JP3278128B2 - Countercurrent ion exchanger - Google Patents

Countercurrent ion exchanger

Info

Publication number
JP3278128B2
JP3278128B2 JP04026796A JP4026796A JP3278128B2 JP 3278128 B2 JP3278128 B2 JP 3278128B2 JP 04026796 A JP04026796 A JP 04026796A JP 4026796 A JP4026796 A JP 4026796A JP 3278128 B2 JP3278128 B2 JP 3278128B2
Authority
JP
Japan
Prior art keywords
resin
water
ion exchange
water collecting
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04026796A
Other languages
Japanese (ja)
Other versions
JPH09206744A (en
Inventor
勘六 長南
かおり 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP04026796A priority Critical patent/JP3278128B2/en
Publication of JPH09206744A publication Critical patent/JPH09206744A/en
Application granted granted Critical
Publication of JP3278128B2 publication Critical patent/JP3278128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、向流式イオン交換
装置に係り、特に、多孔管式集水装置を用いて、純水、
軟水等を製造するイオン交換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a counter-current ion exchange apparatus, and more particularly, to pure water, perforated pipe type water exchange apparatus.
The present invention relates to an ion exchange device for producing soft water or the like.

【0002】[0002]

【従来の技術】従来のイオン交換装置における塔下部、
上部の構造例を、図2の(a)、(b)、(c)、
(d)に示す。いずれも下向流通水を行う装置である。
(a)、(b)は順流式の例で再生剤も下向流で行われ
る。(a)は、下部集水装置としてノズル付多孔板を用
いている。上部集水装置は(b)に示す多孔管式集水装
置と同じである。もちろん、上部集水装置としてノズル
付多孔板を用いた装置も多数ある。(b)は塔下部に鏡
部を埋め込み、フラットな底盤とし、その上に近接して
多孔管式下部集水装置、塔上部にも多孔管式上部集水装
置を設けている。(c)、(d)は、下向流通水、上向
流再生型の向流式の例である。いずれも、塔下部構造に
工夫をこらしている。
2. Description of the Related Art The lower part of a column in a conventional ion exchange apparatus,
Examples of the upper structure are shown in FIGS.
(D). All of them are devices for performing downward flowing water.
(A) and (b) are examples of a forward flow type, and the regenerant is also performed in a downward flow. (A) uses a perforated plate with a nozzle as a lower water collecting device. The upper water collecting device is the same as the perforated tube water collecting device shown in (b). Of course, there are many devices using a perforated plate with a nozzle as the upper water collecting device. In (b), a mirror section is embedded in the lower part of the tower to form a flat bottom plate, and a perforated pipe-type lower water collecting device is provided adjacent thereto, and a perforated pipe-type upper water collecting apparatus is provided also in the upper part of the tower. (C) and (d) are examples of a countercurrent type of downward flow water and upward flow regeneration type. In each case, the tower substructure is devised.

【0003】(c)は、塔下部の鏡部をそのまま用い、
主体となる多孔管式第一の下部集水装置と、更に、鏡部
の外側(塔外)に小さい多孔管式の第二の集水装置を設
けている。このような構造では、第一の下部集水装置と
鏡部間の図中に示す2重斜線部は、非有効樹脂となる。
また、上向流再生のため、この非有効樹脂のところに残
留する再生剤をできるだけ早く洗浄排出し易くするため
に、小さい多孔管式の第二の下部集水装置を設けてい
る。(d)は、上向流通薬時の再生剤の均一分散のた
め、支持層の層高を大きくし、かつ再生剤流入管と処理
水流出管を分けた構造としている。この支持層は、珪石
等を特殊高分子剤でコーティングし、比重を大きくした
ものである。通常、2層から構成されていることが多
い。(c)、(d)の例ともに、上向流再生時は、塔上
部から加圧水又は加圧空気を用いて、イオン交換樹脂層
が流動化しないように、すなわち、固定層として再生剤
が均一分散し、効率的に作用するようにしている。
[0003] (c) uses the mirror part at the bottom of the tower as it is,
A perforated-tube-type first lower water collecting device serving as a main body, and a small perforated-tube-type second water collecting device are further provided outside the mirror (outside the tower). In such a structure, the double-hatched portion shown in the figure between the first lower water collecting device and the mirror portion becomes ineffective resin.
In addition, a small perforated pipe-type second lower water collecting device is provided in order to make it easier to wash and discharge the regenerant remaining at the ineffective resin as soon as possible for upward flow regeneration. (D) has a structure in which the height of the support layer is increased and the regenerant inflow pipe and the treated water outflow pipe are separated in order to uniformly disperse the regenerant during upward flow medicine. This support layer is formed by coating silica stone or the like with a special polymer agent to increase the specific gravity. Usually, it is often composed of two layers. In both cases (c) and (d), during upward flow regeneration, pressurized water or pressurized air is used from the top of the tower so that the ion-exchange resin layer does not fluidize, that is, the regenerant is uniform as a fixed layer. It is distributed and works efficiently.

【0004】(a)、(b)の順流式での再生効率は、
通常25%〜35%程度であり、再生剤は有効に利用さ
れていない。一方、(c)、(d)の向流式では、強酸
性陽イオン交換樹脂(以下強型カチオン樹脂と記す)、
又は強塩基性陰イオン交換樹脂(以下強型アニオン樹脂
と記す)等の単一樹脂を用いたカチオン塔、アニオン塔
の再生効率は、45%〜70%と向上する。更に、弱酸
性陽イオン交換樹脂(以下弱型カチオン樹脂と記す)、
弱塩基性陰イオン交換樹脂(以下弱型アニオン樹脂と記
す)を組合せて用いる複層床方式での再生効率は、75
%〜90%に達する。しかし、(c)、(d)の例にお
いて、弱型樹脂と強型樹脂を中間隔壁(水は通すが、樹
脂は通さない)なしで用いる複層床方式では、使用でき
る塔径が1400〜1600mmφまでである。しか
も、その再生効率も塔径が大きい程、小さくなり、実用
的には45%〜65%程度に低下してしまう。
[0004] The regeneration efficiency of the forward flow method of (a) and (b) is as follows.
Usually, it is about 25% to 35%, and the regenerant is not used effectively. On the other hand, in the countercurrent methods (c) and (d), a strongly acidic cation exchange resin (hereinafter referred to as a strong cation resin),
Alternatively, the regeneration efficiency of a cation tower or anion tower using a single resin such as a strongly basic anion exchange resin (hereinafter, referred to as a strong anion resin) is improved to 45% to 70%. Further, a weak acidic cation exchange resin (hereinafter referred to as a weak cation resin),
The regeneration efficiency in a multi-layered bed system using a combination of a weakly basic anion exchange resin (hereinafter, referred to as a weak anion resin) is 75%.
% To 90%. However, in the examples of (c) and (d), in a multi-layered bed system in which a weak resin and a strong resin are used without an intermediate partition (water is allowed to pass through but not resin), the usable tower diameter is 1400 to 1400. It is up to 1600 mmφ. Moreover, the regeneration efficiency also decreases as the tower diameter increases, and practically drops to about 45% to 65%.

【0005】これは、強型樹脂の再生廃液で弱型樹脂を
再生する通薬工程、押出工程時に、両者の分離界面付近
において、弱型樹脂は再生され易いため、イオン形が塩
形から再生形に直ちに変換する。この時、弱型樹脂自体
の体積が大きく収縮してしまうこと、また、分離界面が
不明確であると共に、弱型樹脂と強型樹脂がかなりの程
度混合してしまうため、分離界面付近で空隙ができてし
まい、再生剤の均一分散が不充分となること等による。
そのため、これらの問題を解決するために、(1)再生
工程の複数化、(2)再生時間の長期化、(3)弱型樹
脂と強型樹脂の混合等による維持管理の困難性等の欠点
も生じている。図2の(a)、(b)、(c)、
(d)、いずれの例においても充填されているイオン交
換樹脂の上の空間部(以下フリーボード部と記す)は、
逆洗のために、カチオン塔、アニオン塔で充填樹脂の各
々75%、100%程度必要である。すなわち、このフ
リーボード部分は有効利用されていないと言って良い。
[0005] This is because the weak resin is easily regenerated near the separation interface between the weak resin and the extruding step during the chemical passing step and the extrusion step of regenerating the weak resin with the waste liquid of the strong resin. Immediately convert to shape. At this time, since the volume of the weak resin itself shrinks greatly, and the separation interface is not clear, and the weak resin and the strong resin are mixed to a considerable extent, a void is formed near the separation interface. And the uniform dispersion of the regenerating agent becomes insufficient.
Therefore, in order to solve these problems, (1) multiple regeneration steps, (2) long regeneration time, (3) difficulties in maintenance and management due to mixing of weak resin and strong resin, and the like. There are also disadvantages. (A), (b), (c),
(D) In each of the examples, the space above the filled ion exchange resin (hereinafter referred to as a free board part) is:
For backwashing, about 75% and 100% of the charged resin are required in the cation tower and the anion tower, respectively. In other words, it can be said that this free board portion is not effectively used.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
順流式、向流式の欠点を解消し、既設設備を容易に改造
でき、再生時間の短縮及び再生廃水量の低減ができる一
層効率的な下向流通水、上向流再生型の向流式のイオン
交換装置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional forward-flow type and counter-current type, makes it possible to easily retrofit existing facilities, shortens regeneration time and reduces the amount of regeneration wastewater. It is an object of the present invention to provide a countercurrent ion exchange apparatus of a typical downward flowing water and upward flowing type.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、上、下部に各々鏡板を有し、内部にイ
オン交換樹脂層を内蔵した下向流通水・上向流再生を行
う向流式イオン交換装置において、前記下部鏡板中心近
傍に排水用集水装置9を配備し、その上方に集水装置2
を設けると共に、該集水装置9及び2を水より比重が大
きい高比重不活性樹脂6により埋覆し、該高比重不活性
樹脂6の上部にイオン交換樹脂層12が配備されている
と共に、前記上部鏡板部又は上部鏡板部近傍に上部集水
装置3を配備し、その上方に洗浄排水装置を兼ねる空気
抜用集水装置16を設けると共に、イオン交換樹脂層1
2上方に空間部13を介して、水より比重が小さい浮上
性不活性樹脂15が前記集水装置3及び16を埋蔵する
ように配備されていることとしたものである。また、本
発明では、上、下部に各々鏡板を有し、内部にイオン交
換樹脂層を内蔵した下向流通水・上向流再生を行う向流
式イオン交換装置において、前記上部鏡板部又は上部鏡
板部近傍に上部集配水装置3を配備し、その上方に洗浄
排水装置を兼ねる空気抜用集水装置16を設けると共
に、イオン交換樹脂層12上方に空間部13を介して、
水より比重が小さい浮上性不活性樹脂15が前記集水装
置3及び16を埋蔵するように配備されていることとし
たものである。
In order to solve the above-mentioned problems, the present invention provides a method for regenerating downward flowing water and upward flowing water in which a head plate is provided at each of the upper and lower parts and an ion exchange resin layer is built therein. In the counter-current ion exchange apparatus, a drainage water collecting device 9 is provided near the center of the lower end plate, and the water collecting device 2 is provided above the drainage water collecting device 9.
And the water collecting devices 9 and 2 are buried with a high specific gravity inert resin 6 having a higher specific gravity than water, and an ion exchange resin layer 12 is provided above the high specific gravity inert resin 6.
Along with the upper end plate portion or the upper end plate portion,
The device 3 is installed, and the air that also serves as the washing and draining device is provided above the device 3.
A drainage collecting device 16 is provided, and the ion exchange resin layer 1
2 Floating with lower specific gravity than water through space 13 above
Inactive resin 15 buries the water collecting devices 3 and 16
It is to be deployed as follows. Further, in the present invention, in the counter-current ion exchange apparatus for performing downward flowing water / upward flow regeneration having a head plate at an upper part and a lower part and incorporating an ion exchange resin layer inside, the upper head part or the upper part An upper water collecting and distributing device 3 is provided in the vicinity of the end plate portion, and a water collecting device 16 for bleeding air also serving as a washing and draining device is provided above the water collecting and distributing device 3.
The floating inert resin 15 having a specific gravity smaller than that of water is provided so as to bury the water collecting devices 3 and 16.

【0008】前記において、イオン交換樹脂層は、該樹
脂層上方に空間部を、1サイクル採水終了後において該
イオン交換樹脂層の高さの5〜30%(容量)有するの
が良い。また、イオン交換樹脂層は、原水水質、処理目
的に応じて、カチオン塔では弱型カチオン樹脂と強型カ
チオン樹脂とを、またアニオン塔では、弱型アニオン樹
脂と強型アニオン樹脂とを、適切に組合せた複層床型と
することが好ましい。更に、本発明の集配水管等は既知
のものが全て適用できる。例えば、図3のように鏡板に
沿って配置されても良い。
In the above, it is preferable that the ion exchange resin layer has a space above the resin layer in an amount of 5 to 30% (capacity) of the height of the ion exchange resin layer after one cycle of water sampling. In addition, the ion exchange resin layer, depending on the quality of the raw water, the purpose of treatment, in the cation tower, the weak cation resin and the strong cation resin, and in the anion tower, the weak anion resin and the strong anion resin, appropriately It is preferable to use a multi-layered floor type combined with the above. Furthermore, as the collection and distribution pipes of the present invention, all known ones can be applied. For example, they may be arranged along the end plate as shown in FIG.

【0009】[0009]

【発明の実施の形態】次に、本発明を図面を用いて詳細
に説明する。本発明の向流式イオン交換装置は、基本的
には図1に示す塔構造を有するものであり、図1を用い
て本発明の装置構成を説明する。図1において、イオン
交換塔1の底部鏡部7の中央付近にマンホール8を設け
る。主体となる第一下部集水装置2の主管4に枝管5を
設け、主管4が覆れる程度、すなわち主管4上面から5
0〜300mm層高まで、比重1.4以上で、かつ1〜
5mm径の球状、粒状又は円柱状の高比重不活性樹脂6
を充填する。鏡部7の中央付近に設けた450〜600
mmφのマンホール8内に小さい第二下部集水装置9を
設け、これに排水管10を接続する。マンホール部8に
は、更に不活性樹脂排出管11を設けておくと便利であ
る。
Next, the present invention will be described in detail with reference to the drawings. The countercurrent ion exchange apparatus of the present invention basically has a tower structure shown in FIG. 1. The apparatus configuration of the present invention will be described with reference to FIG. In FIG. 1, a manhole 8 is provided near the center of the bottom mirror 7 of the ion exchange tower 1. A branch pipe 5 is provided on the main pipe 4 of the first lower water collecting device 2 serving as a main body, so that the main pipe 4 is covered, that is, 5 mm from the upper surface of the main pipe 4.
0 to 300 mm layer height, specific gravity of 1.4 or more, and 1 to
5 mm diameter spherical, granular or cylindrical high specific gravity inert resin 6
Fill. 450-600 provided near the center of the mirror 7
A small second lower water collecting device 9 is provided in a manhole 8 of mmφ, and a drain pipe 10 is connected to the second lower water collecting device 9. It is convenient to provide an inert resin discharge pipe 11 in the manhole section 8.

【0010】マンホール8を設けられない場合は、第二
下部集水装置9を塔下部鏡部7中央付近に鏡部の内面に
近接して設ける。鏡部に接してしまうと、塔内の樹脂抜
きを行う時に樹脂が排出しにくくなるので、5〜10m
mはすきまを設けておくのがよい。そして、高比重不活
性樹脂6の上にイオン交換樹脂12を充填する。そし
て、その上部にフリーボード13を、充填したイオン交
換樹脂12の1サイクルの採水終了時の層高の5〜30
%の割合で設ける。この割合は従来の75〜100%に
比較し大巾に小さくなっている。フリーボード13の割
合の調整は、浮上性不活性樹脂排出管17、充填イオン
交換樹脂量調整弁26、27、高比重不活性樹脂排出管
11を用いて行う。
When the manhole 8 cannot be provided, the second lower water collecting device 9 is provided near the center of the lower mirror 7 near the inner surface of the mirror. If it comes into contact with the mirror, it will be difficult to discharge the resin when removing the resin from the tower.
m is preferably provided with a clearance. Then, the ion exchange resin 12 is filled on the high specific gravity inert resin 6. A free board 13 is placed on the top of the bed, and the bed height of the filled ion exchange resin 12 at the end of one cycle of water sampling is 5 to 30.
%. This ratio is much smaller than the conventional 75 to 100%. The ratio of the free board 13 is adjusted using the buoyant inert resin discharge pipe 17, the filling ion exchange resin amount adjusting valves 26 and 27, and the high specific gravity inert resin discharge pipe 11.

【0011】充填する樹脂によって、樹脂自体の体積の
膨潤収縮が異なるので、フリーボード13の割合には充
分注意を払う。好ましくは、定収量運転とし、1サイク
ルの採水終了時点で、充填イオン交換樹脂の5〜10%
とするのが良い。その理由は、後述する再生工程におい
て、イオン交換帯の乱れを失くし、安定した採水、再生
を行うこと、そして、充填した樹脂の膨潤圧によって塔
内製品及び塔自体が破壊しないようにする必要から定収
量運転とし、原水水質の変動による樹脂自体の膨潤分も
吸収できるように余裕をもたせておくためである。イオ
ン形による体積変化の例を表1に示す。
Since the swelling / shrinkage of the resin itself varies depending on the resin to be filled, the ratio of the free board 13 should be carefully noted. Preferably, a constant yield operation is performed, and at the end of one cycle of water sampling, 5 to 10% of the charged ion exchange resin is charged.
Good to be. The reason is that in the regeneration step described below, the disturbance of the ion exchange zone is lost, stable water sampling and regeneration are performed, and the product in the column and the column itself are not broken by the swelling pressure of the filled resin. This is because a constant yield operation is performed when necessary, and a margin is provided so that the swelling of the resin itself due to fluctuations in the quality of the raw water can be absorbed. Table 1 shows an example of the change in volume due to the ion form.

【0012】[0012]

【表1】 [Table 1]

【0013】強型樹脂は塩形では小さく、再生形では体
積を増す。反対に弱型樹脂では、再生形で小さく塩形に
なると体積を増す。すなわち再生時、強型樹脂では再生
液による若干の収縮、また、再生されにくい性質を加味
しても、一般的に再生後は再生前の4〜10%程度は膨
潤する方向にある。しかし、弱型樹脂では、再生されや
すいため、塩形から再生形へほぼ100%近く変換する
ため、通水する原水のイオン構成によっても異なるが、
その体積は一般に再生後は再生前の約20〜30%体積
が減少してしまう。それ故、複層床方式で使用する場合
は強型樹脂単独で使用する時よりも、一層、フリーボー
ドの割合には気を付け、定期的にその割合をチェックし
ておくことが重要である。
The strong resin is small in the salt form and increases in volume in the regenerated form. Conversely, in the case of a weak resin, the volume increases when the resin is regenerated and becomes a small salt. That is, at the time of regenerating, even if the strong resin is slightly shrunk by the regenerating solution and the property that it is difficult to regenerate is taken into account, generally after regenerating, about 4 to 10% of the pre-regeneration tends to swell. However, since the weak resin is easily regenerated, it is converted to almost 100% from the salt form to the regenerated form.
In general, the volume is reduced by about 20 to 30% after regeneration after regeneration. Therefore, it is more important to pay more attention to the percentage of freeboard and to check the percentage periodically when using a multi-layer floor system than when using a strong resin alone. .

【0014】塔上部においては、鏡部14と多孔管式上
部集水装置3の下部50〜300mmまで、比重1.0
以下の浮上性不活性樹脂15を充填する。そして、鏡部
14中心付近に洗浄排水兼空気抜用集水装置16を設け
る。また、浮上性不活性樹脂15の排出管17を設けて
おくと便利である。洗浄排水兼空気抜用集水装置16は
再生時の洗浄工程における塔上部の洗浄に効果的であ
る。塔上部の第一上部集水装置3の原水流入配管部18
は、鏡部14から、好ましくは、鏡部14の中心付近か
ら配管するのが良い。その理由は、従来の図2の
(a)、(b)、(c)のように塔壁から原水流入配管
をとると、塔内のこの配管部を覆うまで浮上性不活性樹
脂15を余分に充填する必要が生じてしまい塔内有効容
積が少なってしまうからである。
In the upper part of the tower, a specific gravity of 1.0 to 50 to 300 mm below the mirror part 14 and the lower part of the perforated pipe type water collecting device 3.
The following floating inert resin 15 is filled. In addition, a water collecting device 16 for washing and draining and removing air is provided near the center of the mirror portion 14. It is convenient to provide a discharge pipe 17 for the floating inert resin 15. The water collecting device 16 for cleaning drainage and air removal is effective for cleaning the upper part of the tower in the cleaning process at the time of regeneration. Raw water inflow pipe part 18 of the first upper water collecting device 3 at the top of the tower
It is good to pipe from the mirror part 14, preferably near the center of the mirror part 14. The reason is that when the raw water inflow pipe is taken from the tower wall as shown in FIG. 2 (a), (b), and (c) of the related art, extra floating inactive resin 15 is added until the pipe section in the tower is covered. Is necessary, and the effective volume in the column is reduced.

【0015】本発明で用いる高比重不活性樹脂に要求さ
れる性質は、(1)吸水率が低いこと、すなわち、再生
剤であるHCl、H2 SO4 、NaOHの樹脂内への浸
入が少なく洗浄し易いこと、(2)再生剤に対する耐薬
品性、(3)塔壁のゴムライニングを傷つけない性質、
形状を有していること、(4)そして、価格が安いこと
である。これらを満足するものとして、現在、比重1.
40程度、2〜3mmφのポリアセタール、比重1.7
0程度のポリ塩化ビニリゲン等がある。テフロン系も使
用できるが価格が高い。形状、大きさとしては、2〜5
mmφの球状が最も好ましいが、粒状、円柱状でも前記
要求される項目を満足するものであれば良い。現在最も
適しているのは、価格も安い材質としてポリ塩化ビニリ
デンのものである。この高比重不活性樹脂は粘性が高い
ため、成形工程の問題から市場にでているのは、2〜5
mmLの円柱状のものである。この2〜3mmLの円柱
状のものは、実験の結果、洗浄性もよく、ゴムライニン
グを傷めないことがわかった。ポリアセタールは若干吸
水性があり、洗浄性が劣る。
The properties required for the high specific gravity inert resin used in the present invention are as follows: (1) The water absorption is low, that is, the infiltration of HCl, H 2 SO 4 and NaOH as regenerants into the resin is small. Easy to clean, (2) chemical resistance to regenerant, (3) property not to damage rubber lining of tower wall,
(4) and the price is low. At present, a specific gravity of 1.
About 40, 2-3 mmφ polyacetal, specific gravity 1.7
There are about 0 polyvinylidene chloride and the like. Teflon can be used, but the price is high. Shape and size are 2-5
A spherical shape of mmφ is most preferable, but a granular or cylindrical shape may be used as long as it satisfies the required items. Currently, the most suitable material is polyvinylidene chloride, which is an inexpensive material. Due to the high viscosity of the high specific gravity inert resin, two to five products are on the market due to the problem of the molding process.
It has a column shape of mmL. As a result of an experiment, it was found that the cylindrical shape having a diameter of 2 to 3 mmL had good cleaning properties and did not damage the rubber lining. Polyacetal is slightly water-absorbing and has poor cleaning properties.

【0016】また、本発明で用いる比重1.0以下の浮
上性不活性樹脂は前記高比重不活性樹脂と同様な性質を
有すればよい。材質としてポリプロピレンにポリスチレ
ン等があり、その形状、大きさは球状、又は粒状の2〜
4mmφ程度であればよい。本発明の図1のイオン交換
装置は、前記従来のイオン交換装置を示した図2の
(a)、(b)、(c)、(d)を改造、改良すること
によっても得ることができる。先ず、図2の(a)の下
部集水装置がノズル付き多孔板の場合は、この下部構成
をそのまま利用してよく、ノズル付き多孔板の上向流通
薬時の再生剤の均一分散が達成されていれば、高比重不
活性樹脂の充填の必要性がなくなる。図2(a)の上部
集水装置は多孔管式集水装置となっているが、(1)原
水流入本管を塔壁からでなく、塔鏡部中心付近から配管
するように変更する。(2)上部集水装置の最下端(主
管下面)から50〜300mmの層高で浮上性不活性樹
脂を充填する。(3)フリーボードの割合を5〜30
%、好ましくは1サイクル終了時の充填層高の5〜10
%とする。また、水質に応じて弱型、強型樹脂の充填量
を最適になるように決める。
The floating inert resin having a specific gravity of 1.0 or less used in the present invention may have the same properties as the high specific gravity inert resin. The material is polypropylene or polystyrene or the like, the shape and size of which are spherical or granular.
It may be about 4 mmφ. The ion exchange apparatus of FIG. 1 of the present invention can also be obtained by modifying and improving FIGS. 2A, 2B, 2C and 2D showing the conventional ion exchange apparatus. . First, when the lower water collecting device of FIG. 2A is a perforated plate with a nozzle, this lower configuration may be used as it is, and uniform dispersion of the regenerant at the time of upward flow medicine of the perforated plate with a nozzle is achieved. This eliminates the need for filling with a high specific gravity inert resin. The upper water collecting device in FIG. 2A is a perforated tube type water collecting device, but (1) the raw water inflow main pipe is changed so as to be piped not from the tower wall but from near the center of the tower mirror. (2) Fill the buoyant inert resin with a layer height of 50 to 300 mm from the lowermost end of the upper water collecting device (the lower surface of the main pipe). (3) Free board ratio of 5 to 30
%, Preferably 5 to 10 of the packed bed height at the end of one cycle.
%. Further, the filling amount of the weak resin and the strong resin is determined so as to be optimal according to the water quality.

【0017】前記上記集水装置が、ノズル付多孔板であ
れば、(1)浮上性不活性樹脂を同様に50〜300m
m充填する。(2)前記のように適切なフリーボードと
なるように弱型、強型樹脂を充填する、等の改良を行え
ばよい。また、ノズルのスリット巾にも注意し、下部集
水装置はスリット巾0.15〜0.2mm、上部集水装
置のスリット巾は0.4〜0.6mm程度であること、
また、トータルのスリットの開口面積が適切であるこ
と、等を確認する必要がある。また、ノズルの構造にも
注意し、再生剤の残留しないよう配慮した最適なものか
どうかも確認しておくことが重要である。図2(b)で
は、塔下部の低盤部を失くし、鏡部7に新たにゴムライ
ニングし、鏡部7中央付近にできればマンホール8を設
け、前記図1で示した構成とする。
If the above-mentioned water collecting device is a perforated plate with a nozzle, (1) the buoyant inert resin is similarly treated for 50 to 300 m
m. (2) Improvements such as filling with a weak or strong resin so as to provide an appropriate free board as described above may be performed. Also, pay attention to the slit width of the nozzle, the lower water collector has a slit width of 0.15 to 0.2 mm, the upper water collector has a slit width of about 0.4 to 0.6 mm,
It is also necessary to confirm that the total slit opening area is appropriate. It is also important to pay attention to the structure of the nozzle and to confirm that it is the optimal one, taking care not to leave the regenerant. In FIG. 2B, the lower part of the lower part of the tower is lost, a new rubber lining is provided on the mirror part 7, and a manhole 8 is provided near the center of the mirror part 7, if possible, so that the structure shown in FIG.

【0018】また、図2の(b)、(c)、(d)にお
いても、塔壁からの原水流入配管を、上部鏡部の中心付
近に設け、図1のように構成することにより改良するこ
とができる。図2(d)の構造の装置を、図1のように
改造した場合、600〜800mm程度の層高を有する
支持層部分及びフリーボード部分のイオン交換樹脂量が
大巾に増加するため、1サイクル当りの採水量の増加は
かなり大きくなり、一層効率的になる。次に、図1の本
発明のイオン交換装置を用いた採水後の再生運転につい
て説明する。イオン交換塔1は、原水流入管18より原
水22を導入し、第一上部集水装置3で原水22を均一
分散し、第一下部集水装置2から処理水19を得る。1
サイクルの定収量採水後、下記のように再生を行う。
2 (b), 2 (c) and 2 (d) are also improved by providing the raw water inflow pipe from the tower wall near the center of the upper mirror section and as shown in FIG. can do. When the apparatus having the structure shown in FIG. 2D is modified as shown in FIG. 1, the amounts of the ion-exchange resin in the support layer portion having a layer height of about 600 to 800 mm and the free board portion greatly increase. The increase in water withdrawal per cycle is much larger and more efficient. Next, a regeneration operation after water sampling using the ion exchange device of the present invention in FIG. 1 will be described. In the ion exchange tower 1, the raw water 22 is introduced from the raw water inflow pipe 18, the raw water 22 is uniformly dispersed in the first upper water collecting device 3, and the treated water 19 is obtained from the first lower water collecting device 2. 1
After sampling at a constant yield in the cycle, regeneration is performed as follows.

【0019】(1)高流速逆洗工程 第一下部集水装置2から、カチオン塔でLV25m/h
程度以上、アニオン塔でLV15m/h程度以上で純水
を導入し、第一上部集水装置3を経由して、逆洗兼再生
廃水は排出管23から2〜3分間排出する。本工程の目
的は2つある。1つはイオン交換樹脂12を上部に持ち
上げ、浮上性不活性樹脂15に押しつけ、固定層を形成
させる。もう一つは、後述する沈静工程によって、イオ
ン交換樹脂12の表層部、上層部に前サイクルの採水時
に集積した懸濁物質、及び破細した微細樹脂を短時間で
浮上性不活性樹脂15を通り抜けさせ、第一上部集水装
置3から排出させる。この2番目の目的を達成するた
め、不活性樹脂の形状、大きさ、層高及び第一上部集水
装置3のスリット巾を適正にしておく必要がある。ま
た、本工程時、洗浄排水兼空気抜用集水装置16からも
逆洗排水を排出してもよい。
(1) High-speed backwashing process From the first lower water collecting device 2, an LV 25 m / h from the cation tower.
Pure water is introduced in the anion tower at an LV of about 15 m / h or more, and the backwashing / regeneration wastewater is discharged from the discharge pipe 23 through the first upper water collecting device 3 for 2 to 3 minutes. The purpose of this step is twofold. One is to lift the ion exchange resin 12 upward and press it against the buoyant inert resin 15 to form a fixed layer. The other is that a suspended substance accumulated in the surface layer and the upper layer of the ion-exchange resin 12 at the time of water collection in the previous cycle, and the fine resin which has been shattered in a superficial layer and a superficial layer of the ion-exchange resin 12 in a short time by a quiescent process. And discharged from the first upper water collecting device 3. In order to achieve the second object, it is necessary to make the shape, size, layer height, and slit width of the first upper water collecting device 3 of the inert resin appropriate. Further, at the time of this step, the backwashing drainage may also be discharged from the washing drainage / air removal water collecting device 16.

【0020】(2)通薬工程 前工程で上部に押し付けられ、固定層となったイオン交
換樹脂を、そのまま維持できる流速で再生剤21を通薬
し、逆洗兼再生廃水排出ライン23から排出する。固定
層を維持できる流速は、水温、樹脂の比重、大きさによ
っても異なるが、概略、下記のようである。 カチオン樹脂 : LV 7〜8m/h以上 アニオン樹脂 : LV 4m/h以上
(2) Pharmaceutical Step The ion-exchange resin, which has been pressed to the upper part in the previous step and has become a fixed layer, is passed through the regenerant 21 at a flow rate that can be maintained as it is, and discharged from the backwashing / regeneration wastewater discharge line 23. I do. The flow rate at which the fixed layer can be maintained varies depending on the water temperature, the specific gravity of the resin, and the size, but is roughly as follows. Cationic resin: LV 7-8 m / h or more Anionic resin: LV 4 m / h or more

【0021】(3)押出し工程 通薬工程と同様に行う。純水を用いて充填イオン交換樹
脂量の1.5〜2.0倍量通水する。通薬工程、押出し
工程を上向流再生のため、イオン交換樹脂12内で生成
するCO2 等のガス、また、弱型樹脂は再生によってほ
とんど再生形となって樹脂自体の粒径は小さくなるが、
イオン交換樹脂12の上層部に運搬され、CO2 等のガ
ス及び粒径の小さくなった弱型樹脂は、上部に運搬さ
れ、固定層内に空隙が生じることはない。CO2 等ガ
ス、一部微細樹脂及び懸濁物質は、再生廃水として逆洗
兼再生廃水排出ライン23から排出される。
(3) Extrusion step The extrusion step is carried out in the same manner as in the drug delivery step. Using pure water, water is passed 1.5 to 2.0 times the amount of the charged ion exchange resin. Gas such as CO 2 generated in the ion-exchange resin 12 and weak-type resin are almost regenerated by regeneration, and the particle size of the resin itself is reduced due to upward flow regeneration in the drug passing step and the extrusion step. But,
The gas, such as CO 2 , and the weak resin having a reduced particle size, which are transported to the upper layer portion of the ion exchange resin 12, are transported to the upper portion, so that no void is generated in the fixed layer. The gas such as CO 2 , some fine resin and suspended matter are discharged from the backwashing / regeneration wastewater discharge line 23 as regeneration wastewater.

【0022】(4)沈静工程 押出終了後、すべての弁を閉とし、樹脂を自由沈降させ
る。浮上性不活性樹脂に押し付けられ固定層を形成して
いた樹脂は、押出終了と同時に固定層下部から順次自由
沈降し、高比重不活性樹脂上に積層していく。こうして
新たに形成された固定層はイオン交換帯の乱れも少な
く、採水時に処理水が悪化することはない。この時、フ
リーボードの割合が大きい程イオン交換帯は乱れ易くな
るので、適正なフリーボードの割合とすることが重要で
ある。この自由沈降による沈静工程によって、イオン交
換樹脂の全層がほぐされ、また、イオン交換樹脂が固定
層下部から順次自由沈降していくため、この過程におい
てイオン交換樹脂12内に入り込んだ懸濁物質、微細樹
脂が固定層下部から上方に移送され、次回再生時の高速
逆洗によって排出されていく。同様に複層床として用い
た場合、再生後は弱型樹脂と強型樹脂で比重差が最も大
きくなった状態で、沈静工程を行うため、比重の小さい
弱型樹脂は上方に移動され易くなり、両樹脂の混合の進
行を防止できるのである。
(4) Settling Step After completion of the extrusion, all valves are closed to allow the resin to settle freely. The resin that has been pressed against the buoyant inert resin to form the fixed layer is free-sedimented sequentially from the lower portion of the fixed layer at the same time as the end of the extrusion, and is laminated on the high specific gravity inert resin. The newly formed fixed layer has little disturbance in the ion-exchange zone, and the treated water does not deteriorate during water sampling. At this time, the ion-exchange zone is more likely to be disturbed as the ratio of the freeboard increases, so it is important to set the ratio of the freeboard to an appropriate value. In the settling process by the free sedimentation, all layers of the ion exchange resin are loosened, and the ion exchange resin sequentially free sediments from the lower part of the fixed layer. Then, the fine resin is transferred upward from the lower portion of the fixed layer, and is discharged by the high-speed backwash at the next regeneration. Similarly, when used as a multi-layered bed, after regeneration, the calming step is performed in a state where the specific gravity difference between the weak resin and the strong resin is largest, so that the weak resin having a small specific gravity is easily moved upward. Thus, the progress of mixing of both resins can be prevented.

【0023】(5)洗浄工程 従来の採水と同様に行う。この時、5〜10分間の短時
間洗浄排水兼空気抜用集水装置16及びマンホール8内
に設けた第二下部集水装置9からも洗浄排水を排出させ
ると効果的に洗浄できる。以上基本的再生工程を述べた
が、懸濁物質が多量に入った異常時においても、高速逆
洗工程と沈静工程を繰り返すことによって、懸濁物質を
排出できる。また、塔径が大きくフリーボードの割合を
大きくとり、イオン交換帯の乱れを小さくするため、自
由沈降による沈静工程(〜15分)のかわりに、加圧
水、ブロー等により強制的沈静工程をすばやく(〜1
分)行った場合は、懸濁物質、微細樹脂等の排出が充分
でなくなるため、定期的(7〜30サイクル毎)に高速
逆洗工程と自由沈降による沈静工程の繰り返しを行うこ
とによって解決できる。また、中間隔壁を設け、弱型樹
脂と強型樹脂を物理的に分けた場合は、毎サイクル弱型
樹脂のみを逆洗しても、懸濁物質微細樹脂等の△Pを上
昇させる要因となる原因を排除できる。
(5) Washing step The washing step is performed in the same manner as the conventional water sampling. At this time, if the washing drainage is also discharged from the water drainage device 16 for short-time washing drainage and air bleeding for 5 to 10 minutes and the second lower water collecting device 9 provided in the manhole 8, cleaning can be performed effectively. Although the basic regeneration step has been described above, even in the event of an abnormality where a large amount of suspended matter enters, the suspended matter can be discharged by repeating the high-speed backwashing step and the settling step. In addition, in order to increase the ratio of the free board with a large tower diameter and reduce the disturbance of the ion exchange zone, instead of the sedimentation step by free sedimentation (up to 15 minutes), the forced sedimentation step by pressurized water, blow, etc., is performed quickly ( ~ 1
In the case of performing the above, the discharge of suspended substances, fine resin and the like becomes insufficient, so that the problem can be solved by periodically (every 7 to 30 cycles) repeating the high-speed backwashing step and the settling step by free sedimentation. . Also, when an intermediate partition is provided and the weak resin and the strong resin are physically separated, even if only the weak resin is backwashed every cycle, a factor that increases the ΔP of the suspended substance fine resin and the like may be increased. Can be eliminated.

【0024】[0024]

【発明の効果】本発明の向流式イオン交換装置は、従来
の順流式及び向流式のイオン交換装置を改造することに
より、従来の装置の欠点を解消し、いっそう効率的なイ
オン交換装置に改良することができる。そして、本発明
の装置構造に適した再生工程を適用することによって、
安定した運転、再生を行うことができ、次のような効果
を奏する。 (1)容易な改造により、本発明の装置構成となり、安
定した運転ができる。 (2)改造により、イオン交換塔内に充填する樹脂量が
増すことにより、1サイクルの採水量が増加する。 (3)再生時間が短縮する。 (4)大巾にランニングコストが低減する。 (5)再生廃水量が低減する。
According to the present invention, the countercurrent type ion exchange apparatus of the present invention is a modification of the conventional countercurrent type and countercurrent type ion exchange apparatuses, thereby eliminating the drawbacks of the conventional apparatus and making the ion exchange apparatus more efficient. Can be improved. Then, by applying a regeneration process suitable for the device structure of the present invention,
Stable operation and regeneration can be performed, and the following effects can be obtained. (1) The device configuration of the present invention is obtained by easy modification, and stable operation can be performed. (2) The remodeling increases the amount of resin charged in the ion exchange tower, thereby increasing the amount of water taken in one cycle. (3) Reproduction time is shortened. (4) The running cost is greatly reduced. (5) The amount of reclaimed wastewater is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の向流式イオン交換装置の一例を示す基
本構成図。
FIG. 1 is a basic configuration diagram showing an example of a countercurrent ion exchange device of the present invention.

【図2】従来の順流式(a)、(b)及び向流式
(c)、(d)のイオン交換装置を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a conventional downstream type (a), (b) and countercurrent type (c), (d) ion exchange apparatus.

【図3】下部集配水管の部分拡大図、(イ)側面図、
(ロ)底面図。
FIG. 3 is a partially enlarged view of a lower collection and distribution pipe, (a) a side view,
(B) Bottom view.

【符号の説明】[Explanation of symbols]

1:イオン交換塔、2:第一下部集水装置、3:第一上
部集水装置、4:主管、5:枝管、6:高比重不活性樹
脂、7:塔上部鏡部、8:マンホール、9:第二下部集
水装置、10:第二下部集水装置排出管、11:不活性
樹脂排出管、12:イオン交換樹脂、13:フリーボー
ド、14:塔上部鏡部、15:浮上性不活性樹脂、
:洗浄排水兼空気抜用集水装置、17:浮上性不活性
樹脂排出管、18:原水流入管、19:処理水、20:
洗浄排水、21:再生剤、22:原水、24:逆洗排
水、再生廃水、25:底盤、26、27:イオン交換樹
脂量調整
1: ion exchange tower, 2: first lower water collector, 3: first upper water collector, 4: main pipe, 5: branch pipe, 6: high specific gravity inert resin, 7: tower upper mirror section, 8 : Manhole, 9: second lower water collecting device, 10: second lower water collecting device discharge pipe, 11: inert resin discharge pipe, 12: ion exchange resin, 13: free board, 14: tower upper mirror section, 15 : Floating inert resin, 1
6 : Water collecting device for washing drainage and air bleeding, 17: Floating inert resin discharge pipe, 18: Raw water inflow pipe, 19: Treated water, 20:
Wash drainage, 21: regenerant, 22: raw water, 24: backwash drainage, reclaimed wastewater, 25: bottom plate, 26, 27: ion exchange resin amount control valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/42 B01J 47/02 B01J 49/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C02F 1/42 B01J 47/02 B01J 49/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上、下部に各々鏡板を有し、内部にイオ
ン交換樹脂層を内蔵した下向流通水・上向流再生を行う
向流式イオン交換装置において、前記下部鏡板中心近傍
に排水用集水装置9を配備し、その上方に集水装置2を
設けると共に、該集水装置9及び2を水より比重が大き
い高比重不活性樹脂6により埋覆し、該高比重不活性樹
脂層6の上部にイオン交換樹脂層12が配備されている
と共に、前記上部鏡板部又は上部鏡板部近傍に上部集水
装置3を配備し、その上方に洗浄排水装置を兼ねる空気
抜用集水装置16を設けると共に、イオン交換樹脂層1
2上方に空間部13を介して、水より比重が小さい浮上
性不活性樹脂15が前記集水装置3及び16を埋蔵する
ように配備されていることを特徴とする向流式イオン交
換装置。
1. A counter-current ion exchange apparatus having upper and lower end plates each having a built-in ion exchange resin layer therein for regenerating downward flowing water and upward flow, wherein a drain is disposed near the center of the lower end plate. A water collecting device 9 is provided, a water collecting device 2 is provided above the water collecting device 9, and the water collecting devices 9 and 2 are covered with a high specific gravity inert resin 6 having a higher specific gravity than water. 6, an ion exchange resin layer 12 is provided.
Along with the upper end plate portion or the upper end plate portion,
The device 3 is installed, and the air that also serves as the washing and draining device is provided above the device 3.
A drainage collecting device 16 is provided, and the ion exchange resin layer 1
2 Floating with lower specific gravity than water through space 13 above
Inactive resin 15 buries the water collecting devices 3 and 16
Counter-current ion exchange apparatus characterized by being arranged as follows .
【請求項2】 上、下部に各々鏡板を有し、内部にイオ
ン交換樹脂層を内蔵した下向流通水・上向流再生を行う
向流式イオン交換装置において、前記上部鏡板部又は上
部鏡板部近傍に上部集配水装置3を配備し、その上方に
洗浄排水装置を兼ねる空気抜用集水装置16を設けると
共に、イオン交換樹脂層12上方に空間部13を介し
て、水より比重が小さい浮上性不活性樹脂15が前記集
水装置3及び16を埋蔵するように配備されていること
を特徴とする向流式イオン交換装置。
2. A counter-current ion exchange apparatus having a head plate at an upper part and a lower part and an ion-exchange resin layer built therein for regenerating downward flowing water and upward flow, wherein the upper head part or the upper head part is used. The upper water collecting and distributing device 3 is provided in the vicinity of the part, and the air collecting water collecting device 16 also serving as a washing and draining device is provided above the water collecting and distributing device 3, and the specific gravity is smaller than water through the space 13 above the ion exchange resin layer 12. A countercurrent ion exchange device, wherein a floating inert resin 15 is provided so as to bury the water collecting devices 3 and 16.
【請求項3】 前記イオン交換樹脂層は、該樹脂層上方
に空間部を、1サイクル採水終了後において該イオン交
換樹脂層の高さの5〜30%(容量)有することを特徴
とする請求項1又は2記載の向流式イオン交換装置。
3. The ion-exchange resin layer has a space above the resin layer having 5 to 30% (capacity) of the height of the ion-exchange resin layer after one cycle of water sampling. The countercurrent ion exchange device according to claim 1 or 2.
JP04026796A 1996-02-05 1996-02-05 Countercurrent ion exchanger Expired - Fee Related JP3278128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04026796A JP3278128B2 (en) 1996-02-05 1996-02-05 Countercurrent ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04026796A JP3278128B2 (en) 1996-02-05 1996-02-05 Countercurrent ion exchanger

Publications (2)

Publication Number Publication Date
JPH09206744A JPH09206744A (en) 1997-08-12
JP3278128B2 true JP3278128B2 (en) 2002-04-30

Family

ID=12575879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04026796A Expired - Fee Related JP3278128B2 (en) 1996-02-05 1996-02-05 Countercurrent ion exchanger

Country Status (1)

Country Link
JP (1) JP3278128B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869881B2 (en) * 2006-11-21 2012-02-08 野村マイクロ・サイエンス株式会社 Ion exchange apparatus and ion exchange method
JP7446155B2 (en) * 2020-05-18 2024-03-08 三菱ケミカルアクア・ソリューションズ株式会社 ion exchange equipment
CN113735220A (en) * 2021-07-22 2021-12-03 江苏宁晖环保科技有限公司 Municipal administration water pollution prevention and treatment device

Also Published As

Publication number Publication date
JPH09206744A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JPH0144115B2 (en)
JP3145240B2 (en) Continuous ion exchange equipment
JP3278128B2 (en) Countercurrent ion exchanger
JP3162614B2 (en) Regeneration method of high flow backwash type ion exchange column
US4269715A (en) Process and apparatus for treating by ion exchange or adsorption fluids having solid particles suspended therein
JP3162616B2 (en) Regeneration method of countercurrent ion exchange column
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP3941890B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP3162615B2 (en) Regeneration method of countercurrent ion exchange column
JP3907013B2 (en) Countercurrent ion exchange apparatus using resin having uniform particle size and regenerating method thereof
US4193867A (en) Operation of a two-phase reactor
JPS6010678Y2 (en) Ion exchange tower regenerated by upward flow
JPH10180252A (en) Production of pure water and ion-exchange tower
JP3922824B2 (en) High purity water production equipment
JP3212463B2 (en) Multi-layer ion exchange equipment
JP2607544B2 (en) Ion exchange tower used for upflow regeneration
JP2006007027A (en) Ion exchange apparatus
JP3458317B2 (en) Ion exchange apparatus and method for regenerating ion exchange resin
JP3710614B2 (en) Liquid processing tower
TWI648224B (en) Operation method of regenerative ion exchange device
JP2961442B2 (en) Continuous filtration device
JPH049583B2 (en)
JPH05253568A (en) Pure water making apparatus
CN112264112A (en) Resin fluidized bed system for water treatment
JPS6010677Y2 (en) Ion exchange tower used for upstream regeneration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees