JP3284028B2 - Dialysis machine - Google Patents

Dialysis machine

Info

Publication number
JP3284028B2
JP3284028B2 JP22684195A JP22684195A JP3284028B2 JP 3284028 B2 JP3284028 B2 JP 3284028B2 JP 22684195 A JP22684195 A JP 22684195A JP 22684195 A JP22684195 A JP 22684195A JP 3284028 B2 JP3284028 B2 JP 3284028B2
Authority
JP
Japan
Prior art keywords
dialysate
hollow fiber
flow path
dialyzer
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22684195A
Other languages
Japanese (ja)
Other versions
JPH08192031A (en
Inventor
真吾 竹沢
範行 細矢
正富 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP22684195A priority Critical patent/JP3284028B2/en
Publication of JPH08192031A publication Critical patent/JPH08192031A/en
Application granted granted Critical
Publication of JP3284028B2 publication Critical patent/JP3284028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透析器に関するも
のである。詳しく述べると、例えば血液浄化療法におい
て使用される中空糸膜型透析器に関するものである。
[0001] The present invention relates to a dialyzer. More specifically, the present invention relates to a hollow fiber membrane dialyzer used in blood purification therapy, for example.

【0002】[0002]

【従来の技術】血液浄化療法において、血液と透析液と
の間で大量液置換をする方法としては、血液透析濾過
法、オンライン血液透析濾過法(Henderson,L.W.et al:
Trans.Am.Soc.Artif.Intern.Organs 24 465-467(197
8))およびプッシュアンドプル血液透析濾過法(Usuda,
M.et al:Trans.Am.Soc.Artif.Intern.Organs 28 24-27
(1982))が知られている。
2. Description of the Related Art In blood purification therapy, methods for replacing a large amount of liquid between blood and dialysate include hemodiafiltration and online hemodiafiltration (Henderson, LW et al:
Trans.Am.Soc.Artif.Intern.Organs 24 465-467 (197
8)) and push and pull hemodiafiltration (Usuda,
M. et al: Trans.Am.Soc.Artif.Intern.Organs 28 24-27
(1982)).

【0003】前記血液透析濾過法において大量液置換を
行うには、透析液の他に大量のパイロジェンフリーの置
換液を必要とするが、この置換液の作製には手間と時間
がかかり、また、置換液は高価であるため、コストも高
い。
[0003] In the hemodiafiltration method, a large amount of replacement liquid requires a large amount of a pyrogen-free replacement liquid in addition to the dialysate. However, preparation of this replacement liquid requires time and effort, and Since the replacement liquid is expensive, the cost is high.

【0004】一方、前記オンライン血液透析濾過法およ
び前記プッシュアンドプル血液透析濾過法では、透析液
を置換液として用いるので、上記欠点は生じない。しか
しながら、オンライン血液透析濾過法では、透析液回路
から透析液の一部を取り出し、これを血液体外循環回路
中に供給するための専用の装置を必要とし、また、プッ
シュアンドプル血液透析濾過法では、血液と透析液との
限外濾過の方向を経時的に変更するために、透析液回路
の途中に、正転/逆転可能なポンプと透析液貯留容器と
を有する透析液供給・回収ラインを分岐して設ける必要
がある。従って、いずれの場合にも、別途に専用の装置
を付加する必要があり、回路構成が複雑となるという欠
点がある。
On the other hand, the above-mentioned drawbacks do not occur in the on-line hemodiafiltration method and the push-and-pull hemodiafiltration method because a dialysate is used as a replacement liquid. However, the online hemodiafiltration method requires a special device for removing a part of the dialysate from the dialysate circuit and supplying it to the extracorporeal blood circulation circuit. In order to change the direction of ultrafiltration of blood and dialysate with time, a dialysate supply / recovery line having a forward / reverse pump and a dialysate reservoir is provided in the dialysate circuit. It is necessary to provide a branch. Therefore, in any case, it is necessary to separately add a dedicated device, and there is a disadvantage that the circuit configuration becomes complicated.

【0005】他方、筒体の内部に多数の毛細管が血液の
流通口に連絡されて集束状態で収められ、上記筒体の内
径はこの筒体の略中央部において他の部分よりも径小に
狭められ、筒体内の毛細管の集束状態が、筒体の内径が
径小に狭められた部位において他の部位より密にされた
透析器(実公昭56−22911号)が知られている。
On the other hand, a large number of capillaries are stored in a concentrated state by being connected to a blood circulation port inside the cylindrical body, and the inner diameter of the cylindrical body is smaller at the approximate center of the cylindrical body than at other portions. There is known a dialyzer (Japanese Utility Model Publication No. Sho 56-22911) in which a capillary is narrowed and a focused state of a capillary in a cylinder is made denser at a portion where the inner diameter of the cylinder is narrowed to a smaller diameter than at other portions.

【0006】しかしながら、このように筒状体の内径が
縮径されているということは、中空糸膜の集束の外周部
が縮径部を構成する硬い筒状体の突条で押圧されること
になるので、該集束外周部付近の中空糸膜が歪み、ま
た、該集束の芯部では充填率が変わらない、すなわち、
中空糸膜同士の間隙が変わらないという欠点があった。
However, the fact that the inner diameter of the cylindrical body is reduced as described above means that the outer peripheral portion of the bundle of the hollow fiber membrane is pressed by the ridge of the hard cylindrical body constituting the reduced diameter portion. Therefore, the hollow fiber membrane near the outer periphery of the bundle is distorted, and the filling rate does not change at the core of the bundle, that is,
There is a disadvantage that the gap between the hollow fiber membranes does not change.

【0007】また、前記縮径部のために中空糸膜の集束
の筒状体への挿入が困難なため組付作業に長時間を要
し、コストアップとなるという欠点もあった。
[0007] In addition, since it is difficult to insert the bundle of hollow fiber membranes into the cylindrical body due to the reduced diameter portion, the assembling operation requires a long time, resulting in an increase in cost.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、新規な透析器を提供することにある。
Accordingly, an object of the present invention is to provide a new dialyzer.

【0009】本発明の他の目的は、専用の装置を必要と
せずに、簡単な構成で大量液置換の血液透析が可能な透
析器提供することにある。
Another object of the present invention is to provide a dialyzer capable of performing hemodialysis with a large amount of liquid replacement with a simple configuration without requiring a dedicated device.

【0010】本発明のさらに他の目的は、組付が簡単な
ため製造の容易な透析器を提供することにある。
Still another object of the present invention is to provide a dialyzer which is easy to assemble and therefore easy to manufacture.

【0011】[0011]

【課題を解決するための手段】上記諸目的は、筒状のハ
ウジング内に、中空糸膜の束と、該中空糸膜で隔てられ
た第1の流路および第2の流路を有し、該中空糸膜を介
して該第1の流路を流れる体液と、該第2の流路を流れ
る透析液との間で透析および限外濾過を行う透析器であ
って、透析液膨潤性を有する材料を用いて該第2の流路
の途中に狭窄部を設け、該狭窄部の透析液上流側と下流
側とで該透析液に圧力差が生じるように構成されてなる
透析器により達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cylindrical housing having a bundle of hollow fiber membranes, and a first flow path and a second flow path separated by the hollow fiber membrane. A dialyzer for performing dialysis and ultrafiltration between a bodily fluid flowing through the first flow path through the hollow fiber membrane and a dialysate flowing through the second flow path, wherein the dialysate has a swelling property. A stenosis portion is provided in the middle of the second flow path by using a material having a dialysis fluid having a pressure difference between the dialysis fluid upstream and downstream of the stenosis portion. Achieved.

【0012】本発明はまた、該狭窄部の透析液上流で
は、該第2の流路を流れる透析液の圧力は、該第1の流
路を流れる体液の圧力より高く、かつ該狭窄部の透析液
下流側では、該第2の流路を流れる透析液の圧力は、該
第1の流路を流れる体液の圧力より低くなるように設定
されてなる前記透析器である。本発明はさらに、該狭窄
部は、該中空糸膜の束の外周部と該ハウジングの内面と
の間に狭窄部形成部材を介挿することにより形成されて
なる前記透析器である。本発明は、該狭窄部は該中空糸
膜同士の間隙に狭窄部形成部材を介挿することにより形
成されてなる前記透析器である。本発明はまた、該透析
液膨潤性を有する材料は、その含透析液率が10%以上
のものである前記透析器である。本発明はさらに、該第
1の流路を流れる体液からの除水量を調節する除水コン
トロール手段を有してなる前記透析器である。本発明は
さらに、該狭窄部形成部材が透析液膨潤性である前記透
析器である。本発明はまた、該中空糸膜の狭窄部におけ
る充填率が狭窄部以外における充填率に対して105か
ら200%である前記透析器である。
In the present invention, the pressure of the dialysate flowing through the second flow path is higher than the pressure of the body fluid flowing through the first flow path upstream of the dialysate in the constriction, and On the downstream side of the dialysate, the dialyzer is configured so that the pressure of the dialysate flowing through the second flow path is set lower than the pressure of the body fluid flowing through the first flow path. The present invention is the dialyzer, wherein the stenosis portion is formed by interposing a stenosis portion forming member between an outer peripheral portion of the hollow fiber membrane bundle and an inner surface of the housing. The present invention is the dialyzer, wherein the stenosis portion is formed by inserting a stenosis portion forming member into a gap between the hollow fiber membranes. The present invention is also the dialyzer wherein the material having swelling property of the dialysate has a dialysate content of 10% or more. The present invention is the dialyzer further comprising water removal control means for adjusting a water removal amount from a body fluid flowing through the first flow path. The present invention is the dialyzer, wherein the stenosis forming member is swellable with a dialysate. The present invention is also the dialyzer, wherein the filling rate of the hollow fiber membrane in the constricted portion is 105 to 200% of the filling ratio in the portion other than the constricted portion.

