing spherical Raney alloy particles by the method of the present invention. Cover of a large chamber 1 having an inverted conical shape in which the upper part is covered in a dome shape.
At the center of the part, a holding furnace 2 equipped with a heating mechanism is mounted so as to penetrate through the cover wall.
Is held. A high-speed rotating disk 5 which is driven to rotate by a motor 6 is arranged at the upper center in the chamber-1. The melt 3 in the holding furnace is continuously dropped onto a central part of a disk 5 rotating at a high speed from a molten droplet preparation hole 4 formed in the center of the bottom of the furnace. The melt that has fallen into contact with the surface of the high-speed rotating disk is repelled to the outer periphery by the centrifugal force of the disk to form fine spherical droplets.

【0015】チャンバ−1内には、そのほぼ中央部にモ
−タ6'により回転する循環ファン7とこれを囲むよう
に配置された円筒状のガス案内板8が鉛直方向に取り付
けられ、また、チャンバ−壁の適当な箇所に設けられた
冷却用ガス導入口9から所定温度にコントロ−ルされた
不活性ガスが連続的に導入される。導入されたガスはチ
ャンバ−の壁側を下降し、循環ファン7によって案内板
8の中を上昇し、高速回転している円盤5に向けて安定
な冷却用ガス流が提供される。かくして外周にはじき飛
ばされた微細球状合金液滴は、チャンバ−の傾斜壁に接
触する前に凝固して傾斜壁を伝って落下し、チャンバ−
の底部に集められて球状粒子取出口10から連続的に取
り出される。また、ガス導入口9から連続的に導入され
る不活性ガスは、例えば、球状粒子取出口10から連続
的に抜き出される。
A circulating fan 7 rotated by a motor 6 'and a cylindrical gas guide plate 8 arranged so as to surround the circulating fan 7 are installed in a substantially central portion of the chamber 1 in a vertical direction. An inert gas controlled to a predetermined temperature is continuously introduced from a cooling gas introduction port 9 provided at an appropriate position on the chamber wall. The introduced gas descends on the wall side of the chamber, rises in the guide plate 8 by the circulation fan 7, and provides a stable cooling gas flow toward the disk 5 rotating at a high speed. The fine spherical alloy droplets thus flicked to the outer periphery solidify before falling into contact with the inclined wall of the chamber and fall along the inclined wall, and fall down along the inclined wall.
And is continuously taken out from the spherical particle outlet 10. In addition, the inert gas continuously introduced from the gas inlet 9 is continuously extracted from the spherical particle outlet 10, for example.

【0016】[0016]

【作用】本発明の方法によれば、酸化変性などの恐れが
なく、また偏析の起こらない均一で微細な組織を有する
微細球状合金が効果的に得られる。得られた球状合金を
展開処理するとき、狭い範囲にコントロ−ルされた粒径
を有し、比表面積の大きい多孔質体が容易に形成され、
優れた触媒活性を有し流動床用として好適なラネ−触媒
が調製される。
According to the method of the present invention, a fine spherical alloy having a uniform and fine structure free from the possibility of oxidative modification and having no segregation can be obtained effectively. When developing the obtained spherical alloy, a porous body having a controlled particle size in a narrow range and a large specific surface area is easily formed,
A Raney catalyst having excellent catalytic activity and suitable for a fluidized bed is prepared.

【0017】[0017]

【実施例】次に、本発明の方法を具体例により、更に詳
細に説明する。 実施例 1銅−アルミニウム球状合金の製造 3000mmの上部内径を有する図1に示すようなド−ム状カ
バ−を持つ逆円錐形チャンバ−の装置を用い、銅とアル
ミニウムがそれぞれ50重量%の合金100kgを保持炉内で
約650℃の温度に加熱保持した融液を、融液滴下孔より
約5cm下側のチャンバ−内に設けられた直径50mmのボロ
ンナイトライド製の高速回転円盤の上面の中央部に連続
的に滴下した。円盤の回転速度は約30000rpmで、チャン
バ内は凝固用窒素ガスが1平方センチメ−トル当たり0.
1kgの加圧状態に保持され、その温度は約50℃であっ
た。この場合の各粒子の滞空時間は、ほゞ0.5秒であっ
た。
Next, the method of the present invention will be described in more detail with reference to specific examples.
This will be described in detail. Example 1Production of copper-aluminum spherical alloy  Dome-shaped camera as shown in Fig. 1 having an inner diameter of 3000mm
Using an inverted conical chamber device with a bar, copper and aluminum
Minium 100kg each alloy 50% by weight in a holding furnace
The melt heated and held at a temperature of about 650 ° C is passed through the lower hole of the melt droplet.
A bolus with a diameter of 50 mm provided in the chamber about 5 cm below
At the center of the top surface of a high-speed rotating disk made of
Was dripped. The rotation speed of the disk is about 30,000 rpm,
The inside of the chamber is filled with nitrogen gas for coagulation at 0.
It is kept under a pressure of 1 kg and its temperature is about 50 ° C.
Was. In this case, the dwell time of each particle is about 0.5 seconds.
Was.

【0018】チャンバ−底部から取り出されたラネ−合
金粒子は、すべてが実質的に球形であって、その粒子径
は約20〜100μmの範囲内にコントロ−ルされた極めて望
ましいものである。図2は、本実施例で得られたラネ−
合金粉末の粒子構造を示す走査型電子顕微鏡写真であ
り、図3は、遠心沈降法によるその粒度分布(以下、単
に粒度分布という。)であって、各粒径範囲とそれぞれ
の範囲に含まれる合金粒の重量%との関係を示す棒グラ
フである。図4の(a)図と(b)図は、実施例1と同
じ組成の合金を従来のラネ−合金粉末の代表的な製造法
である粉砕法及びアトマイズ法によってそれぞれ製造し
た粉末の図2と同様の顕微鏡写真であり、図5の(a)
図と(b)図は、それぞれの粉末の図3と同様な粒度分
布の棒グラフである。
The Raney alloy particles removed from the bottom of the chamber are all substantially spherical and their particle size is highly desirable, controlled within the range of about 20-100 μm. FIG. 2 shows the Raney obtained in this example.
FIG. 3 is a scanning electron micrograph showing the particle structure of the alloy powder, and FIG. 3 shows the particle size distribution (hereinafter, simply referred to as particle size distribution) by centrifugal sedimentation, which is included in each particle size range and each range. 5 is a bar graph showing the relationship with the weight% of alloy particles. FIGS. 4 (a) and 4 (b) show powders obtained by manufacturing an alloy having the same composition as in Example 1 by a pulverizing method and an atomizing method, which are typical methods for manufacturing conventional Raney-alloy powder, respectively. FIG. 5 (a) is a micrograph similar to FIG.
Figures and (b) are bar graphs of the same particle size distribution of each powder as in Figure 3.

【0019】実施例 2 上記実施例1で得られた銅−アルミニウムのラネ−合金
球状粒子40gを25重量%の水酸化ナトリウム水溶液240m
l中に入れ、温度55℃の加温条件下に混ぜながら約1.5時
間かけてアルミニウムを溶出させ、実質的に完全に展開
させた後、充分水洗して約20gの銅触媒を得た。
EXAMPLE 2 40 g of the copper-aluminum Raney-alloy spherical particles obtained in Example 1 were used in an amount of 240 m of a 25% by weight aqueous sodium hydroxide solution.
The aluminum was eluted over about 1.5 hours while mixing under a heating condition of 55 ° C., and after being substantially completely developed, sufficiently washed with water to obtain about 20 g of a copper catalyst.

【0020】実施例 3ニッケル−アルミニウム系球状合金の製造 ニッケル485g,モリブデン15g及びアルミニウム500g
から成る合金を保持炉内で約1450℃の温度に加熱溶融
し、その融液を実施例1と同様に遠心飛散させてラネ−
合金球状粒子を製造した。得られた粒子の走査型電子顕
微鏡写真及びその粒度分布の棒グラフを図6及び図7に
示す。
Embodiment 3Manufacture of nickel-aluminum based spherical alloy  Nickel 485g, Molybdenum 15g and Aluminum 500g
Is heated and melted at a temperature of about 1450 ° C in a holding furnace.
Then, the melt was centrifuged and dispersed as in Example 1, and
Alloy spherical particles were produced. Scanning electron microscope of the obtained particles
Micrographs and bar graphs of the particle size distribution are shown in FIGS. 6 and 7.
Show.

【0021】実施例 4銀−アルミニウム球状合金の製造 銀2.5kgとアルミニウム2.5kgの融液を、実施例1と
同様にして遠心飛散させ、ラネ−合金球状粒子を調製し
た。得られた粒子の走査型電子顕微鏡写真及びその粒度
分布の概要棒グラフを図8及び図9に示す。銀−アルミ
ニウム合金は展延性を有するので、従来の粉砕法では粉
末化が極めて困難であったが、本発明の方法によれば、
粒度の調整された球状粒子が容易且つ効果的に得られ
る。
Embodiment 4Production of silver-aluminum spherical alloy  A melt of 2.5 kg of silver and 2.5 kg of aluminum was used as in Example 1.
Centrifugally scatter in the same manner to prepare Raney-alloy spherical particles.
Was. Scanning electron micrograph of the obtained particles and their particle size
An overview bar graph of the distribution is shown in FIGS. Silver-aluminum
Nitride alloys have ductility, so conventional pulverization methods require
Although termination was extremely difficult, according to the method of the present invention,
Spherical particles with a controlled particle size can be obtained easily and effectively.
You.

【0022】上記顕微鏡写真及び棒グラフから明らかな
ように、本発明の方法によって製造されたラネ−合金
は、粒径がコントロ−ルされた真球状の粒子であるのに
対し、従来の代表的な粉砕法やアトマイズ法によって調
製された合金粉末は、形状が極めて不均一で、しかも粒
度分布が広く、特に触媒の調製とその使用において不都
合な微粉、例えば、10μm未満の微細粒子が多量含まれ
るので実用上著しく不利であることが判る。
As is clear from the above micrographs and bar graphs, the Raney alloy produced by the method of the present invention is a true spherical particle whose particle size is controlled, whereas the conventional Raney alloy is a typical spherical particle. The alloy powder prepared by the pulverizing method or the atomizing method is extremely non-uniform in shape and has a wide particle size distribution, and particularly contains a large amount of fine powder which is inconvenient in the preparation and use of the catalyst, for example, fine particles of less than 10 μm. It turns out that it is extremely disadvantageous in practical use.

【0023】実施例 5 本発明の方法によって調製された上記銅触媒と従来の粉
砕法及びアトマイズ法によって調製された同様な銅触媒
について、次の各種試験を行いそれぞれの触媒性状評価
を行った。 [触媒活性試験]予め脱酸素処理したラネ−銅触媒7.0
gと脱酸素水63.0g及びアクリロニトリル10.0gを100m
lの四つ口フラスコに仕込み、フラスコ内を完全に脱酸
素したのち温度を上げ、内容液を70℃に保持して2時間
かき混ぜ条件下に反応を行う。反応後、アクリルアミド
生成量を測定し、銅1g当たりの生成量(g)を触媒活
性値として表示した。この触媒活性値は、数値が高いほ
ど触媒活性が優れていることを示す。
Example 5 The following various tests were carried out on the above copper catalyst prepared by the method of the present invention and the same copper catalyst prepared by the conventional pulverizing method and atomizing method, and the properties of each catalyst were evaluated. [Catalytic activity test] Raney-copper catalyst 7.0 previously deoxygenated
g, deoxygenated water 63.0 g and acrylonitrile 10.0 g
Then, after completely deoxidizing the inside of the flask, the temperature is increased, and the reaction is carried out under stirring conditions for 2 hours while maintaining the content at 70 ° C. After the reaction, the amount of acrylamide produced was measured, and the amount produced (g) per gram of copper was indicated as a catalytic activity value. The higher the value of the catalytic activity, the better the catalytic activity.

【0024】[触媒粒子径分布]遠心沈降法により触媒
の粒子径を測定し、その粒度分布状態を棒グラフで表示
した。この粒子径分布は、微細粒子ほど表面積が大きく
触媒活性は高まるが、10μm未満の微細粒子は少ないほ
ど操作性が向上する。
[Catalyst particle size distribution] The particle size of the catalyst was measured by a centrifugal sedimentation method, and the particle size distribution was displayed as a bar graph. In this particle size distribution, the finer particles have larger surface area and higher catalytic activity, but the smaller the number of fine particles less than 10 μm, the better the operability.

【0025】[触媒粒子の沈降性]50ml共栓付きメスシ
リンダ−に触媒5gを入れ、水で50mlに容量調整した
後、これを急速に20回上下転倒させて静置し、触媒粒子
の単位時間(秒)についての沈降距離を測定して沈降速
度とした。この沈降速度は大きいほど好ましく、また使
用ごとの速度の低下が小さいほど工業的に優れたもので
ある。
[Precipitation of Catalyst Particles] 5 g of a catalyst was placed in a 50 ml graduated cylinder equipped with a stopper, and the volume was adjusted to 50 ml with water. The sedimentation distance for time (seconds) was measured and defined as the sedimentation velocity. The higher the sedimentation speed, the better, and the smaller the decrease in speed after each use, the better industrially.

【0026】これらの評価試験の結果を下掲表1にまと
めて示す。なお、上記粒度分布においては、活性試験の
前後の粒子径を測定し対比して示した。
The results of these evaluation tests are summarized in Table 1 below. In the particle size distribution, the particle sizes before and after the activity test were measured and shown in comparison.

【0027】[0027]

【表1】 [Table 1]

【0028】上表より明らかなように、本発明の方法で
製造され、提供される球状ラネ−触媒は、従来の粉砕法
及びアトマイズ法によって得られた従来のラネ−触媒に
比べて粒径10μm未満の微粉状粒子が極めて少なく、沈
降速度が格段に早いという利点を有する。また、本発明
に係る球状ラネ−合金触媒は、従来のものに比べて総体
的に粒径が大きく表面積が小さいのもかかわらず、主と
して20〜50μmの粒径範囲にコントロ−ルされたシャ−
プな粒度分布を有し、従来品より遥かに高い触媒活性値
を示す実用性と操作性の優れたものであり、従来知られ
たラネ−合金触媒よりも有機化学還元触媒として顕著に
改善された触媒活性を有するものであることが理解でき
る。
As is clear from the above table, the spherical Raney catalyst produced and provided by the method of the present invention has a particle size of 10 μm compared to the conventional Raney catalyst obtained by the conventional pulverization method and the atomization method. It has the advantage that the amount of finely divided particles is extremely small and the sedimentation speed is extremely high. In addition, the spherical Raney alloy catalyst according to the present invention has a large particle size and a small surface area as compared with conventional ones, but is controlled mainly in a particle size range of 20 to 50 μm.
It has excellent practicality and operability, showing a much higher catalytic activity value than conventional products, and is remarkably improved as an organic chemical reduction catalyst over conventionally known Raney alloy catalysts. It can be understood that the catalyst has the same catalytic activity.

【0029】[0029]

【発明の効果】本発明の方法は、実質的に球状で、その
球状粒子の径が高度にコントロ−ルされた緻密な組織を
持つ触媒用ラネ−合金を効果的に得ることができる。こ
れを展開して得られるラネ−触媒は、特に流動床用とし
て望ましいものであり、従って、本発明の工業的有用性
は極めて高い。
According to the method of the present invention, it is possible to effectively obtain a catalytic alloy having a substantially spherical shape and a dense structure in which the diameter of the spherical particles is controlled to a high degree. The Raney catalyst obtained by developing this is particularly desirable for a fluidized bed, and therefore, the industrial utility of the present invention is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の実施状態を示す一例の装置の説
明用模式的断面図である。
FIG. 1 is a schematic cross-sectional view for explaining an example of an apparatus showing an embodiment of a method of the present invention.

【図2】実施例1で得られたラネ−銅合金の粒子構造を
示す電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing the particle structure of the Raney-copper alloy obtained in Example 1.

【図3】実施例1で得られたラネ−銅合金の粒度分布
(各粒径範囲とそれぞれの範囲に含まれる合金粒の重量
%)の棒グラフである。
FIG. 3 is a bar graph of the particle size distribution (each particle size range and the weight% of alloy particles included in each range) of the Raney-copper alloy obtained in Example 1.

【図4】その(a)図と(b)図は、従来の粉砕法及び
アトマイズ法によって造ったラネ−銅合金粉末の図2と
同様の顕微鏡写真である。
4 (a) and 4 (b) are micrographs similar to FIG. 2 of a Raney-copper alloy powder produced by a conventional pulverizing method and an atomizing method.

【図5】その(a)図と(b)図は、それぞれの粉末の
粒度分布の棒グラフである。
5 (a) and 5 (b) are bar graphs of the particle size distribution of each powder.

【図6】実施例3で得られたラネ−ニッケル系合金の粒
子構造を示す電子顕微鏡写真である。
FIG. 6 is an electron micrograph showing the particle structure of a Raney-nickel alloy obtained in Example 3.

【図7】実施例3で得られたラネ−ニッケル系合金の粒
度分布の棒グラフである。
FIG. 7 is a bar graph of the particle size distribution of the Raney-nickel alloy obtained in Example 3.

【図8】実施例4で得たラネ−銀合金粉末の粒子構造を
示す電子顕微鏡写真である。
FIG. 8 is an electron micrograph showing the particle structure of the Raney-silver alloy powder obtained in Example 4.

【図9】実施例4で得られたラネ−銀合金の粒度分布の
棒グラフである。
FIG. 9 is a bar graph of the particle size distribution of the Raney-Silver alloy obtained in Example 4.

【符号の説明】[Explanation of symbols]

1・・・チャンバ− 2・・・保持炉 3・・・合金融液 4・・・融液滴下孔 5・・・円盤 6,6'・・・モ−タ 7・・・循環ファン 8・・・案内板 9・・・ガス導入口 10・・・球状粒子取出口 DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Holding furnace 3 ... Synthetic liquid 4 ... Melt droplet lower hole 5 ... Disk 6, 6 '... Motor 7 ... Circulation fan 8. ..Guide plate 9 ... Gas inlet 10 ... Spherical particle outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長澤 実 埼玉県与野市上落合1177−1 ツインエ ル与野2−405 (72)発明者 岩谷 勝能 茨城県猿島郡総和町大字小堤1913−183 (56)参考文献 特開 平4−169561(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B22F 9/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Minoru Nagasawa 1177-1 Kamiochiai, Yono-shi, Saitama Prefecture Twinell 2-405 (72) Inventor Katsunori Iwatani 1913-183, Daiza-Kotsumi, Sowa-cho, Sarushima-gun, Ibaraki Prefecture (56) References JP-A-4-169561 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-37/36 B22F 9/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 触媒活性金属にアルミニウム又はシリコ
ンを含有せしめた合金の溶融液を、その合金の融点より
50〜150 ℃高い温度で、チャンバ−内の中央上方部に配
置された円盤の上方2〜20cmから、高速回転している
円盤の上面に滴下して、その回転遠心力により円盤外周
辺に飛散させ、飛散する微細液滴を不活性ガス雰囲気中
において冷却凝固させることを特徴とする粒径のコント
ロ−ルされた触媒用球状ラネ−合金の製造方法。
1. A melt of an alloy in which aluminum or silicon is contained in a catalytically active metal is melted from the melting point of the alloy.
At a high temperature of 50 to 150 ° C, place it in the upper center of the chamber.
Drops from 2 to 20 cm above the placed disk onto the top surface of the rotating disk at high speed, and the rotating centrifugal force causes the outer periphery of the disk
Is scattered to the side, the fine droplets that scatter of particle size, characterized in that to cool solidify in an inert gas atmosphere control - Le catalyst for spherical Raney - manufacturing method of the alloy.
【請求項2】 チャンバー内の円盤の下側に鉛直方向に
円筒状案内板が取り付けられ、その内側に配置された循
環ファンによって不活性ガスを上昇させ、高速回転して
いる円盤に向けて安定な冷却用ガス流が提供される請求
項1に記載の触媒用球状ラネー合金の製造方法。
2. A cylindrical guide plate is mounted vertically below the disk in the chamber, and the inert gas is raised by a circulating fan disposed inside the disk, thereby stabilizing the disk toward a high-speed rotating disk. The method for producing a spherical Raney alloy for a catalyst according to claim 1, wherein a cooling gas flow is provided.
【請求項3】 合金が、ニッケル,コバルト,鉄,銅,
銀並びにルテニウムより成る群から選択される少なくと
も一種の触媒活性金属30〜60重量%と、クロム,鉄,モ
リブデン,タングステン並びに錫より成る群から選択さ
れる少なくとも一種の助触媒金属0〜10重量%及び残部
がアルミニウム又はシリコンとから成る請求項1に記載
の触媒用球状ラネー合金の製造方法。
3. The alloy according to claim 1, wherein the alloy is nickel, cobalt, iron, copper,
30-60% by weight of at least one catalytically active metal selected from the group consisting of silver and ruthenium and 0-10% by weight of at least one promoter metal selected from the group consisting of chromium, iron, molybdenum, tungsten and tin 2. The method for producing a spherical Raney alloy for a catalyst according to claim 1, wherein the balance comprises aluminum or silicon.
JP20658491A 1991-07-23 1991-07-23 Method for producing spherical Raney alloy for catalyst Expired - Lifetime JP3293846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20658491A JP3293846B2 (en) 1991-07-23 1991-07-23 Method for producing spherical Raney alloy for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20658491A JP3293846B2 (en) 1991-07-23 1991-07-23 Method for producing spherical Raney alloy for catalyst

Publications (2)

Publication Number Publication Date
JPH0523597A JPH0523597A (en) 1993-02-02
JP3293846B2 true JP3293846B2 (en) 2002-06-17

Family

ID=16525825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20658491A Expired - Lifetime JP3293846B2 (en) 1991-07-23 1991-07-23 Method for producing spherical Raney alloy for catalyst

Country Status (1)

Country Link
JP (1) JP3293846B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054991B2 (en) 2008-04-17 2011-11-08 Panasonic Corporation Sound pickup apparatus and conference telephone
WO2016045584A1 (en) * 2014-09-28 2016-03-31 长春美禾科技发展有限公司 Acid-resistant alloy catalyst
US10464870B2 (en) 2014-09-28 2019-11-05 The Coca-Cola Company Methods for preparing diol

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753501A1 (en) * 1997-12-03 1999-06-10 Bayer Ag Raney nickel catalysts, a process for their preparation and their use for the hydrogenation of organic compounds
US6309758B1 (en) * 1999-05-06 2001-10-30 W. R. Grace & Co.-Conn. Promoted porous catalyst
JP4960551B2 (en) * 2001-04-17 2012-06-27 有限会社 ナプラ A method for producing fine spherical metal particles.
JP5129418B2 (en) * 2001-05-28 2013-01-30 有限会社 ナプラ Plastic magnet
CN103153452B (en) 2011-01-31 2015-05-20 三菱瓦斯化学株式会社 Oxygen absorber and method for storing same
JP5288079B1 (en) 2011-11-15 2013-09-11 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition, oxygen-absorbing multilayer body, and oxygen-absorbing hollow container
WO2014014083A1 (en) 2012-07-20 2014-01-23 三菱瓦斯化学株式会社 Method for producing resin composition containing active particles
WO2014021430A1 (en) 2012-08-02 2014-02-06 三菱瓦斯化学株式会社 Method for producing oxygen absorber
EP2883607A4 (en) 2012-08-08 2016-03-30 Mitsubishi Gas Chemical Co Oxygen absorbent
JP6097600B2 (en) * 2013-03-08 2017-03-15 日興リカ株式会社 Sponge metal catalyst and method for producing the same
KR20160074452A (en) 2013-10-22 2016-06-28 미츠비시 가스 가가쿠 가부시키가이샤 Method for storing oxygen absorber
CN108697972A (en) 2016-03-30 2018-10-23 三菱瓦斯化学株式会社 The store method of oxygen absorber composition, oxygen-absorbing multilayer body, oxygen uptake packing container and article
CN111283209A (en) * 2019-12-24 2020-06-16 南京超旭节能科技有限公司 Processing method for catalyst alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054991B2 (en) 2008-04-17 2011-11-08 Panasonic Corporation Sound pickup apparatus and conference telephone
WO2016045584A1 (en) * 2014-09-28 2016-03-31 长春美禾科技发展有限公司 Acid-resistant alloy catalyst
US10464870B2 (en) 2014-09-28 2019-11-05 The Coca-Cola Company Methods for preparing diol
US10556226B2 (en) 2014-09-28 2020-02-11 The Coca-Cola Company Acid-resistant alloy catalyst
US10940465B2 (en) 2014-09-28 2021-03-09 The Coca-Cola Company Acid-resistant alloy catalyst
US11104629B2 (en) 2014-09-28 2021-08-31 The Coca-Cola Company Methods for preparing diol
US11746074B2 (en) 2014-09-28 2023-09-05 Changchun Meihe Science And Technology Development Co., Ltd Methods for preparing diol

Also Published As

Publication number Publication date
JPH0523597A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP3293846B2 (en) Method for producing spherical Raney alloy for catalyst
JPH0747787B2 (en) Method for producing titanium powder or titanium composite powder
US4705560A (en) Process for producing metallic powders
US4783216A (en) Process for producing spherical titanium based powder particles
US4778515A (en) Process for producing iron group based and chromium based fine spherical particles
US5817855A (en) Copper-based catalysts, processes for their production and their use and a process for the production of alkyl halosilanes
US4687510A (en) Method for making ultrafine metal powder
US4435342A (en) Methods for producing very fine particle size metal powders
US4836850A (en) Iron group based and chromium based fine spherical particles
US3368004A (en) Forming balls from powder
US3397057A (en) Method for producing flowable metal powders
US3995815A (en) Production of flaked metallic powders
US4943322A (en) Spherical titanium based powder particles
US3660544A (en) Process for producing sized ferroalloy particles
JPH0149769B2 (en)
US4405535A (en) Preparation of rapidly solidified particulates
US4923509A (en) Spherical light metal based powder particles and process for producing same
CA1105295A (en) Nickel and cobalt irregularly shaped granulates
JPH0514779B2 (en)
US3481714A (en) Flowable metal powders
US3797978A (en) Apparatus for producing sized ferroalloy particles
US3241948A (en) Aluminous metal particles
Dixon Atomizing molten metals—a review
US3954461A (en) Process for the production of low apparent density water atomized steel powders
JPH07197110A (en) Production of spherical raney copper alloy for catalyst and production of copper catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10