【0013】[0013]

【発明の実施形態】以下、本発明の透析器を図面を参照
しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A dialyzer according to the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の透析器を含む血液体外循
環回路の構成例を模式的に示す回路構成図である。同図
に示すように、血液体外循環回路10は、脱血ライン1
1Aと透析器1と、返血ライン11Bと、除水コントロ
ール手段17とを有している。
FIG. 1 is a circuit diagram schematically showing a configuration example of a blood extracorporeal circuit including the dialyzer of the present invention. As shown in FIG. 1, the extracorporeal blood circulation circuit 10 includes a blood removal line 1.
1A, a dialyzer 1, a blood return line 11B, and a water removal control unit 17.

【0015】脱血ライン11Aは、チューブ12と、該
チューブ12の途中に設置された送血用のポンプ13お
よび除泡用のチャンバー14で構成されており、脱血ラ
イン11Aの一端は、針管を介して患者の動脈に接続さ
れ、他端は、透析器1の血液流入口34に接続されてい
る。
The blood removal line 11A comprises a tube 12, a blood supply pump 13 and a defoaming chamber 14 installed in the tube 12, and one end of the blood removal line 11A is connected to a needle tube. And the other end is connected to the blood inlet 34 of the dialyzer 1.

【0016】また、返血ライン11Bは、チューブ15
と、該チューブ15の途中に設置された除泡用のチャン
バー16とで構成されており、返血ライン11Bの一端
は、針管を介して患者の静脈に接続されている。
The blood return line 11B is connected to a tube 15
And a defoaming chamber 16 installed in the middle of the tube 15, and one end of the blood return line 11B is connected to a patient's vein via a needle tube.

【0017】除水コントロール手段17は、一端が透析
器1の透析液流入口36に接続されたチューブ18と、
一端が透析器1の透析液流出口37に接続されたチュー
ブ19と、透析液をチューブ18および19内にそれぞ
れ同流量でかつ反対方向に送液する複式ポンプ20と、
複式ポンプ20を迂回するようにその両端がチューブ1
9に接続されたバイパスチューブ21と、バイパスチュ
ーブ21の途中に設けられた除水ポンプ22とで構成さ
れている。
The water removal control means 17 includes a tube 18 having one end connected to a dialysate inlet 36 of the dialyzer 1,
A tube 19 having one end connected to the dialysate outlet 37 of the dialyzer 1, a double pump 20 for feeding dialysate into the tubes 18 and 19 at the same flow rate and in opposite directions, respectively;
Tubes 1 at both ends to bypass double pump 20
9, and a water removal pump 22 provided in the middle of the bypass tube 21.

【0018】なお、前記ポンプ13としては、ローラー
ポンプが好適に使用される。
As the pump 13, a roller pump is preferably used.

【0019】複式ポンプ20は、モーターの回転運動を
プランジャーの往復運動に変換し、逆止弁機構により透
析液および透析液排液の受入・排出を交互に行う構成の
ものである。
The dual pump 20 converts the rotational motion of the motor into a reciprocating motion of the plunger, and alternately receives and discharges dialysate and dialysate drainage by a check valve mechanism.

【0020】除水ポンプ22は、モーターの回転運動を
プランジャーの往復運動に変換し、シリンダー内の透析
液排液を一定方向に送り出す構成のものである。
The water removal pump 22 is configured to convert the rotational movement of the motor into the reciprocating movement of the plunger and to send out the dialysate drainage in the cylinder in a certain direction.

【0021】次に、血液体外循環回路10の作用につい
て説明する。
Next, the operation of the extracorporeal blood circulation circuit 10 will be described.

【0022】ポンプ13の作動により、患者より脱血さ
れた血液は、脱血ライン11Aを流れ、一端チャンバー
14に貯留されて除泡された後、血液流入口34より透
析器1内に流入する。血液流出口35より流出した血液
は、返血ライン11Bを流れ、一端チャンバー16に貯
留されて除泡された後、患者に返血される。
The blood removed from the patient by the operation of the pump 13 flows through the blood removal line 11A, is once stored in the chamber 14 and defoamed, and then flows into the dialyzer 1 from the blood inlet 34. . The blood flowing out from the blood outlet 35 flows through the blood return line 11B, is stored in the chamber 16 once, is defoamed, and is returned to the patient.

【0023】一方、複式ポンプ20の作動により、図示
しない透析液貯留部より供給される透析液は、チューブ
18内を流れ、透析液流入口36より透析液1のハウジ
ング3内に導入され、ハウジング3の内部において各中
空糸膜41を介して血液との間で後述するように透析お
よび濾過が行われ、透析液流出口37より排出される。
この排出された透析液は、チューブ19を介して移送さ
れ、回収される。このとき、除水ポンプ22を所定の回
転数で作動させると、透析器1への透析液供給量と、透
析液1からの透析液回収量とに除水ポンプ22の吐出量
に相当する分の差異が生じ、この量が透析液1を通過す
る血液からの除水量となる。従って、除水ポンプ22の
回転数(吐出量)を調節することにより、除水量を調節
することができる。
On the other hand, by the operation of the double pump 20, dialysate supplied from a dialysate reservoir (not shown) flows through the tube 18 and is introduced into the housing 3 of the dialysate 1 through the dialysate inlet 36. As described later, dialysis and filtration are performed with the blood through the hollow fiber membranes 41 in the inside of the filter 3, and the dialysis solution is discharged from the dialysate outlet 37.
The discharged dialysate is transferred via the tube 19 and collected. At this time, when the water removal pump 22 is operated at a predetermined rotation speed, the amount of dialysate supplied to the dialyzer 1 and the amount of dialysate recovered from the dialysate 1 are reduced by the amount corresponding to the discharge amount of the water removal pump 22. This amount is the amount of water removed from the blood passing through the dialysate 1. Therefore, by adjusting the rotation speed (discharge amount) of the water removal pump 22, the water removal amount can be adjusted.

【0024】図2は、本発明の透析器1の一実施態様を
示す縦断面図である。同図に示すように、透析器1は筒
状本体31と、その両端にカバー38および39により
それぞれ液密に接続、固定されたヘッダー32および3
3とで構成されるハウジング3を有する。ヘッダー32
の頂部には、血液流入口34が突出形成され、ヘッダー
33の頂部には、血液流出口35が突出形成されてい
る。また、筒状本体31のヘッダー33側の側部には、
透析液流入口36が突出形成され、筒状本体31のヘッ
ダー32側の側部には、透析液流出口37が突出成形さ
れている。
FIG. 2 is a longitudinal sectional view showing one embodiment of the dialyzer 1 of the present invention. As shown in the figure, the dialyzer 1 has a cylindrical main body 31 and headers 32 and 3 which are connected and fixed to both ends thereof in a liquid-tight manner by covers 38 and 39, respectively.
3 and a housing 3. Header 32
A blood inflow port 34 protrudes from the top of the header 33, and a blood outflow port 35 protrudes from the top of the header 33. Also, on the side of the cylindrical body 31 on the header 33 side,
A dialysate inflow port 36 is formed so as to protrude, and a dialysate outflow port 37 is formed so as to protrude from the side of the cylindrical body 31 on the header 32 side.

【0025】筒状本体31、ヘッダー32、および3
3、およびカバー38、39は、例えば、ポリエチレ
ン、ポリプロピレン、ポリカーボネート、ポリメチルメ
タクリレート、アクリル系樹脂、硬質ポリ塩化ビニル、
スチレン−ブタジエン共重合体樹脂、ポリスチレン等の
各種硬質樹脂で構成されており、内部の視認性を確保す
るために、透明または半透明であるのが好ましい。ま
た、血液の入側と出側の区別を容易にするために、ヘッ
ダー32とカバー33を異なる色に着色してもよい。
The cylindrical body 31, the headers 32 and 3
3, and the covers 38 and 39 are made of, for example, polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, acrylic resin, hard polyvinyl chloride,
It is made of various hard resins such as styrene-butadiene copolymer resin and polystyrene, and is preferably transparent or translucent to secure the visibility inside. Further, the header 32 and the cover 33 may be colored in different colors in order to easily distinguish between the blood entry side and the blood entry side.

【0026】ハウジング3内には、そのほぼ全長にわた
り、中空糸膜41の束4が収納されている。この場合、
束4を構成する中空糸膜41は、例えば、100〜7
0,000本程度であり、各中空糸膜41は、ハウジン
グ3の長手方向に沿って並列的にかつ相互に離間して配
置されている。
A bundle 4 of hollow fiber membranes 41 is housed in the housing 3 over substantially the entire length thereof. in this case,
The hollow fiber membranes 41 constituting the bundle 4 are, for example, 100 to 7
The number of hollow fiber membranes is about 0000, and the hollow fiber membranes 41 are arranged in parallel and separated from each other along the longitudinal direction of the housing 3.

【0027】中空糸膜41としては、例えば、再生セル
ロース、セルロース誘導体、ポリメチルメタクリレー
ト、ポリエチレン、ポリプロピレンのようなポリオレフ
ィン、ポリスルフォン、ポリアクリロニトリル、ポリア
ミド、ポリイミド、ポリエーテルナイロン、シリコー
ン、ポリテトラフルオロエチレン、ポリエステル系ポリ
マーアロイで構成されるものが挙げられる。
Examples of the hollow fiber membrane 41 include regenerated cellulose, cellulose derivatives, polyolefins such as polymethyl methacrylate, polyethylene and polypropylene, polysulfone, polyacrylonitrile, polyamide, polyimide, polyether nylon, silicone and polytetrafluoroethylene. And polyester-based polymer alloys.

【0028】また、全中空糸膜41の有効膜面積は、特
に限定されないが、好ましくは、100cm2〜6.0m2
程度、より好ましくは、0.2〜2.0m2程度とされ
る。各中空糸膜41の両端部は、それぞれ、筒状本体3
1の端部において、中空糸膜41の端部開口が閉塞され
ない状態で、隔壁51および52により液密に支持固定
されている。
The effective membrane area of the entire hollow fiber membrane 41 is not particularly limited, but is preferably 100 cm 2 to 6.0 m 2.
Degree, more preferably about 0.2 to 2.0 m2. Both ends of each hollow fiber membrane 41 are respectively connected to the cylindrical main body 3.
At one end, the hollow fiber membrane 41 is liquid-tightly supported and fixed by the partition walls 51 and 52 in a state where the end opening of the hollow fiber membrane 41 is not closed.

【0029】隔壁51および52は、例えばポリウレタ
ン、シリコーン、エポキシ樹脂のようなポッティング材
で構成され、中空糸膜41の束4の存在下で、液状のポ
ッティング材を遠心注入法により筒状本体31の両端部
に注入し、硬化させることにより形成される。
The partition walls 51 and 52 are made of a potting material such as polyurethane, silicone or epoxy resin. In the presence of the bundle 4 of the hollow fiber membranes 41, the liquid potting material is centrifugally injected into the cylindrical main body 31. Is formed by injecting into both ends and curing.

【0030】ヘッダー32と隔壁51とで囲まれる空間
には、血液流入室61が形成され、ヘッダー33と隔壁
52とで囲まれる空間には、血液流出室62が形成され
ている。各中空糸膜41の内腔(中空部)には、血液が
流れる第1の流路(血液流路)6が形成されており、該
第1の流路6の両端は、それぞれ、前記血液流入室61
および血液流出室62に連通している。
A blood inflow chamber 61 is formed in a space surrounded by the header 32 and the partition wall 51, and a blood outflow chamber 62 is formed in a space surrounded by the header 33 and the partition wall 52. A first flow path (blood flow path) 6 through which blood flows is formed in the inner cavity (hollow portion) of each hollow fiber membrane 41, and both ends of the first flow path 6 are respectively connected to the blood. Inflow chamber 61
And the blood outflow chamber 62.

【0031】また、ハウジング3の筒状本体31と、両
隔壁51および52とで囲まれる空間において、中空糸
膜41の束4と筒状本体31の内周面との間隙および隣
接する中空糸膜41同士の間隙には、透析液が流れる第
2の流路(透析液流路)7が形成されている。すなわ
ち、前記第1の流路6と第2の流路7とは、各中空糸膜
41で隔てられている。第2の流路7の上流側は、透析
液入口36に連通し、下流側は、透析液出口37に連通
している。
In the space surrounded by the cylindrical body 31 of the housing 3 and the partition walls 51 and 52, the gap between the bundle 4 of the hollow fiber membranes 41 and the inner peripheral surface of the cylindrical body 31 and the adjacent hollow fiber In the gap between the membranes 41, a second flow path (dialysate flow path) 7 through which the dialysate flows is formed. That is, the first flow path 6 and the second flow path 7 are separated by each hollow fiber membrane 41. The upstream side of the second flow path 7 communicates with the dialysate inlet 36, and the downstream side communicates with the dialysate outlet 37.

【0032】このような構成により、血液流入口34か
ら血液流入室61に流入した血液は、第1の流路6を流
れた後、血液流出室62に集められ、血液流出口35か
ら流出し、一方、透析液流入口36から流入した透析液
は、第2の流路7を前記血液の流れとは反対方向に流れ
(カウンターフロー)、透析液流出口37より流出す
る。
With such a configuration, the blood that has flowed into the blood inflow chamber 61 from the blood inflow port 34 flows through the first flow path 6, is collected in the blood outflow chamber 62, and flows out of the blood outflow port 35. On the other hand, the dialysate flowing from the dialysate inlet 36 flows through the second flow path 7 in a direction opposite to the blood flow (counter flow), and flows out from the dialysate outlet 37.

【0033】第2の流路7の途中には、該流路の横断面
積が減少する狭窄部8が設けられており、該狭窄部8よ
り透析液上流側71と透析液下流側72とで第2の流路
7を流れる透析液の圧力に所望の差を生じるよう構成さ
れている。
In the middle of the second flow path 7, there is provided a constriction 8 having a reduced cross-sectional area of the flow path, and a dialysate upstream side 71 and a dialysate downstream side 72 from the constriction 8. It is configured to generate a desired difference in the pressure of the dialysate flowing through the second flow path 7.

【0034】図3は、第1の流路6を流れる血液および
第2の流路7を流れる透析液の圧力分布を示すグラフで
ある。同図に示すように、第1の流路6を流れる血液
は、その上流から下流に向けてその圧力がほぼ直線的に
減少し、一方、第2の流路7を流れる透析液の圧力は、
狭窄部8より透析液上流側71では、第1の流路6の対
応する部位における血液の圧力より高くなり、狭窄部8
より透析液下流側72では、第1の流路6の対応する部
位における血液の圧力より低くなる。
FIG. 3 is a graph showing the pressure distribution of the blood flowing through the first flow path 6 and the dialysate flowing through the second flow path 7. As shown in the figure, the pressure of the blood flowing through the first flow path 6 decreases almost linearly from upstream to downstream, while the pressure of the dialysate flowing through the second flow path 7 is ,
On the upstream side 71 of the dialysis fluid from the stenosis portion 8, the pressure becomes higher than the blood pressure in the corresponding portion of the first flow path 6,
On the downstream side 72 of the dialysate, the pressure becomes lower than the blood pressure in the corresponding portion of the first flow path 6.

【0035】従って、第1の流路6を流れる血液は、ま
ず透析液下流側72において、各中空糸膜41を介して
透析(溶質の拡散)および限外濾過(除水)がなされ、
次いで透析液上流側71において、各中空糸膜41を介
して透析液側から血液側への逆方向の限外濾過(補液)
が行われる。
Therefore, the blood flowing through the first flow path 6 is first dialyzed (diffusion of solute) and ultrafiltered (dewatered) through each hollow fiber membrane 41 on the downstream side of the dialysate 72.
Next, on the upstream side of the dialysate 71, ultrafiltration in the reverse direction from the dialysate side to the blood side via each hollow fiber membrane 41 (replacement fluid)
Is performed.

【0036】このように、透析液上流側71、すなわち
血液の下流側において補液を行うので、血液の上流側に
おいて血液側から透析液側への濾過量を増大させること
ができ、よって、血液と透析液との大量液置換が可能と
なる。しかも、このような大量液置換を、単一の透析器
1でかつ別途設けられた専用の装置等を用いることなく
行うことができる。
As described above, since the replacement fluid is performed on the dialysate upstream side 71, that is, on the downstream side of the blood, the amount of filtration from the blood side to the dialysate side can be increased on the upstream side of the blood. It is possible to replace a large amount of liquid with dialysate. In addition, such a large amount of liquid replacement can be performed with a single dialyzer 1 without using a dedicated device or the like separately provided.

【0037】なお、この場合、透析器1における限外濾
過率(純水濾過係数)は、水流量200ml/minのときに
20ml/m2・hr・mmHg以上であるのが好ましく、水流量3
00ml/minのときに30ml/m2・hr・mmHg以上であるのが
より好ましい。
In this case, the ultrafiltration rate (pure water filtration coefficient) in the dialyzer 1 is preferably not less than 20 ml / m 2 · hr · mmHg at a water flow rate of 200 ml / min.
More preferably, the pressure is 30 ml / m 2 · hr · mmHg or more when the flow rate is 00 ml / min.

【0038】このような狭窄部8は、例えば、中空糸膜
41の束4の外周とハウジング3の筒状本体31の内面
との間に狭窄部形成部材81を介挿することにより形成
されるか、または、中空糸膜41同士の間隙に狭窄部形
成部材81を介挿(充填)することにより形成される。
また、これらの両方を併用してもよい。
The constricted portion 8 is formed, for example, by inserting a constricted portion forming member 81 between the outer periphery of the bundle 4 of the hollow fiber membranes 41 and the inner surface of the cylindrical body 31 of the housing 3. Alternatively, it is formed by inserting (filling) a constricted portion forming member 81 into a gap between the hollow fiber membranes 41.
Moreover, you may use both of these together.

【0039】中空糸膜41同士の間隙に狭窄部形成部材
81を介挿する場合、束4の横断面方向における狭窄部
形成部材81の分布は、均一でも不均一(例えば、束4
の中心部が密、外周部が粗、あるいはその反対)でもよ
い。
When the constricted portion forming member 81 is interposed in the gap between the hollow fiber membranes 41, the distribution of the constricted portion forming member 81 in the cross-sectional direction of the bundle 4 is uniform or non-uniform (for example, the distribution of the bundle 4).
May be dense at the center and rough at the outer periphery, or vice versa.

【0040】これらの場合において使用し得る狭窄部形
成部材81としては、例えば、(架橋)ポリアクリル酸
塩または(架橋)アクリル酸−アクリル酸塩共重合体
(例えば、株式会社日本触媒製AQUALIC、荒川化
学工業株式会社製ARASORB、花王株式会社製WO
NDERGEL、製鉄化学工業株式会社製AQUAKE
EP、Dow Chemical社製D.W.A.
L.、National Starch社製PARMA
SORB、Stockausen社製FAVOR等)、
イソブチレン−マレイン酸共重合体(例えば、クラレ・
イソブチン株式会社製KI Gel)、デンプン−アク
リル酸グラフト共重合体またはそのケン化物(例えば、
三洋化成工業株式会社製SUNWET、Grain P
rocessing社製GPC、Henkel社製SG
P、Super Absorbent社製Magic W
ater Gel、Unilever社製LYOGEL
等)、酢酸ビニル−アクリル酸エステル共重合体ケン化
物(例えば、住友化学工業株式会社製SUMIKAGE
L)、酢酸ビニル−不飽和ジカルボン酸共重合体(例え
ば、日本合成化学工業製GP)、カルボキシメチルセル
ロース(例えば、Buckeye Cellulose
社製CLD、Enka社製AKUCELL等)、アクリ
ロニトリル繊維内芯とアクリル酸塩共重合体外層との複
合繊維(例えば東洋紡績株式会社製LANSEAL)等
がある。
As the constriction forming member 81 that can be used in these cases, for example, a (crosslinked) polyacrylate or a (crosslinked) acrylic acid-acrylate copolymer (for example, AQUALIC manufactured by Nippon Shokubai Co., Ltd., ARASORB manufactured by Arakawa Chemical Industry Co., Ltd., WO manufactured by Kao Corporation
NDERGEL, AQUAKE manufactured by Iron and Steel Chemical Industry Co., Ltd.
EP, manufactured by Dow Chemical Company. W. A.
L. PARMA manufactured by National Starch
SORB, Stockausen FAVOR, etc.),
Isobutylene-maleic acid copolymer (for example, Kuraray
KI Gel manufactured by Isobutin Co., Ltd., a starch-acrylic acid graft copolymer or a saponified product thereof (for example,
SUNWET, Grain P manufactured by Sanyo Chemical Industries, Ltd.
processing GPC, Henkel SG
P, Magic W manufactured by Super Absorbent
after Gel, LYOGEL manufactured by Uniever
Etc.), saponified vinyl acetate-acrylate copolymer (for example, SUMIKAGE manufactured by Sumitomo Chemical Co., Ltd.)
L), vinyl acetate-unsaturated dicarboxylic acid copolymer (for example, GP manufactured by Nippon Synthetic Chemical Industry), carboxymethylcellulose (for example, Buckeye Cellulose)
CLD, Enka's AKUCELL, etc.), and composite fibers of an acrylonitrile fiber inner core and an acrylate copolymer outer layer (for example, LANSEAL manufactured by Toyobo Co., Ltd.).

【0041】これらのうち、超吸水繊維であるアクリロ
ニトリル繊維内芯とアクリル酸塩共重合体外層との複合
繊維が最も好ましい。この超吸水繊維については東洋紡
績株式会社のカタログ「超吸水性繊維ランシールF」に
開示されている。
Among these, a composite fiber of an inner core of acrylonitrile fiber, which is a super absorbent fiber, and an outer layer of an acrylate copolymer is most preferable. The superabsorbent fiber is disclosed in Toyobo Co., Ltd. catalog "Lanseal F superabsorbent fiber".

【0042】狭窄部形成部材81として樹脂を用いる場
合、束4の外周と筒状本体31の内面との間や中空糸膜
41同士の間隙に部分的に樹脂を充填することにより狭
窄部8を形成することができ、狭窄部形成部材81とし
て繊維を用いる場合、束4の外周に繊維またはその集合
体を巻き付けたり、中空糸膜41の間隙に繊維またはそ
の集合体を編み込むことにより狭窄部8を形成すること
ができる。また、繊維にさらに樹脂を含浸、固定させて
もよい。
When a resin is used as the constricted portion forming member 81, the constricted portion 8 is formed by partially filling the resin between the outer periphery of the bundle 4 and the inner surface of the cylindrical main body 31 and the gap between the hollow fiber membranes 41. When fibers are used as the constricted portion forming member 81, the constricted portions 8 can be formed by winding the fibers or the aggregate thereof around the outer periphery of the bundle 4 or knitting the fibers or the aggregates in the gaps of the hollow fiber membranes 41. Can be formed. The fibers may be further impregnated with a resin and fixed.

【0043】さらに、束4を複数に分割し、その分割束
毎に前記と同様にして狭窄部形成部材81を設置し、狭
窄部8を構成してもよい。
Further, the bundle 4 may be divided into a plurality of parts, and the stenotic part forming member 81 may be provided for each of the divided bundles in the same manner as described above to form the stenotic part 8.

【0044】しかして、本発明による透析器において
は、該中空糸膜の狭窄部における充填率は、狭窄部以外
における充填率に対して105〜200%、好ましくは
120〜180%である。すなわち105%未満では、
狭窄部の上流側と下流側との圧力差が小さいため、液置
換効果を得ることが困難である。また、200%を越え
ると中空糸膜がつぶれてしまう可能性がある。
Thus, in the dialyzer according to the present invention, the filling rate of the hollow fiber membrane in the constricted portion is 105 to 200%, preferably 120 to 180%, with respect to the filling ratio in the portion other than the constricted portion. That is, if it is less than 105%,
Since the pressure difference between the upstream side and the downstream side of the constriction is small, it is difficult to obtain the liquid replacement effect. If it exceeds 200%, the hollow fiber membrane may be crushed.

【0045】なお、前記狭窄部形成部材81としては、
作製上の理由等から、透析液膨潤性(含透析液率)を有
する材料を用いるのが好ましく、さらにこれらの材料の
含透析液率は10重量%以上、好ましくは10〜2,6
00重量%、より好ましくは50〜2,000重量%で
ある。透析器内において透析液膨潤性材料に吸収される
のは水ではなく透析液である。透析液は多種のものが知
られている。異なる種類の透析液は、含透析液率が異な
る。透析液膨潤性材料の含透析液率は溶液のイオン強度
に影響を受けるが、通常使用されている透析液の1価お
よび2価イオンの濃度の差は僅かであるので、透析液が
代わっても重量増加率の違いは少ない。
The stenosis portion forming member 81 includes:
For reasons such as production, it is preferable to use a material having a swelling property of a dialysate (dialysis fluid content), and the dialysate content of these materials is 10% by weight or more, preferably 10 to 2,6.
00% by weight, more preferably 50 to 2,000% by weight. It is the dialysate, not the water, that is absorbed by the dialysate swellable material in the dialyzer. Various types of dialysate are known. Different types of dialysate have different rates of dialysate. Although the dialysate content of the dialysate swellable material is affected by the ionic strength of the solution, the difference between the monovalent and divalent ion concentrations of the commonly used dialysate is so small that the dialysate is replaced by the dialysate. The difference in the rate of weight increase is also small.

【0046】代表的な透析液の組成を表1に示す。The composition of a typical dialysate is shown in Table 1.

【0047】使用する透析液膨潤性材料の量と含透析液
率との関係は以下の式により表される。
The relationship between the amount of the dialysate swellable material used and the dialysate content is expressed by the following equation.

【0048】[0048]

【数1】 (Equation 1)

【0049】但し、ρは透析液の密度、Dhはハウジン
グ内径、D0は中空糸膜外径、Nは中空糸膜本数、ιは
狭窄部長さ、Hは含透析液率[(M'−m')/m']×1
00、M'は吸透析液時の透析液膨潤性材料の重量、m'
は透析液膨潤性材料の乾燥時の重量、mは透析液膨潤性
材料の重量である。
Where ρ is the density of the dialysate, Dh is the inner diameter of the housing, D0 is the outer diameter of the hollow fiber membrane, N is the number of hollow fiber membranes, ι is the length of the constriction, H is the dialysate-containing rate [(M'-m ') / M'] × 1
00, M 'is the weight of the dialysate swelling material at the time of the dialysate, m'
Is the weight of the dialysate swellable material when dried, and m is the weight of the dialysate swellable material.

【0050】なお、狭窄部長さιとモジュール有効長さ
Lとの関係は、次のとおりである。
The relationship between the length ι of the stenosis part and the effective length L of the module is as follows.

【0051】ι/L ≦ 1/3 また、透析液膨潤性材料の編み込みおよび塗布方法は、
つぎのとおりである。 (a)透析液膨潤性材料の編み込み方法 中空糸膜を1〜数十本程度の束の縦糸もしくは横糸と
し、透析液膨潤性繊維を横糸もしくは縦糸として、中空
糸膜中央部を一定の幅(中空糸膜有効長の1/3以下の
長さ)で織り込む。中空糸膜の中央部がすだれ状に編み
込まれた状態にある透析液膨潤性繊維の片端を内側に巻
き込み、すだれを巻き込むようにして中空糸膜の束を得
る。
Ι / L ≦ Also, the method of weaving and applying the dialysate swellable material is as follows:
It is as follows. (A) Method of knitting dialysate swellable material The hollow fiber membrane is a warp or a weft of about 1 to several tens bundles, the dialysate swellable fibers are a weft or a warp, and the center of the hollow fiber membrane has a certain width ( (A length of 1/3 or less of the effective length of the hollow fiber membrane). One end of the dialysate swellable fiber in a state where the central part of the hollow fiber membrane is woven in an interdigitated shape is wound inside, and a bundle of hollow fiber membranes is obtained by winding the interdigitated material.

【0052】(b)膨潤樹脂の塗布方法 中空糸膜を1〜数十本程度の束とし、該中空糸膜の束を
一方向に拡げ、中空糸膜中央部の一定の幅(中空糸膜有
効長の1/3以下の長さ)で透析液膨潤性樹脂を塗布す
る。透析液膨潤性樹脂が乾燥または硬化した状態で透析
液膨潤性樹脂の片端を内側に巻き込み、すだれを巻き込
むようにして中空糸膜の束を得る。
(B) Application method of swelling resin The hollow fiber membrane is made into a bundle of about 1 to several tens, and the bundle of the hollow fiber membranes is expanded in one direction, and a certain width (the hollow fiber membrane) at the center of the hollow fiber membrane is obtained. The dialysate swellable resin is applied to a length less than 1/3 of the effective length). With the dialysate swellable resin dried or cured, one end of the dialysate swellable resin is wrapped around the inside, and the blinds are wrapped around to obtain a bundle of hollow fiber membranes.

【0053】狭窄部8を介して透析液上流側71と透析
液下流側72における透析液の圧力差(圧力損失)の平
均値は、10〜100mmHg程度が好ましく、30〜70
mmHg程度がより好ましい。これにより前述したような血
液と透析液との大量液置換が効率的に行われる。このよ
うな圧力差を得るように狭窄部8の狭窄部形成部材81
の構成材料、配設密度、設置面積等を適宜調整する。
The average value of the pressure difference (pressure loss) between the dialysate upstream side 71 and the dialysate downstream side 72 through the constriction 8 is preferably about 10 to 100 mmHg, and 30 to 70 mmHg.
About mmHg is more preferable. As a result, the large-volume replacement of blood and dialysate as described above is efficiently performed. In order to obtain such a pressure difference, the narrowed portion forming member 81 of the narrowed portion 8 is formed.
The material, arrangement density, installation area, etc. of the above are appropriately adjusted.

【0054】第2の流路における狭窄部8の形成位置は
特に限定されないが、透析液上流側71の流路長と透析
液下流側72の流路長との比が2:1〜1:2程度であ
るのが好ましい。これにより前述したような血液と透析
液との大量液置換が効率的に行われる。なお、図示の構
成例では狭窄部8は第2の流路の長手方向中央部に形成
され透析液上流側71の流路長と透析液下流側72の流
路長とがほぼ等しく設定されている。
The position where the constriction 8 is formed in the second flow path is not particularly limited, but the ratio of the flow path length of the dialysate upstream side 71 to the flow path length of the dialysate downstream side 72 is 2: 1 to 1: It is preferably about 2. As a result, the large-volume replacement of blood and dialysate as described above is efficiently performed. In the illustrated configuration example, the stenosis portion 8 is formed at the center in the longitudinal direction of the second flow path, and the flow path length of the dialysate upstream side 71 and the flow path length of the dialysate downstream side 72 are set substantially equal. I have.

【0055】なお、本発明において狭窄部8の構成、形
成方法、特性等は前述したものに限定されず、狭窄部の
透析液上流側と透析液下流側とで透析液の圧力に差を生
じるようなものであればいかなるものでもよい。
In the present invention, the configuration, forming method, characteristics, and the like of the stenosis portion 8 are not limited to those described above, and a difference in dialysate pressure occurs between the dialysis solution upstream side and the dialysis solution downstream side of the stenosis portion. Anything may be used as long as it is such.

【0056】また、上記実施例では透析器1により血液
の処理を行っているが、処理する体液は例えば血漿のよ
うな血液成分であってもよい。
In the above embodiment, the blood is processed by the dialyzer 1, but the body fluid to be processed may be a blood component such as plasma.

【0057】以下、本発明の透析器を実施例を挙げて詳
述する。
Hereinafter, the dialyzer of the present invention will be described in detail with reference to examples.

【0058】[0058]

【実施例1】外径280μm及び内径200μmのポリス
ルホン中空糸膜約5,000本の束(有効膜面積0.5
m2)を用意し、その長手方向中央部の外周にアクリロニ
トリル繊維内層とアクリル酸塩共重合体外層との複合繊
維よりなる吸透析液性繊維(東洋紡績株式会社製LAN
SEAL F)(含透析液率1,963%)を長さ2c
mにわたって2g巻き付けた。ついで、この中空糸膜の
束を、有効長さ175mm、かつ内径30mmで透析液
流入口および流出口付きのポリカーボネート製の筒状本
体に吸透析液性繊維と筒状本体との間に隙間が生じない
ように挿入した。
Example 1 A bundle of about 5,000 polysulfone hollow fiber membranes having an outer diameter of 280 μm and an inner diameter of 200 μm (effective membrane area 0.5
m2), and a dialysate-soluble fiber (LAN manufactured by Toyobo Co., Ltd.) composed of a composite fiber of an acrylonitrile fiber inner layer and an acrylate copolymer outer layer is provided on the outer periphery of the central portion in the longitudinal direction.
SEAL F) (dialysis solution ratio 1,963%) with length 2c
and wound 2 g over m. Then, the bundle of hollow fiber membranes is placed in a polycarbonate cylindrical body having an effective length of 175 mm and an inner diameter of 30 mm and having a dialysate inlet and an outlet, and a gap between the dialysate fluid fiber and the cylindrical body. Inserted so as not to occur.

【0059】次に筒状本体内に挿入された各中空糸膜の
両端部にポリウレタンポッティング剤を注入、硬化して
各中空糸膜を固定し、その両端をスライスして各中空糸
膜を開口させた。筒状本体の両端部に、それぞれ、血液
流入口付きカバーおよび血液流出口付きカバーを装着
し、これらを融着により液密に固定して、図2に示す構
造の透析器を得た。
Next, a polyurethane potting agent is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body and cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. I let it. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer having a structure shown in FIG.

【0060】[0060]

【比較例1】実施例1と同様のポリスルホン中空糸膜約
5,000本の束(有効膜面積0.5m2)を透析液流入
口および流出口付きの筒状本体内に挿入し、ついで筒状
本体内に挿入された各中空糸膜の両端部にポッティング
剤を注入、硬化して各中空糸膜を固定し、その両端をス
ライスして各中空糸膜を開口させた。筒状本体の両端部
に、それぞれ、血液流入口付きカバーおよび血液流出口
付きカバーを装着し、これらを融着により液密に固定し
て、透析器を得た。
Comparative Example 1 A bundle of about 5,000 polysulfone hollow fiber membranes (effective membrane area: 0.5 m2) similar to that of Example 1 was inserted into a cylindrical body having a dialysate inlet and an outlet. A potting agent was injected into both ends of each hollow fiber membrane inserted into the main body, and cured to fix each hollow fiber membrane. Both ends were sliced to open each hollow fiber membrane. A cover with a blood inlet and a cover with a blood outlet were respectively attached to both ends of the cylindrical main body, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer.

【0061】筒状本体の有効長および内径はそれぞれ1
75mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical body are each 1
75 mm and 30 mm.

【0062】[0062]

【実施例2】実施例1と同様のポリスルホン中空糸膜約
11,000本の束(有効膜面積1.6m2)を用意し、
その長手方向中央部の外周に実施例1と同様の吸透析液
性繊維(含透析液率1,963%)を長さ2cmにわた
って2g巻き付け、この中空糸膜の束を、吸透析液性繊
維と筒状本体内面との間に隙間が生じないように、透析
液流入口および流出口付きの筒状本体に挿入した。
Example 2 A bundle of approximately 11,000 polysulfone hollow fiber membranes (effective membrane area 1.6 m2) similar to that of Example 1 was prepared.
2 g of a dialysis fluid fiber (dialysis solution content: 1,963%) similar to that of Example 1 was wound around the outer periphery of the central portion in the longitudinal direction over a length of 2 cm by 2 cm. The dialysis fluid was inserted into the cylindrical body having an inlet and an outlet so that no gap was formed between the dialysate and the inner surface of the cylindrical body.

【0063】次に筒状本体内に挿入された各中空糸膜の
両端部にポッティング剤を注入、硬化して各中空糸膜を
固定し、その両端をスライスして各中空糸膜を開口させ
た。筒状本体の両端部に、それぞれ、血液流入口付きカ
バーおよび血液流出口付きカバーを装着し、これらを融
着により液密に固定して、図2に示す構造の透析器を得
た。
Next, a potting agent is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body and cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. Was. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer having a structure shown in FIG.

【0064】筒状本体の有効長および内径は、それぞれ
235mmおよび39mmとした。
The effective length and the inner diameter of the cylindrical main body were 235 mm and 39 mm, respectively.

【0065】[0065]

【比較例2】公知文献(村山憲一ほか:腎と透析Vo
l.34 別冊ハイパフォーマンスメンブレン’93.
p117(1993))に記載されたオンライン透析療
法(前希釈法)の結果を引用した。その結果を表2に示
す。なお、透析器の有効膜面積は実施例2と同様の1.
6m2である。
[Comparative Example 2] Known literature (Kenichi Murayama et al .: Kidney and Dialysis Vo)
l. 34 Separate volume high performance membrane '93.
p117 (1993)), the results of online dialysis therapy (pre-dilution method) were cited. Table 2 shows the results. The effective membrane area of the dialyzer was the same as in Example 2.
6m2.

【0066】比較例2での除去溶質であるβ2ミクログ
ロブリンの分子量は、11,800であり、前記チトク
ロームCの分子量12,400と近いことから、性能が
同一の透析濾過モジュールならば、ほぼ同一のクリアラ
ンス値を示すと考えられる。
The molecular weight of β2 microglobulin as the solute removed in Comparative Example 2 was 11,800, which was close to the molecular weight of cytochrome C of 12,400. Is considered to indicate the clearance value.

【0067】[0067]

【実施例3】外径335μm及び内径215μmのポリア
ミド中空糸膜約4,000本の束(有効膜面積0.4m
2)を用意し、その長手方向中央部の外周に実施例1と
同様の吸透析液性繊維(含透析液率1,963%)を長
さ2cmにわたって2g巻き付け、この中空糸膜の束
を、吸透析液性繊維と筒状本体内面との間に隙間が生じ
ないように、透析液流入口および流出口付きの筒状本体
に挿入した。
Embodiment 3 A bundle of about 4,000 polyamide hollow fiber membranes having an outer diameter of 335 μm and an inner diameter of 215 μm (effective membrane area 0.4 m
2) is prepared, and 2 g of the same hemodialysable liquid fiber (dialysis liquid content: 1,963%) as in Example 1 is wound around 2 cm over the length of 2 cm on the outer periphery of the central portion in the longitudinal direction. The dialysis fluid was inserted into a tubular body having an inlet and an outlet so that no gap was formed between the dialysate fiber and the inner surface of the tubular body.

【0068】次に筒状本体内に挿入された各中空糸膜の
両端部にポッティング剤を注入、硬化して各中空糸膜を
固定し、その両端をスライスして各中空糸膜を開口させ
た。筒状本体の両端部に、それぞれ、血液流入口付きカ
バーおよび血液流出口付きカバーを装着し、これらを融
着により液密に固定して、図2に示す構造の透析器を得
た。
Next, a potting agent is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body and cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. Was. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer having a structure shown in FIG.

【0069】筒状本体の有効長および内径は、それぞれ
175mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical main body were 175 mm and 30 mm, respectively.

【0070】[0070]

【比較例3】ポリアミド中空糸膜約4,000本の束
(有効膜面積0.4m2)を、透析液流入口および流出口
付きの筒状本体内に挿入し、ついで筒状本体内に挿入さ
れた各中空糸膜の両端部にポッティング剤を注入、硬化
して各中空糸膜を固定し、その両端をスライスして各中
空糸膜を開口させた。筒状本体の両端部に、それぞれ、
血液流入口付きカバーおよび血液流出口付きカバーを装
着し、これらを融着により液密に固定して、透析器を得
た。
Comparative Example 3 A bundle of about 4,000 polyamide hollow fiber membranes (effective membrane area: 0.4 m2) was inserted into a cylindrical body having a dialysate inlet and an outlet, and then inserted into the cylindrical body. A potting agent was injected into both ends of each hollow fiber membrane thus cured, and each hollow fiber membrane was fixed by fixing, and both ends were sliced to open each hollow fiber membrane. At each end of the tubular body,
A cover with a blood inlet and a cover with a blood outlet were attached, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer.

【0071】筒状本体の有効長および内径はそれぞれ1
75mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical body are each 1
75 mm and 30 mm.

【0072】[0072]

【実施例4】実施例3と同様のポリアミド中空糸膜約
6,000本の束(有効膜面積0.7m2)を用意し、そ
の長手方向中央部の外周にセルロース樹脂(含透析液率
50%)を幅1.5cmにわたって3g塗布、乾燥し、
この中空糸膜の束を、透析液流入口および流出口付きの
筒状本体に挿入した。
Example 4 A bundle of about 6,000 polyamide hollow fiber membranes (effective membrane area 0.7 m2) similar to that of Example 3 was prepared, and a cellulose resin (dialysis solution ratio of 50 %) Over 1.5 cm width and dried,
This bundle of hollow fiber membranes was inserted into a cylindrical body having a dialysate inlet and an outlet.

【0073】次に筒状本体内に挿入された各中空糸膜の
両端部にポッティング剤を注入、硬化して各中空糸膜を
固定し、その両端をスライスして各中空糸膜を開口させ
た。筒状本体の両端部に、それぞれ、血液流入口付きカ
バーおよび血液流出口付きカバーを装着し、これらを融
着により液密に固定して、図2に示す構造の透析器を得
た。
Next, a potting agent is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body and cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. Was. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer having a structure shown in FIG.

【0074】筒状本体の有効長および内径は、それぞれ
175mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical main body were 175 mm and 30 mm, respectively.

【0075】[0075]

【比較例4】ポリアミド中空糸膜約6,000本の束
(有効膜面積0.7m2)を、透析液流入口および流出口
付きの筒状本体に挿入し、ついで、筒状本体内に挿入さ
れた各中空糸膜の両端部にポッティング剤を注入、硬化
して各中空糸膜を固定し、その両端をスライスして各中
空糸膜を開口させた。筒状本体の両端部に、それぞれ、
血液流入口付きカバーおよび血液流出口付きカバーを装
着し、これらを融着により液密に固定して、透析器を得
た。
Comparative Example 4 A bundle of about 6,000 polyamide hollow fiber membranes (effective membrane area: 0.7 m2) was inserted into a cylindrical body having a dialysate inlet and an outlet, and then inserted into the cylindrical body. A potting agent was injected into both ends of each hollow fiber membrane thus cured, and each hollow fiber membrane was fixed by fixing, and both ends were sliced to open each hollow fiber membrane. At each end of the tubular body,
A cover with a blood inlet and a cover with a blood outlet were attached, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer.

【0076】筒状本体の有効長および内径は、それぞれ
175mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical main body were 175 mm and 30 mm, respectively.

【0077】[0077]

【実施例5】外径305μm及び内径245μmのポリア
クリロニトリル中空糸膜約4,500本の束(有効膜面
積0.6m2)を用意し、その長手方向中央部の外周にウ
レタン樹脂(含透析液率10%)を層状に形成するとと
もにその内側部分に同ウレタン樹脂を中空糸膜同士間隙
に1cmにわたって3g部分的に充填した。この中空糸
膜の束を、ウレタン樹脂の層と筒状本体内面との隙間が
小さくなるように、透析液流入口および流出口付きの筒
状本体に挿入した。
Example 5 A bundle of about 4,500 polyacrylonitrile hollow fiber membranes (effective membrane area 0.6 m2) having an outer diameter of 305 μm and an inner diameter of 245 μm was prepared, and a urethane resin (dialysis solution) (A ratio of 10%) in a layered form, and 3 g of the same urethane resin was partially filled into the gap between the hollow fiber membranes over 1 cm in the inner portion. This bundle of hollow fiber membranes was inserted into a tubular body with a dialysate inlet and an outlet so that the gap between the urethane resin layer and the inner surface of the tubular body was reduced.

【0078】次に筒状本体内に挿入された各中空糸膜の
両端部にポッティング剤を注入、硬化して各中空糸膜を
固定し、その両端をスライスして各中空糸膜を開口させ
た。筒状本体の両端部に、それぞれ、血液流入口付きカ
バーおよび血液流出口付きカバーを装着し、これらを融
着により液密に固定して、図2に示す構造の透析器を得
た。
Next, a potting agent is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body and cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. Was. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer having a structure shown in FIG.

【0079】筒状本体の有効長および内径は、それぞれ
175mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical main body were 175 mm and 30 mm, respectively.

【0080】[0080]

【比較例5】実施例5と同様のポリアクリロニトリル中
空糸膜約4,500本の束(有効膜面積0.6■)を、
透析液流入口および流出口付きの筒状本体に挿入し、つ
いで、筒状本体内に挿入された各中空糸膜の両端部にポ
ッティング剤を注入、硬化して各中空糸膜を固定し、そ
の両端をスライスして各中空糸膜を開口させた。筒状本
体の両端部に、それぞれ、血液流入口付きカバーおよび
血液流出口付きカバーを装着し、これらを融着により液
密に固定して、透析器を得た。
Comparative Example 5 A bundle of about 4,500 polyacrylonitrile hollow fiber membranes (effective membrane area: 0.6 mm) similar to that in Example 5 was prepared.
Inserting into the cylindrical body with dialysate inlet and outlet, then injecting potting agent at both ends of each hollow fiber membrane inserted into the cylindrical body, curing and fixing each hollow fiber membrane, Both ends were sliced to open each hollow fiber membrane. A cover with a blood inlet and a cover with a blood outlet were respectively attached to both ends of the cylindrical main body, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer.

【0081】筒状本体の有効長および内径は、それぞれ
175mmおよび30mmとした。
The effective length and the inner diameter of the cylindrical main body were 175 mm and 30 mm, respectively.

【0082】[0082]

【実施例6】実施例1から5および比較例1および3か
ら5の透析器をそれぞれ図1に示す血液体外循環回路に
組み込み日本人工臓器学会で定める人工腎臓性能評価基
準に準じて、チトクロームC(分子量=12,400)
による透析実験をin vitor系で行った。
Example 6 The dialyzers of Examples 1 to 5 and Comparative Examples 1 and 3 to 5 were respectively incorporated into the extracorporeal blood circulation circuit shown in FIG. 1, and cytochrome C was evaluated in accordance with the artificial kidney performance evaluation standard defined by the Japanese Society of Artificial Organs. (Molecular weight = 12,400)
Dialysis experiments were performed in an in vitro system.

【0083】なお、血液側の溶液としては、グリセリン
40%の透析液溶液を用いた。また、除水量(濾過流
量)10ml/minとした。また、透析液の流通の結
果、吸液繊維あるいは透析液膨潤性材料は膨潤し、前記
吸透析液繊維巻き付け部または透析液膨潤性材料塗布部
において狭窄部が形成された。実験結果を表2に示す。
As the solution on the blood side, a dialysate solution containing 40% glycerin was used. Further, the water removal amount (filtration flow rate) was set to 10 ml / min. Further, as a result of the flow of the dialysate, the liquid-absorbing fiber or the dialysate-swellable material swelled, and a constriction was formed in the dialysate-liquid wrapping portion or the dialysate-swellable material application portion. Table 2 shows the experimental results.

【0084】[0084]

【表1】 [Table 1]

【0085】[0085]

【表2】 [Table 2]

【0086】表2に示すように、実施例1の透析器を用
いた場合、チトクロームCのクリアランス値(血液側溶
液200ml中、チトクロームCの濃度が0となった血
液側溶液量)が比較例1のそれに比べ11ml/mim
高く、著しい性能の向上が認められた。
As shown in Table 2, when the dialyzer of Example 1 was used, the clearance value of cytochrome C (the amount of the blood side solution in which the concentration of cytochrome C became 0 in 200 ml of the blood side solution) was a comparative example. 11ml / mim compared to 1
High and significant performance improvements were noted.

【0087】表2に示すように、比較例2に比べ、実施
例2の透析器を用いた場合には、クリアランス値が高
く、よって、実施例2の透析器によれば、前希釈のため
の専用の装置を用いなくても、通常透析法での除水コン
トロールを行うだけで、高除去性能の透析療法が可能で
あることが確認された。
As shown in Table 2, when the dialyzer of Example 2 was used, the clearance value was higher than that of Comparative Example 2. Therefore, according to the dialyzer of Example 2, the pre-dilution was required. It was confirmed that dialysis therapy with a high removal performance was possible only by controlling the water removal by the normal dialysis method without using a dedicated device.

【0088】表2に示すように、実施例3の透析器を用
いた場合、チトクロームCのクリアランス値が比較例3
のそれに比べ4倍以上を示しており、著しい性能の向上
が認められた。
As shown in Table 2, when the dialyzer of Example 3 was used, the clearance value of cytochrome C was lower than that of Comparative Example 3.
4 times or more as compared with that of the above, and a remarkable improvement in performance was recognized.

【0089】表2に示すように、実施例4の透析器を用
いた場合、チトクロームCのクリアランス値が比較例4
のそれに比べ4ml/min高く、性能の向上が認めら
れた。
As shown in Table 2, when the dialyzer of Example 4 was used, the clearance value of cytochrome C was lower than that of Comparative Example 4.
This was 4 ml / min higher than that of No. 3 and improvement in performance was recognized.

【0090】表2に示すように、実施例5の透析器を用
いた場合、チトクロームCのクリアランス値が比較例5
のそれに比べ12ml/min高く、著しい性能の向上
が認められた。
As shown in Table 2, when the dialyzer of Example 5 was used, the clearance value of cytochrome C was lower than that of Comparative Example 5.
12 ml / min higher than that of No., and a remarkable improvement in performance was recognized.

【0091】[0091]

【実施例7】ポリアミド膜約6,000本、中空糸膜外
径335μm、膜面積0.7m2、UFR=62.9ml/m
2・hr・mmHgに、実施例1と同様の吸透析液性の透析液膨
潤性繊維(含透析液率1,953%)を2cmにわたっ
て2gを巻き付け、有効長175mm、内径32mmの
透析液流入口および流出口付きの筒状本体に挿入した。
Example 7 Approximately 6,000 polyamide membranes, outer diameter of hollow fiber membrane 335 μm, membrane area 0.7 m 2, UFR = 62.9 ml / m
2 g of a dialysate-swelling fiber having the same dialysis fluid as in Example 1 (dialysis fluid content: 1,953%) was wound around 2 cm over 2 cm over a length of 2 cm, and a dialysate flow having an effective length of 175 mm and an inner diameter of 32 mm was wound. It was inserted into a tubular body with inlet and outlet.

【0092】次に、筒状本体内に挿入された各中空糸膜
の両端部にポッティング材を注入、硬化して各中空糸膜
を固定し、その両端をスライスして各中空糸膜を開口さ
せた。筒状本体の両端部に、それぞれ、血液流入口付き
カバーおよび血液流出口付きカバーを装着し、これらを
融着により液密に固定して、図2に示す透析器を得た。
Next, a potting material is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body, cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. I let it. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical main body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer shown in FIG.

【0093】[0093]

【比較例6】実施例7と同様の中空糸膜を用い、中央部
に狭窄部を有する透析液流入口および流出口をそなえた
筒状本体(狭窄部内径29.5mm狭窄部幅2cm、狭
窄部以外の内径32mm、ゆうこうちょう175mm)
に挿入し、実施例7と同様にして透析液を得た。
Comparative Example 6 The same hollow fiber membrane as in Example 7 was used, and a cylindrical body having a dialysate inlet and an outlet having a constriction in the center (inner diameter of the constriction 29.5 mm, constriction width 2 cm, constriction 2 cm) 32mm inside diameter other than the part, 175mm)
And a dialysate was obtained in the same manner as in Example 7.

【0094】[0094]

【実施例8】実施例7、比較例6の透析器をそれぞれ図
1に示す血液体外循環回路に組み込み日本人工臓器学会
で定める人工腎臓性能評価基準に準じて、β2−ミクロ
グロブリン(β2−MG,分子量 11,800)によ
る透析実験をin vitor系で行った。
Example 8 The dialyzers of Example 7 and Comparative Example 6 were incorporated into the extracorporeal blood circulation circuit shown in FIG. 1, respectively, and β2-microglobulin (β2-MG) was used in accordance with the artificial kidney performance evaluation standard set by the Japanese Society of Artificial Organs. , Molecular weight 11,800) using an in vitro system.

【0095】なお、血液側の溶液としては、ヒト血清
(総タンパク濃度6.5g/dl)を用いた。また、除
水量(濾過流量)10ml/minとした。その結果を
表3に示す。
As the solution on the blood side, human serum (total protein concentration 6.5 g / dl) was used. Further, the water removal amount (filtration flow rate) was set to 10 ml / min. Table 3 shows the results.

【0096】[0096]

【表3】 [Table 3]

【0097】[0097]

【実施例9】実施例1と同様のポリスルフォン膜約1
0,000本、中空糸膜外径280μm、膜面積1.5
m2、UFR=46.0ml/m2・hr・mmHgに、実施例1と同
様の吸透析液性の透析液膨潤性繊維(含透析液率1,9
53%)を2cmにわたって2gを巻き付け、有効長2
35mm、内径32mmの透析液流入口および流出口付
きの筒状本体に挿入した。
Embodiment 9 The same polysulfone membrane as in Embodiment 1 was used.
0000 pieces, hollow fiber membrane outer diameter 280 μm, membrane area 1.5
m2, UFR = 46.0 ml / m2 · hr · mmHg, and the same dialysate-swelling dialysate-swelling fiber as in Example 1 (dialysate content: 1,9
53%) and 2 g over 2 cm, effective length 2
It was inserted into a cylindrical body having a diameter of 35 mm and an inner diameter of 32 mm and having a dialysate inlet and an outlet.

【0098】次に、筒状本体内に挿入された各中空糸膜
の両端部にポッティング材を注入、硬化して各中空糸膜
を固定し、その両端をスライスして各中空糸膜を開口さ
せた。筒状本体の両端部に、それぞれ、血液流入口付き
カバーおよび血液流出口付きカバーを装着し、これらを
融着により液密に固定して、図2に示す透析器を得た。
Next, a potting material is injected into both ends of each hollow fiber membrane inserted into the cylindrical main body, and the potting material is cured to fix each hollow fiber membrane, and both ends are sliced to open each hollow fiber membrane. I let it. A cover with a blood inlet and a cover with a blood outlet were attached to both ends of the cylindrical main body, respectively, and these were fixed in a liquid-tight manner by fusion to obtain a dialyzer shown in FIG.

【0099】実施例9の透析器2本を用意し、一方は図
1に示す向流の血液体外循環回路に組み込み、他方は透
析液を並流として血液体外循環回路に組み込み、日本人
工臓器学会で定める人工腎臓性能評価基準に準じて、β
2−ミクログロブリン(β2−MG,分子量 11,80
0)による透析実験をin vitor系で行った。
Two dialyzers of Example 9 were prepared. One was incorporated into the countercurrent extracorporeal blood circulation circuit shown in FIG. 1, and the other was incorporated into the extracorporeal blood circulation circuit with dialysate as cocurrent, According to the artificial kidney performance evaluation criteria specified in
2-microglobulin (β2-MG, molecular weight 11,80
The dialysis experiment according to 0) was performed in an in vitro system.

【0100】なお、血液側の溶液としては、ヘパリン化
牛血液(ヘマトクリット30%、総タンパク濃度6.5
g/dlに生理食塩液にて調製、β2−MG添加)を用
いた。また、除水量(濾過流量)10ml/minとし
た。その結果を表4に示す。
[0100] The solution on the blood side was heparinized bovine blood (hematocrit 30%, total protein concentration 6.5).
g / dl in physiological saline, and β2-MG added). Further, the water removal amount (filtration flow rate) was set to 10 ml / min. Table 4 shows the results.

【0101】[0101]

【表4】 [Table 4]

【0102】並流においてもほぼ同様の結果が得られ
た。
Approximately the same result was obtained in the co-current flow.

【0103】[0103]

【発明の効果】以上述べたように、本発明の透析器によ
れば、透析液が流れる第2の流路の途中に狭窄部を設
け、該狭窄部の透析液上流側と下流側とで透析液の圧力
に所定の差を生じるように構成したことにより、別途設
けられた専用の装置等を用いることなく、単一の透析器
で、処理する体液と透析液との間で大量の液置換をおこ
なうことができ、透析、濾過の性能が向上する。
As described above, according to the dialyzer of the present invention, a stenosis portion is provided in the middle of the second flow path through which the dialysate flows, and the stenosis portion is provided between the upstream side and the downstream side of the dialysate. With a configuration in which a predetermined difference is generated in the dialysate pressure, a large amount of fluid can be exchanged between the body fluid to be processed and the dialysate with a single dialyzer without using a dedicated device or the like separately provided. Substitution can be performed, and the performance of dialysis and filtration is improved.

【0104】特に、狭窄部の透析液上流側では、第2の
流路を流れる透析液の圧力は、第1の流路を流れる体液
の圧力より高く、狭窄部の透析液下流側では、第2の流
路を流れる透析液の圧力は、第1の流路を流れる体液の
圧力より低くなるように設定されている場合には、1つ
の透析器内において狭窄部の前後で、体液と透析液の一
方から他方への濾過とその逆方向の濾過とが行われるた
め、前記大量液置換が効率的に行われ、透析、濾過性能
の向上が著しい。
In particular, the pressure of the dialysate flowing through the second flow path is higher than the pressure of the body fluid flowing through the first flow path on the upstream side of the dialysate from the stenosis, and the pressure of the dialysate is lower on the downstream side of the dialysate than the stenosis. When the pressure of the dialysate flowing through the second flow path is set to be lower than the pressure of the bodily fluid flowing through the first flow path, the dialysate and the dialysis fluid are connected before and after the stenosis in one dialyzer. Since filtration from one side of the liquid to the other and filtration in the reverse direction are performed, the large amount of liquid replacement is performed efficiently, and dialysis and filtration performance are significantly improved.

【0105】また、狭窄部を中空糸膜の束の外周とハウ
ジングの内面との間や中空糸膜同士の間隙に狭窄部形成
部材を介挿することにより形成する場合には、その形成
が容易であり、また、上記の圧力特性を安定的に得易
い。
Further, when the constricted portion is formed by inserting a constricted portion forming member between the outer periphery of the bundle of hollow fiber membranes and the inner surface of the housing or in the gap between the hollow fiber membranes, the formation is easy. In addition, it is easy to stably obtain the above pressure characteristics.

【0106】また、狭窄部形成部材を、透析液膨潤性を
有する材料、特にその含透析液率が10%以上の材料で
構成した場合には、中空糸膜の束をハウジング内に挿入
し易く、使用時に透析液が流れることにより、狭窄部が
膨潤するのでハウジングに密着させることができる。
When the stenosis portion forming member is made of a material having a dialysate swelling property, particularly a material having a dialysate content of 10% or more, the bundle of hollow fiber membranes can be easily inserted into the housing. When the dialysate flows during use, the stenotic portion swells and can be brought into close contact with the housing.

【0107】また、第1の流路を流れる体液からの除水
量を調節する除水コントロール手段を組み合わせた場合
には、上記の圧力特性や除水量を奨励に応じて適正に設
定することができる。
When the water removal control means for adjusting the water removal amount from the body fluid flowing through the first flow path is combined, the above-mentioned pressure characteristics and the water removal amount can be appropriately set according to the encouragement. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の透析器を含む血液体外循環回路の構成
例を示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing a configuration example of a blood extracorporeal circuit including a dialyzer of the present invention.

【図2】本発明による透析器の一実施態様を示す縦断面
図である。
FIG. 2 is a longitudinal sectional view showing one embodiment of the dialyzer according to the present invention.

【図3】透析器内部の圧力分布を示すグラフである。FIG. 3 is a graph showing a pressure distribution inside a dialyzer.

【符号の説明】[Explanation of symbols]

1 透析器 3 ハウジング 31 筒状本体 32、33 ヘッダー 34 血液流入口 35 血液流出口 36 透析液流入口 37 透析液流出口 38、39 カバー 4 束 41 中空糸膜 51、52 隔壁 6 第1の流路 61 血液流入室 62 血液流出室 7 第2の流路 71 透析液上流側 72 透析液下流側 8 狭窄部 10 血液体外循環回路 11A 脱血ライン 11B 返血ライン 12 チューブ 13 ポンプ 14 チャンバー 15 チューブ 16 チャンバー 17 除水コントロール手段 18、19 チューブ 20 複式ポンプ 21 バイパスチューブ 22 除水ポンプ DESCRIPTION OF SYMBOLS 1 Dialyzer 3 Housing 31 Cylindrical main body 32, 33 Header 34 Blood inlet 35 Blood outlet 36 Dialysate inlet 37 Dialysate outlet 38, 39 Cover 4 Bundle 41 Hollow fiber membrane 51, 52 Partition wall 6 1st flow Path 61 Blood inflow chamber 62 Blood outflow chamber 7 Second flow path 71 Dialysate upstream side 72 Dialysate downstream side 8 Stenosis 10 Blood extracorporeal circulation circuit 11A Blood removal line 11B Blood return line 12 Tube 13 Pump 14 Chamber 15 Tube 16 Chamber 17 Water removal control means 18, 19 Tube 20 Double pump 21 Bypass tube 22 Water removal pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−138071(JP,A) 実開 昭49−110053(JP,U) 実開 昭62−119943(JP,U) 実開 昭51−7443(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01D 63/02 A61M 1/14 555 A61M 1/18 510 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-138071 (JP, A) JP-A-49-110053 (JP, U) JP-A-62-119943 (JP, U) JP-A-51-2 7443 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 63/02 A61M 1/14 555 A61M 1/18 510

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 筒状のハウジング内に、中空糸膜の束
と、該中空糸膜で隔てられた第1の流路および第2の流
路を有し、該中空糸膜を介して該第1の流路を流れる体
液と、該第2の流路を流れる透析液との間で透析および
限外濾過を行う透析器であって、透析液膨潤性を有する
材料を用いて該第2の流路の途中に狭窄部を設け、該狭
窄部の透析液上流側と下流側とで該透析液に圧力差が生
じるように構成されていることを特徴とする透析器。
1. A tubular housing having a bundle of hollow fiber membranes, a first flow path and a second flow path separated by the hollow fiber membrane, and A dialyzer that performs dialysis and ultrafiltration between a bodily fluid flowing through a first flow path and a dialysate flowing through the second flow path, wherein the second dialysate is formed using a material having a dialysate swelling property. A stenosis portion is provided in the middle of the flow path, and a pressure difference is generated between the dialysis fluid upstream and downstream of the stenosis portion.
【請求項2】 該狭窄部の透析液上流では、該第2の流
路を流れる透析液の圧力は、該第1の流路を流れる体液
の圧力より高く、かつ該狭窄部の透析液下流側では、該
第2の流路を流れる透析液の圧力は、該第1の流路を流
れる体液の圧力より低くなるように設定されていること
を特徴とする特許請求の範囲第1項記載の透析器。
2. The pressure of the dialysate flowing through the second flow path is higher than the pressure of the body fluid flowing through the first flow path, and the pressure of the dialysate flowing through the first flow path is downstream of the dialysate. 2. The device according to claim 1, wherein on the side, the pressure of the dialysate flowing through the second flow path is set to be lower than the pressure of the body fluid flowing through the first flow path. Dialyzer.
【請求項3】 該狭窄部は、該中空糸膜の束の外周部と
該ハウジングの内面との間に狭窄部形成部材を介挿する
ことにより形成されることを特徴とする特許請求の範囲
第1項記載の透析器。
3. The narrowed portion is formed by inserting a narrowed portion forming member between an outer peripheral portion of the bundle of hollow fiber membranes and an inner surface of the housing. 2. The dialyzer according to claim 1.
【請求項4】 該狭窄部は該中空糸膜同士の間隙に狭窄
部形成部材を介挿することにより形成される特許請求の
範囲第1項記載の透析器。
4. The dialyzer according to claim 1, wherein the constriction is formed by inserting a constriction forming member into a gap between the hollow fiber membranes.
【請求項5】 該透析液膨潤性を有する材料は、その含
透析液率が10%以上のものであることを特徴とする特
許請求の範囲第1項記載の透析器。
5. The dialyzer according to claim 1, wherein the dialysate swelling material has a dialysate content of 10% or more.
【請求項6】 該第1の流路を流れる体液からの除水量
を調節する除水コントロール手段を有することを特徴と
する特許請求の範囲第1項から第5項記載の透析器。
6. The dialyzer according to claim 1, further comprising water removal control means for adjusting a water removal amount from a body fluid flowing through the first flow path.
【請求項7】 該狭窄部形成部材が透析液膨潤性である
ことを特徴とする特許請求の範囲第3項記載の透析器。
7. The dialyzer according to claim 3, wherein the stenosis portion forming member is swellable with a dialysate.
【請求項8】 該中空糸膜の狭窄部における充填率が狭
窄部以外における充填率に対して105から200%で
あることを特徴とする特許請求の範囲第1項記載の透析
器。
8. The dialyzer according to claim 1, wherein the filling rate of the hollow fiber membrane in the constricted portion is 105 to 200% of the filling ratio in the portion other than the constricted portion.
JP22684195A 1994-09-02 1995-09-04 Dialysis machine Expired - Fee Related JP3284028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22684195A JP3284028B2 (en) 1994-09-02 1995-09-04 Dialysis machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23437394 1994-09-02
JP6-234373 1994-09-02
JP22684195A JP3284028B2 (en) 1994-09-02 1995-09-04 Dialysis machine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP26641799A Division JP3257998B2 (en) 1994-09-02 1999-09-21 Hollow fiber membrane dialyzer
JP26641899A Division JP3257999B2 (en) 1994-09-02 1999-09-21 Hollow fiber membrane dialyzer

Publications (2)

Publication Number Publication Date
JPH08192031A JPH08192031A (en) 1996-07-30
JP3284028B2 true JP3284028B2 (en) 2002-05-20

Family

ID=26527366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22684195A Expired - Fee Related JP3284028B2 (en) 1994-09-02 1995-09-04 Dialysis machine

Country Status (1)

Country Link
JP (1) JP3284028B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19782098T1 (en) * 1996-11-15 1999-11-18 Scitec K K Hollow fiber type dialyzer
JPH11319080A (en) * 1998-05-12 1999-11-24 Nikkiso Co Ltd Hollow fiber type hemodialyzer
JPH11319079A (en) * 1998-05-12 1999-11-24 Nikkiso Co Ltd Hollow fiber type hemodialyzer
DE60313818T2 (en) 2002-03-14 2007-10-31 Nipro Corp., Osaka Dialyzer and method for its production
ATE458511T1 (en) 2002-12-26 2010-03-15 Nipro Corp DIALYZER AND ITS PRODUCTION PROCESS
JP4328902B2 (en) * 2003-10-14 2009-09-09 鐘一 金 Online large-volume fluid replacement hemodialyzer
US10603419B2 (en) 2013-01-11 2020-03-31 The Charles Stark Draper Laboratories, Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
US10342909B2 (en) 2013-01-11 2019-07-09 The Charles Stark Draper Laboratory Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
US20140197101A1 (en) * 2013-01-11 2014-07-17 The Charles Stark Draper Laboratory, Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
US10478543B2 (en) 2013-01-11 2019-11-19 The Charles Stark Draper Laboratory, Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
JP6895754B2 (en) * 2014-12-25 2021-06-30 旭化成メディカル株式会社 Hemodiafiltration filter and hemodiafiltration device
US10512717B2 (en) * 2016-05-27 2019-12-24 The Charles Stark Draper Laboratory, Inc. Hemotransfiltration hollow fiber device
DE102017101307A1 (en) * 2017-01-24 2018-07-26 B. Braun Avitum Ag Dialyzer with improved internal filtration and process for its preparation

Also Published As

Publication number Publication date
JPH08192031A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
US5700372A (en) Dialyzer with a constricted part made of a material capable of swelled by dializing liquid
US5730712A (en) Extracorporeal blood treatment apparatus and method
KR100604460B1 (en) Hemodiafiltration/hemofiltration cartridges
JP3284028B2 (en) Dialysis machine
JP4173969B2 (en) Hemodialysis filter and hemodiafiltration device
US4861485A (en) Hemodiafiltration device
JP2003518996A (en) Two-stage hemodiafiltration cartridge
US20030196949A1 (en) Dialyzer and method for manufacturing the same
WO1998022161A1 (en) Hollow fiber dialyzer
JPH11394A (en) Hollow yarn film type dialytic filter and dialytic filtration device
CN107929838B (en) Hemodialysis device for nephrology department
JP4195858B2 (en) Plasma export filter device and apparatus for apheresis therapy
JP4129726B2 (en) Peritoneal dialysis machine
JP3257999B2 (en) Hollow fiber membrane dialyzer
JP3257998B2 (en) Hollow fiber membrane dialyzer
JP4144844B2 (en) Hollow fiber membrane dialysis filter
JP4144843B2 (en) Hollow fiber membrane dialysis filter
JP3244409B2 (en) Hollow fiber membrane dialysis filter
EP1002566B1 (en) Filter for adsorbing heparin and/or endotoxins in plasma and/or blood
JP4807912B2 (en) Hollow fiber membrane module and manufacturing method thereof
JPH119685A (en) Blood purifying device
JP3257613B2 (en) Dialysis fluid management device for hemodialysis machine
JP7224104B2 (en) Dialysis device with improved internal filtration and method of manufacture
JPH119684A (en) Hollow fiber membrane type blood dialysis filter, constricted part forming member device jig and hollow fiber membrane bundle inserting jig as well as production of hollow fiber membrane blood dialysis filter
JP3353467B2 (en) Dialysis fluid management device for hemodialysis machine

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees