JP3277340B2 - Method and apparatus for producing various gases for semiconductor manufacturing plants - Google Patents

Method and apparatus for producing various gases for semiconductor manufacturing plants

Info

Publication number
JP3277340B2
JP3277340B2 JP09620093A JP9620093A JP3277340B2 JP 3277340 B2 JP3277340 B2 JP 3277340B2 JP 09620093 A JP09620093 A JP 09620093A JP 9620093 A JP9620093 A JP 9620093A JP 3277340 B2 JP3277340 B2 JP 3277340B2
Authority
JP
Japan
Prior art keywords
air
oxygen
enriched
purity
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09620093A
Other languages
Japanese (ja)
Other versions
JPH06304432A (en
Inventor
裕一 秦
淳 佐々木
守 河村
真喜 中村
一哉 滝
修一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Fujitsu Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14158648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3277340(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd, Taiyo Nippon Sanso Corp filed Critical Fujitsu Ltd
Priority to JP09620093A priority Critical patent/JP3277340B2/en
Priority to US08/351,476 priority patent/US5656557A/en
Priority to GB9426063A priority patent/GB2283562B/en
Priority to PCT/JP1994/000676 priority patent/WO1994024501A1/en
Publication of JPH06304432A publication Critical patent/JPH06304432A/en
Application granted granted Critical
Publication of JP3277340B2 publication Critical patent/JP3277340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0288Combined chemical and physical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0494Combined chemical and physical processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0004Chemical processing by oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0006Chemical processing by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/005Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0053Hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0068Organic compounds
    • C01B2210/007Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/04Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pressure accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造工場向け各
種ガスの製造方法及び装置に関し、詳しくは、半導体製
造工場で大量に使用される高純度窒素や、該工場で有効
に利用することができる精製された空気(高純度空気)
及び酸素富化空気を製造供給する方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing various gases for use in a semiconductor manufacturing plant. Purified air that can be made (high-purity air)
And a method and apparatus for producing and supplying oxygen-enriched air.

【0002】[0002]

【従来の技術】従来から、半導体産業においては、大量
の高純度窒素が各種用途に使用されているが、これらの
高純度窒素の用途の内訳を調べてみると、必ずしも高純
度窒素を必要としていない個所にも高純度窒素が大量に
使用されているのが現状である。例えば、半導体の洗浄
に用いる純水のタンクのシールガスには、現在、高純度
窒素ガスが使用されているが、溶存酸素量を制御してい
ない場合には、所定の純度を有する高純度空気で十分で
ある。同様に、超純水製造用イオン交換樹脂の再生用バ
ブリングガスにも高純度窒素が用いられているが、所定
純度の高純度空気が得られれば、これを使用することが
できる。
2. Description of the Related Art Conventionally, a large amount of high-purity nitrogen has been used for various purposes in the semiconductor industry. At present, large amounts of high-purity nitrogen are used in places where there is no such thing. For example, high-purity nitrogen gas is currently used as a seal gas for a pure water tank used for cleaning semiconductors, but when the amount of dissolved oxygen is not controlled, high-purity air having a predetermined purity is used. Is enough. Similarly, high-purity nitrogen is also used as a bubbling gas for regeneration of an ion-exchange resin for producing ultrapure water, but if high-purity air having a predetermined purity can be obtained, this can be used.

【0003】さらに、半導体の各製造工程で使用される
エアーガンやウェハー保管箱には、半導体基板(ウェハ
ー)への各種不純物、例えば油分等のハイドロカーボン
や、硫黄酸化物(SOX )等の硫黄分の付着を避けるた
めに高純度窒素を使用しているが、これらの不純物が除
去されている高純度空気であれば、高純度窒素に代えて
高純度空気を使用することができる。また、半導体製造
設備におけるベルヌーイチャックやエアー浮上コンベア
等の基板搬送系で搬送ガスとして使用されている高純度
窒素も、高純度空気に代えることが可能である。
Further, air guns and wafer storage boxes used in each semiconductor manufacturing process include various impurities in semiconductor substrates (wafers), such as hydrocarbons such as oils and sulfur such as sulfur oxides (SO X ). Although high-purity nitrogen is used in order to avoid deposition of minute substances, high-purity air can be used in place of high-purity nitrogen if high-purity air from which these impurities have been removed is used. Further, high-purity nitrogen used as a carrier gas in a substrate carrier system such as a Bernoulli chuck or an air floating conveyor in a semiconductor manufacturing facility can be replaced with high-purity air.

【0004】同様に、半導体材料ガスとして現在使用さ
れている高純度窒素あるいは高純度酸素に代えて高純度
空気を使用することが可能な工程もいくつか考えられ
る。例えば、エッチング工程における四フッ化炭素等の
材料ガスの希釈ガスとして使用されている高純度酸素
は、高純度空気に代えることができ、半導体製造工程で
使用される塩素,塩化水素,臭化水素等の非還元性ガス
のパージ工程で用いられている高純度窒素,高純度酸素
についても、所定純度の空気が得られれば、これを用い
ることが可能である。
[0004] Similarly, there are several possible processes in which high-purity air can be used instead of high-purity nitrogen or high-purity oxygen currently used as a semiconductor material gas. For example, high-purity oxygen used as a diluent gas for a material gas such as carbon tetrafluoride in an etching process can be replaced with high-purity air, and is used in a semiconductor manufacturing process for chlorine, hydrogen chloride, and hydrogen bromide. High-purity nitrogen and high-purity oxygen used in the purging step of a non-reducing gas such as the above can be used if air of a predetermined purity can be obtained.

【0005】このようなことから、種々の用途において
高価な高純度窒素や高純度酸素を用いずに、高純度空気
を使用することにより、コストダウンを図る試みが検討
されている。そして、このような用途に使用する際の高
純度空気の仕様としては、水素(H2 ),一酸化炭素
(CO),メタン(CH4 ;トータル炭化水素(TH
C)をメタンとして),水分(H2 O),二酸化炭素
(CO2 ),窒素化合物(NOX ),硫黄化合物(SO
X )等が、いずれも1ppm以下であることが要求され
る。
For these reasons, attempts have been made to reduce costs by using high-purity air instead of expensive high-purity nitrogen or high-purity oxygen in various applications. The specifications of high-purity air used for such applications include hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ; total hydrocarbon (TH).
C) as methane), moisture (H 2 O), carbon dioxide (CO 2 ), nitrogen compound (NO x ), sulfur compound (SO
X ) is required to be 1 ppm or less.

【0006】また、半導体製造工程には、恒温恒湿に維
持されている工程が数多くあり、例えば、空調用,純水
温度保持用等の恒温恒湿を得るための設備,ユーティリ
ティーは、そのコストが相当額になるため、コストダウ
ンの検討対象になっている。一般に、加熱源としては、
ボイラーからスチームを供給しているが、このボイラー
用加熱炉は、通常、重油/空気バーナーで加熱を行って
いる。したがって、この重油/空気バーナーの空気を酸
素富化空気に代えることにより、加熱炉の燃焼効率を大
幅に上昇させることが可能である。
In the semiconductor manufacturing process, there are many steps which are maintained at a constant temperature and constant humidity. For example, equipment and utilities for obtaining constant temperature and constant humidity such as for air-conditioning and for maintaining the temperature of pure water are expensive. Is a considerable amount, and is being considered for cost reduction. Generally, as a heating source,
Steam is supplied from the boiler, and the heating furnace for the boiler is usually heated by a heavy oil / air burner. Therefore, by replacing the air of the heavy oil / air burner with oxygen-enriched air, it is possible to greatly increase the combustion efficiency of the heating furnace.

【0007】[0007]

【発明が解決しようとする課題】従来から、水分や二酸
化炭素を除去した精製空気は、種々の計装用又はシール
用として用いるが、比較的少量の需要に対応して小型圧
縮機等により圧縮され、精製装置で精製されて供給され
てきた。また、空気液化分離装置の計装用空気は、通
常、前処理工程の吸着器を導出した精製空気を少量分岐
して用いていた。
Conventionally, purified air from which water and carbon dioxide have been removed has been used for various instrumentation or sealing purposes, but is compressed by a small compressor or the like in response to a relatively small demand. , Purified by a purification device and supplied. Further, as the instrumentation air for the air liquefaction / separation apparatus, a small amount of purified air derived from the adsorber in the pretreatment step is usually branched and used.

【0008】しかしながら、従来の空気液化分離装置
は,上述のように、計装用として少量の乾燥空気を分岐
して取出していたに過ぎず、前記仕様を満足する高純度
の精製空気(高純度空気)を製品として大量に製出する
装置は無かった。すなわち、大気中には、通常、前記各
種不純物ガスが微量存在し、空気液化分離の各工程中
で、あるものは除去され、あるものは濃縮されて導出さ
れるガス中に含まれることになるが、従来は、高純度窒
素については、その純度仕様が厳しく要求されているた
め、これに対応してプロセスを種々工夫して満足する純
度を得るようにしていた。また、製品高純度窒素を採取
した残りの排ガスは、前記吸着器の再生用ガスとして使
用される以外は、大気に放出されているのが実情であ
る。
However, as described above, the conventional air liquefaction / separation apparatus merely branches off a small amount of dry air for instrumentation, and obtains high-purity purified air (high-purity air) satisfying the above specifications. ) Was not produced in large quantities as a product. That is, in the atmosphere, usually, the above-mentioned various impurity gases are present in trace amounts, and during each step of the air liquefaction separation, some are removed and some are included in the gas that is concentrated and derived. However, conventionally, high purity nitrogen is strictly required for its purity specification, and accordingly, various processes have been devised to obtain a satisfactory purity. In addition, the actual situation is that the remaining exhaust gas from which the product high-purity nitrogen has been collected is released to the atmosphere except that it is used as a regeneration gas for the adsorber.

【0009】そこで本発明は、半導体製造工場で使用す
る高純度窒素を製造するとともに、前記要求を満たす高
純度空気を製出し、同時に酸素富化空気も製品として供
給することができる半導体工場向け各種ガスの製造方法
及び装置を提供することを目的としている。
Accordingly, the present invention provides various types of semiconductor manufacturing plants capable of producing high-purity nitrogen used in a semiconductor manufacturing plant, producing high-purity air satisfying the above requirements, and simultaneously supplying oxygen-enriched air as a product. It is an object of the present invention to provide a method and an apparatus for producing gas.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体工場向け各種ガスの製造方法は、所
定圧力、例えば3〜10kg/cm2 Gに圧縮した原料
空気を触媒塔に導入して含有する一酸化炭素及び水素を
触媒反応により二酸化炭素及び水分に変換し、該触媒反
応後の昇温空気を5〜10℃に冷却後、吸着塔に導入し
て二酸化炭素,水分及びその他の微量不純物を吸着除去
して精製し、得られた精製空気の一部を製品高純度空気
として採取し、残部の精製空気を主熱交換器に導入して
帰還ガスとの熱交換により略液化温度にまで冷却し、冷
却後の精製空気を単精留塔に導入して液化精留を行い、
該単精留塔の頂部から高純度窒素を導出して前記主熱交
換器で寒冷を回収後に製品高純度窒素ガスとして採取す
るとともに、前記単精留塔の底部から酸素富化液化空気
を導出し、膨張させて前記単精留塔の凝縮蒸発器に導入
し、該凝縮蒸発器で気化して導出した酸素富化空気を前
記主熱交換器に導入して中間温度まで昇温し、該中間温
度の酸素富化空気を膨張タービンに導入して膨張降温さ
せて寒冷を発生させた後、再度前記主熱交換器に導入し
て寒冷を回収し、製品酸素富化空気として採取すること
を特徴としている。
In order to achieve the above object, a method for producing various gases for a semiconductor factory according to the present invention comprises introducing a raw material air compressed to a predetermined pressure, for example, 3 to 10 kg / cm 2 G, into a catalyst tower. Carbon monoxide and hydrogen contained as a catalyst are converted into carbon dioxide and water by a catalytic reaction, and the heated air after the catalytic reaction is cooled to 5 to 10 ° C. A small amount of impurities is adsorbed and purified, and a part of the obtained purified air is collected as product high-purity air, and the remaining purified air is introduced into the main heat exchanger and almost liquefied by heat exchange with the return gas. Cooled to a temperature, liquefied rectification by introducing purified air after cooling into a single rectification column,
The high-purity nitrogen is derived from the top of the single rectification column, and after collecting the cold in the main heat exchanger, the product is collected as high-purity nitrogen gas, and the oxygen-enriched liquefied air is derived from the bottom of the single rectification column. Then, expanded and introduced into the condensing evaporator of the single rectification column, the oxygen-enriched air vaporized and led out in the condensing evaporator is introduced into the main heat exchanger and heated to an intermediate temperature, After the intermediate-temperature oxygen-enriched air is introduced into the expansion turbine to expand and lower the temperature to generate cold, the cold is again introduced into the main heat exchanger to collect the cold, and to collect the product as oxygen-enriched air. Features.

【0011】さらに、本発明方法では、上記構成におい
て得た製品酸素富化空気を、半導体製造工場の恒温設備
用等の熱源を供給する加熱炉の燃焼用助燃ガスとして供
給することを特徴としている。
Further, the method of the present invention is characterized in that the product oxygen-enriched air obtained in the above configuration is supplied as a combustion auxiliary gas for a heating furnace for supplying a heat source for a constant temperature facility in a semiconductor manufacturing plant. .

【0012】また、本発明の半導体製造工場向け各種ガ
スの製造装置は、原料空気を所定圧に圧縮する圧縮機
と、該圧縮機で昇圧した圧縮空気を導入して含有する極
微量の一酸化炭素及び水素を触媒反応により二酸化炭素
及び水分に変換する触媒塔と、触媒反応後の昇温空気を
冷却する冷却器と、原料空気中の二酸化炭素,水分及び
その他の微量不純物を吸着除去する吸着塔と、該吸着塔
を導出した精製空気の一部を製品高純度空気として導出
する導管と、精製空気の残部を帰還ガスと熱交換させて
略液化温度にまで冷却する主熱交換器と、該主熱交換器
で冷却後の冷却精製空気を導入して液化精留を行い、塔
頂部から高純度窒素を、塔底部から酸素富化液化空気を
それぞれ導出する単精留塔と、該単精留塔の上部から導
出した高純度窒素と前記単精留塔の底部から導出した酸
素富化液化空気とを熱交換させて液化窒素を生成すると
ともに酸素富化液化空気を気化させる凝縮蒸発器と、該
凝縮蒸発器で気化した酸素富化空気を膨張降温させる膨
張タービンと、膨張タービンにて膨張降温した酸素富化
空気を前記主熱交換器にて熱交換した後製品酸素富化空
気として採取する導管とを備えたことを特徴としてい
る。
Further, the apparatus for producing various gases for a semiconductor manufacturing plant according to the present invention comprises a compressor for compressing raw material air to a predetermined pressure, and a very small amount of monoxide which is introduced by introducing compressed air pressurized by the compressor. A catalyst tower that converts carbon and hydrogen into carbon dioxide and moisture by a catalytic reaction, a cooler that cools the heated air after the catalytic reaction, and an adsorption that adsorbs and removes carbon dioxide, moisture, and other trace impurities in the raw material air Tower, a conduit for leading a part of the purified air derived from the adsorption tower as product high-purity air, and a main heat exchanger for exchanging the remainder of the purified air with the return gas and cooling to approximately the liquefaction temperature, A single rectification column for introducing liquefied rectification by introducing cooled purified air after cooling in the main heat exchanger, and extracting high-purity nitrogen from the top of the tower and oxygen-enriched liquefied air from the bottom of the tower; With high-purity nitrogen derived from the upper part of the rectification column A condensing evaporator for generating liquefied nitrogen and evaporating the oxygen-enriched liquefied air by heat exchange with the oxygen-enriched liquefied air derived from the bottom of the single rectification column, and oxygen enrichment vaporized by the condensing evaporator An expansion turbine that expands and cools air, and oxygen enrichment that is expanded and cooled by the expansion turbine
After the air is heat-exchanged in the main heat exchanger, the product oxygen-enriched air
And a conduit for sampling as air .

【0013】[0013]

【作 用】上記構成によれば、大量需要に対応して大量
の高純度空気の製造が可能になり、従来の高純度窒素と
共に高純度空気を所用量製出することができる。また、
精製酸素富化空気をボイラー燃焼助燃ガスとして供給す
ることも可能になる。
[Operation] According to the above configuration, it is possible to produce a large amount of high-purity air in response to a large demand, and it is possible to produce high-purity air together with conventional high-purity nitrogen in a desired amount. Also,
Purified oxygen-enriched air can also be supplied as boiler combustion auxiliary gas.

【0014】[0014]

【実施例】図1は本発明の一実施例を示す系統図であっ
て、導管1から導入された原料空気12000Nm3
hは、原料空気圧縮機2で3〜10kg/cm2 G、例
えば約5kg/cm2 Gに圧縮されて導出する。この原
料空気中には、装置の立地条件にもよるが、通常の空気
成分の他、水素(H2 )約1〜5ppm,一酸化炭素
(CO)約1〜5ppm,メタン(トータル炭化水素
(THC)をメタン(CH4 )として)約2ppm,硫
黄酸化物(SOX )約0. 1ppb,窒素酸化物(NO
X )約0. 05ppb等が含まれている。
FIG. 1 is a system diagram showing one embodiment of the present invention, in which a raw material air introduced from a conduit 1 is 12000 Nm 3 /
h is feed air compressor 2 3~10kg / cm 2 G, is compressed derives, for example, about 5kg / cm 2 G. Depending on the location of the apparatus, this raw air contains hydrogen (H 2 ) of about 1 to 5 ppm, carbon monoxide (CO) of about 1 to 5 ppm, methane (total hydrocarbon ( THC) as methane (CH 4 )) about 2 ppm, sulfur oxide (SO x ) about 0.1 ppb, nitrogen oxide (NO
X ) about 0.05 ppb.

【0015】原料空気圧縮機2を約120℃で導出した
圧縮空気は、後述の再生ガス加熱用熱交換器3及びアフ
タークーラー(図示せず)で約40℃まで冷却され、ド
レーンセパレーター4で飽和水分が分離された後、熱交
換器5に導入され、向流する触媒塔導出空気と熱交換し
て約300℃まで昇温し、さらに昇温器6に入り、後述
の加熱炉40で加熱された熱媒体による熱媒体ヒーター
7で350℃に昇温して触媒塔8に導入される。なお、
このとき、熱交換器5で十分に昇温できれば、前記昇温
器6をバイパスさせてバイパス経路5aを経由させても
良い。
The compressed air discharged from the raw air compressor 2 at about 120 ° C. is cooled to about 40 ° C. by a regenerative gas heating heat exchanger 3 and an after cooler (not shown), and saturated by a drain separator 4. After the water is separated, the water is introduced into the heat exchanger 5 and exchanges heat with the counterflowing air flowing out of the catalyst tower to raise the temperature to about 300 ° C., and further enters the heater 6 to be heated in the heating furnace 40 described later. The temperature is raised to 350 ° C. by the heat medium heater 7 using the heat medium and introduced into the catalyst tower 8. In addition,
At this time, if the temperature can be sufficiently raised by the heat exchanger 5, the heater 6 may be bypassed to pass through the bypass path 5a.

【0016】上記触媒塔8には、白金(Pt)及び/又
はパラジウム(Pd)が充填されており、前記原料空気
中に存在する微量の水素、一酸化炭素及び炭化水素を酸
素と反応させて水及び二酸化炭素に変換する。この触媒
塔8における触媒反応においては、触媒として白金やパ
ラジウムを用い、反応温度を350℃以上にすることに
より、微量の水素及び一酸化炭素を空気中の酸素と反応
させて略完全に水及び二酸化炭素にすることができる。
同時に、メタン等の炭化水素も、大部分を水及び二酸化
炭素にすることができる。ここで用いる触媒としては、
前記白金やパラジウムが反応促進性及び耐久性の双方の
面から最も優れているが、価格面,寿命等を考慮して、
他の触媒、例えばマンガン(Mn),ニッケル(N
i),クロム(Cr),コバルト(Co)等を選択し、
それぞれを単独又は前記貴金属を含めて複合触媒として
使用しても良いことは当然である。
The catalyst tower 8 is filled with platinum (Pt) and / or palladium (Pd), and reacts trace amounts of hydrogen, carbon monoxide and hydrocarbons present in the raw material air with oxygen. Convert to water and carbon dioxide. In the catalytic reaction in the catalyst tower 8, platinum or palladium is used as a catalyst, and the reaction temperature is set to 350 ° C. or higher, so that trace amounts of hydrogen and carbon monoxide are reacted with oxygen in the air to almost completely remove water and Can be carbon dioxide.
At the same time, hydrocarbons such as methane can be largely converted to water and carbon dioxide. As the catalyst used here,
Platinum and palladium are the best in terms of both reaction acceleration and durability.
Other catalysts such as manganese (Mn), nickel (N
i), chromium (Cr), cobalt (Co), etc.
Naturally, each of them may be used alone or as a composite catalyst including the noble metal.

【0017】上記触媒塔8を導出した高温圧縮原料空気
は、熱交換器5で向流する前記圧縮原料空気と熱交換を
行って約45℃まで降温し、さらに冷却器9に導入され
てフレオン冷凍機10からの循環冷媒により5〜10℃
まで冷却される。冷却後の圧縮原料空気は、切換え使用
される一対の吸着塔12a,12bの一方に導入され、
ここで含有する前記水分,二酸化炭素,未反応のメタン
(各種炭化水素),窒素化合物,硫黄化合物等の不純物
の一部が吸着除去される。
The high-temperature compressed raw material air from the catalyst tower 8 exchanges heat with the compressed raw material air flowing countercurrently in the heat exchanger 5 to lower the temperature to about 45 ° C. 5 to 10 ° C. by the circulating refrigerant from the refrigerator 10
Cooled down. The compressed raw material air after cooling is introduced into one of a pair of adsorption towers 12a and 12b used for switching,
Here, some of the impurities such as water, carbon dioxide, unreacted methane (various hydrocarbons), nitrogen compounds, sulfur compounds and the like contained therein are adsorbed and removed.

【0018】上記微量不純物を吸着除去するために上記
吸着塔12a,12bに充填する吸着剤としては、モレ
キュラーシーブ13Xが最も適しており、通過空気量に
対して充填量を最適に設定することにより、原料空気中
の微量不純物を1ppm以下にまで、確実に除去するこ
とができる。またモレキュラーシーブ13Xに限らず、
同じゼオライト系吸着剤のモレキュラーシーブ4A,5
Aでも、略同様の効果が得られる。
As the adsorbent to be packed in the adsorption towers 12a and 12b to adsorb and remove the trace impurities, a molecular sieve 13X is most suitable. In addition, trace impurities in the raw material air can be reliably removed to 1 ppm or less. In addition to molecular sieve 13X,
Molecular sieves 4A, 5 of the same zeolite adsorbent
In A, substantially the same effect can be obtained.

【0019】さらに、上記吸着塔12a、12bにおい
て、前記ゼオライト系吸着剤の入口付近にアルミナゲル
又はシリカゲル等の水分吸着剤を積層充填し、圧縮空気
中の水分を水分吸着剤で先ず除去し、次いで他の前記微
量不純物をゼオライト系吸着剤で除去することにより、
一層効率的に原料空気の精製を行うことができる。な
お、このときのアルミナゲル又はシリカゲル等の水分吸
着剤とゼオライト系吸着剤との充填割合は、重量比で
1:9乃至3:7が適当である。
Further, in the adsorption towers 12a and 12b, a water adsorbent such as alumina gel or silica gel is laminated and filled near the entrance of the zeolite adsorbent, and the water in the compressed air is first removed by the water adsorbent. Next, by removing the other trace impurities with a zeolite-based adsorbent,
The raw material air can be purified more efficiently. At this time, the filling ratio of the moisture adsorbent such as alumina gel or silica gel to the zeolite adsorbent is appropriately 1: 9 to 3: 7 by weight.

【0020】また、上記吸着塔12a、12bは、切換
え使用されるもので、一方が吸着工程の時、他方は再生
工程である。再生工程は、さらに加熱段階と冷却段階と
に分けられる。加熱段階では、後述する精製酸素富化空
気の一部を、前記原料空気の圧縮熱を回収して昇温する
前記再生ガス加熱用熱交換器3及び後述する熱媒体ヒー
ター13で約130℃に加温し、導管14から加熱段階
にある吸着塔12a,12bのいずれかに出口側から送
入することにより、前工程で吸着した前記不純物を吸着
剤から脱着して排出する。この加熱段階を終了後に冷却
段階に入り、前記再生ガス加熱用熱交換器3及び熱媒体
ヒーター13をバイパスした精製酸素富化空気を、同様
に導管14から冷却段階にある吸着塔12a,12bの
出口側から継続送入し、該吸着塔12a,12b内を略
5℃まで降温する。降温した吸着塔12a,12bは、
次工程の吸着工程に入り、前記圧縮原料空気が入口側か
ら導入され、他方の吸着塔が再生工程に入る。
The adsorption towers 12a and 12b are used in a switched manner. One of the adsorption towers 12a and 12b is in the adsorption step, and the other is in the regeneration step. The regeneration process is further divided into a heating stage and a cooling stage. In the heating step, a part of the purified oxygen-enriched air described below is heated to about 130 ° C. by the regeneration gas heating heat exchanger 3 and the heat medium heater 13 described below, which recovers and heats the compression heat of the raw material air. After heating, the impurities adsorbed in the preceding step are desorbed from the adsorbent and discharged from the conduit 14 through the outlet side into one of the adsorption towers 12a and 12b in the heating stage. After the completion of the heating step, the cooling step is started, and the purified oxygen-enriched air that has bypassed the regeneration gas heating heat exchanger 3 and the heat medium heater 13 is similarly supplied from the conduit 14 to the adsorption towers 12a and 12b in the cooling step. It is continuously fed from the outlet side, and the temperature in the adsorption towers 12a and 12b is lowered to approximately 5 ° C. The adsorption towers 12a and 12b whose temperature has dropped are
In the next adsorption step, the compressed raw material air is introduced from the inlet side, and the other adsorption tower enters the regeneration step.

【0021】このようにして吸着塔12a,12bの出
口から導出される圧力約5kg/cm2 Gの精製空気
は、前記大気中の不純物、即ち水素,一酸化炭素,炭化
水素,水分,二酸化炭素,窒素化合物,硫黄化合物等
を、いずれも1ppm以下まで(窒素化合物及び硫黄化
合物については、原料空気中の存在量以下に)除去され
た清浄空気である。この吸着塔12a,12bを導出し
た約5kg/cm2 Gの精製空気(PGA)の一部約2
400〜6000Nm3 /hは、導管15から導管16
へ分岐し、前述の半導体製造工場における各工程や純水
タンクのシール、イオン交換樹脂のバブリング等に供給
される。
The purified air with a pressure of about 5 kg / cm 2 G led out of the outlets of the adsorption towers 12a and 12b in this manner is an impurity in the atmosphere, ie, hydrogen, carbon monoxide, hydrocarbon, moisture, carbon dioxide. , Nitrogen compounds, sulfur compounds and the like are all clean air in which the nitrogen compounds and sulfur compounds have been removed to 1 ppm or less (for nitrogen compounds and sulfur compounds, the amount present in the raw material air or less). A part of purified air (PGA) of about 5 kg / cm 2 G derived from the adsorption towers 12a and 12b is about 2 kg.
400 to 6000 Nm 3 / h is transferred from conduit 15 to conduit 16
It is supplied to the above-described steps in the semiconductor manufacturing plant, the seal of the pure water tank, the bubbling of the ion exchange resin, and the like.

【0022】導管16へ分岐した残りの精製空気600
0〜9600Nm3 /hは、導管17からコールドボッ
クス46内の主熱交換器18に導入され、略液化温度ま
で冷却されて導出し、単精留塔19の下部に導入され
る。精製原料空気は、単精留塔19内での精留により、
塔頂部に窒素ガスが分離し、塔底部に酸素富化液化空気
が分離する。
The remaining purified air 600 branched to the conduit 16
0 to 9600 Nm 3 / h is introduced from the conduit 17 into the main heat exchanger 18 in the cold box 46, cooled to substantially the liquefaction temperature, led out, and introduced into the lower part of the single rectification column 19. The purified raw material air is rectified in the single rectification column 19,
Nitrogen gas separates at the top of the column and oxygen-enriched liquefied air separates at the bottom of the column.

【0023】塔頂部に分離した前記不純物濃度をクリヤ
する高純度の窒素ガスは、導管20に導出して二分し、
その一方は、前記主熱交換器18に入り、前記精製空気
と熱交換を行い、3℃程度まで昇温して導管21へ導出
し、製品高純度窒素(PGN)として2200〜350
0Nm3 /hが半導体製造工場の各工程へ供給される。
The high-purity nitrogen gas, which is separated at the top of the column and clears the impurity concentration, is led out to a conduit 20 and bisected.
One of them enters the main heat exchanger 18, exchanges heat with the purified air, raises the temperature to about 3 ° C., and leads out to the conduit 21 to produce a high purity nitrogen (PGN) of 2200 to 350N.
0 Nm 3 / h is supplied to each step of the semiconductor manufacturing plant.

【0024】二分した他方の高純度窒素ガスは、導管2
2から凝縮蒸発器24の熱交換流路25に入り、流路2
6の酸素富化液体空気と熱交換して凝縮し、液化窒素と
なって導管28に導出し、二分して大部分は単精留塔1
9の還流液となり、一部は製品液体窒素として0〜25
0Nm3 /hが導管29を介して高純度液体窒素貯槽3
0に導入され、貯留される。この高純度液体窒素貯槽3
0は、前記精製空気及び高純度窒素の需要量に応じて、
これらのガスの生産量を調節し、その余剰分を液体窒素
として貯留しておき、高純度窒素の需要増大時や起動時
等に使用する。なお、符号23は、水素,ヘリウム(H
e),ネオン(Ne)等の低沸点成分を放出する分岐管
である。
The other high-purity nitrogen gas is divided into two
2 enters the heat exchange flow path 25 of the condensation evaporator 24,
6, heat exchange with the oxygen-enriched liquid air, and condensed to form liquefied nitrogen, which is led out to the conduit 28, and is divided into two parts, most of which are in the single rectification column 1.
9 and partly as product liquid nitrogen from 0 to 25
0 Nm 3 / h is supplied to the high purity liquid nitrogen storage tank 3 through the conduit 29.
Introduced to zero and stored. This high-purity liquid nitrogen storage tank 3
0 according to the demand of the purified air and high-purity nitrogen,
The production amount of these gases is adjusted, and the surplus is stored as liquid nitrogen, which is used when the demand for high-purity nitrogen increases or when starting up. Reference numeral 23 denotes hydrogen, helium (H
e), a branch pipe for releasing low boiling components such as neon (Ne).

【0025】一方、塔底部に溜出した酸素富化液化空気
3800〜6100Nm3 /hは、導管31及び膨張弁
32を経て前記凝縮蒸発器24に導入され、前記熱交換
流路26に入り、流路25の高純度窒素と熱交換して気
化し、酸素富化空気となる。この酸素富化空気(RG
A)は、導管33から主熱交換器18へ導入されて中間
温度まで昇温し、導管34から膨張タービン35に導入
されて膨張降温した後、導管36から再度主熱交換器1
8に入って前記精製空気と熱交換を行い、約3℃に昇温
して導管37から導出される。
On the other hand, the oxygen-enriched liquefied air 3800 to 6100 Nm 3 / h distilled at the bottom of the tower is introduced into the condensing evaporator 24 through the conduit 31 and the expansion valve 32, and enters the heat exchange passage 26. It exchanges heat with the high-purity nitrogen in the flow path 25 and evaporates to become oxygen-enriched air. This oxygen-enriched air (RG
A) is introduced from the conduit 33 into the main heat exchanger 18 to increase the temperature to an intermediate temperature, is introduced from the conduit 34 to the expansion turbine 35, expands and cools down, and then re-enters the main heat exchanger 1 through the conduit 36.
8, heat exchange with the purified air is performed, the temperature is raised to about 3 ° C., and the air is discharged from the conduit 37.

【0026】上記導管37の酸素富化空気の大部分は、
製品酸素富化空気として採取されて加熱炉(ボイラー)
40のバーナー39,39に導入され、導管38からの
重油又はLPG等の燃料と混合して燃焼に供される。導
管41から加熱炉40に供給される水は、加熱炉40内
でスチームとなり、前記半導体製造工場の各昇温装置や
恒温装置の熱源として用いられる。
Most of the oxygen-enriched air in the conduit 37 is
Heating furnace (boiler) collected as product oxygen-enriched air
The fuel is introduced into the burners 39 and 39 of the fuel tank 40 and mixed with fuel such as heavy oil or LPG from the conduit 38 for combustion. The water supplied from the conduit 41 to the heating furnace 40 becomes steam in the heating furnace 40 and is used as a heat source of each of the temperature raising devices and the constant temperature devices in the semiconductor manufacturing plant.

【0027】また、導管42は、水以外の高温熱媒体を
供給する管であり、加熱炉40内で昇温して前記熱媒体
ヒーター13で吸着塔再生ガスを約130℃に加温して
帰還し、加熱炉40で再度昇温して循環する。さらに、
導管43は、導管42と同様に、他の高温熱媒体を導入
する管であって、前記触媒塔入口の昇温器6で圧縮原料
空気を約300℃から約350℃に昇温して帰還し、再
度昇温して循環する。
The conduit 42 is a pipe for supplying a high-temperature heat medium other than water. The pipe 42 is heated in the heating furnace 40 and the adsorption medium regeneration gas is heated to about 130 ° C. by the heat medium heater 13. After returning, the temperature is raised again in the heating furnace 40 and circulated. further,
The conduit 43, like the conduit 42, is a tube for introducing another high-temperature heat medium, and the compressed raw material air is heated from about 300 ° C. to about 350 ° C. by the heater 6 at the catalyst tower inlet and returned. Then, the temperature is raised again and circulation is performed.

【0028】これらの各導管41,42,43以外に
も、必要温度に応じて各種熱媒体を昇温するコイルを加
熱炉40内に設け、熱媒体を昇温してヒーター熱源とし
て用いることが可能なことは言うまでもない。このよう
な熱源供給用加熱炉の燃焼助燃ガスとして、前記導管3
7からの酸素富化空気を用いることにより、著しく燃焼
効率を向上させることができ、エネルギーコストを低減
できる。
In addition to these conduits 41, 42 and 43, a coil for raising the temperature of various heat media according to the required temperature may be provided in the heating furnace 40, and the heat medium may be heated to be used as a heater heat source. Needless to say, this is possible. As the combustion assisting gas for such a heat source supply heating furnace, the conduit 3
By using the oxygen-enriched air from No. 7, the combustion efficiency can be remarkably improved, and the energy cost can be reduced.

【0029】また、加熱炉40へ向かう導管37から分
岐した酸素富化空気の一部は、導管50から弁51を経
て前記導管14から再生工程にある吸着塔12a,12
bへ再生ガスとして導入される。この再生ガスは、周期
により弁51を閉として、迂回路52から前記熱交換器
3へ入って圧縮機2の圧縮熱により昇温され、さらに前
記熱媒体ヒーター13に入って前記加熱炉40から導管
42を経て来る高温熱媒体により130℃に昇温された
後、加熱段階にある吸着塔12a、12bへ導入され、
吸着されている不純物を脱着して該吸着塔12a、12
bを導出する。この酸素富化空気は、上記用途で余った
場合には、導管53から系外の他の用途へ供給するか、
あるいは放出する。
Further, a part of the oxygen-enriched air branched from the conduit 37 toward the heating furnace 40 passes from the conduit 50 via the valve 51 via the conduit 50 to the adsorption towers 12a and 12a in the regeneration step.
b is introduced as a regeneration gas. The regenerated gas enters the heat exchanger 3 from the detour 52 and is heated by the heat of compression of the compressor 2 by closing the valve 51 in a periodic manner, and further enters the heat medium heater 13 and from the heating furnace 40. After the temperature is raised to 130 ° C. by the high-temperature heat medium passing through the conduit 42, the heat is introduced into the adsorption towers 12a and 12b in the heating stage,
The adsorbed impurities are desorbed to remove the adsorbed towers 12a and 12a.
b is derived. This oxygen-enriched air is supplied from the conduit 53 to another use outside the system, if the above-mentioned use remains.
Or release.

【0030】前記酸素富化空気による加熱炉40の高効
率燃焼によって、低原単位の加熱エネルギーを、装置の
加熱工程及び半導体工場の各加熱工程に供給することが
できる。さらに、酸素富化空気は、硫黄酸化物,窒素酸
化物を除去した高純度精製空気であるため、加熱炉40
内における諸部分の腐食の心配が全くない。
By the high-efficiency combustion of the heating furnace 40 with the oxygen-enriched air, the heating energy of a low basic unit can be supplied to the heating step of the apparatus and each heating step of the semiconductor factory. Further, since the oxygen-enriched air is high-purity purified air from which sulfur oxides and nitrogen oxides have been removed, the heating furnace 40
There is no concern about corrosion of various parts in the interior.

【0031】また、前記高純度窒素ガスを供給するライ
ン(導管21)には、このラインのガスの需要が増加し
て導管21の圧が低下した時、これを感知して前記高純
度液体窒素貯槽30からの貯留液を導出し、ガス化して
供給する系統が設けられている。すなわち、前記高純度
液体窒素貯槽30に貯留された高純度液体窒素は、導管
57,58から、圧力指示調節計61の信号で作動する
調節弁59を通り、蒸発器60で気化して前記導管21
に合流する。この高純度液体窒素の送出圧力は、導管5
5から導出した少量の液化窒素を、加圧蒸発器56で気
化して再度貯槽30に導入することにより得ている。ま
た、導管64,弁65,導管66は、起動時間を短縮す
るために、凝縮蒸発器24の熱交換流路27を介して前
記単精留塔19へ寒冷を供給するための系統である。
The line (conduit 21) for supplying the high-purity nitrogen gas is connected to the high-purity liquid nitrogen by detecting when the pressure of the line 21 decreases due to an increase in the demand for gas in the line. A system is provided for extracting the stored liquid from the storage tank 30, gasifying and supplying the stored liquid. That is, the high-purity liquid nitrogen stored in the high-purity liquid nitrogen storage tank 30 passes through conduits 57 and 58, passes through a control valve 59 operated by a signal from a pressure indicating controller 61, is vaporized in an evaporator 60, and is vaporized by the evaporator 60. 21
To join. The delivery pressure of this high-purity liquid nitrogen is
A small amount of liquefied nitrogen derived from 5 is vaporized by the pressurized evaporator 56 and is again introduced into the storage tank 30. The conduit 64, the valve 65, and the conduit 66 are systems for supplying cold to the single rectification column 19 via the heat exchange flow path 27 of the condensing evaporator 24 in order to shorten the startup time.

【0032】なお、本発明の系統は、上記実施例に限ら
れるものではなく、通常の空気液化分離による高純度窒
素製造装置において採用されている各種プロセスに適用
し得るものである。
The system of the present invention is not limited to the above embodiment, but can be applied to various processes employed in a normal high-purity nitrogen production apparatus by air liquefaction separation.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、半導体
製造工場に必要な高純度空気,高純度窒素及び酸素富化
空気を、その必要量に応じて低コストで供給することが
できる。すなわち、本発明によれば、半導体製造工場に
おいて高純度空気の必要な工程には高純度空気を、高純
度窒素を必要とする工程には高純度窒素を、それぞれ供
給できるとともに、酸素富化空気により加熱源としての
燃焼炉の燃焼効率を上昇させることができるので、工場
全体としての半導体製造に要するユーティリティー原単
位の低減に貢献するところが大である。また、これらの
ガスの供給装置としても、圧縮原料空気を全く無駄なく
製品として供給できるばかりでなく、加熱昇温工程には
酸素富化空気燃焼によるエネルギーを利用しているの
で、従来に比して効率的である。
As described above, according to the present invention, high-purity air, high-purity nitrogen and oxygen-enriched air required for a semiconductor manufacturing plant can be supplied at low cost according to the required amount. . That is, according to the present invention, high-purity air can be supplied to a process requiring high-purity air in a semiconductor manufacturing plant, high-purity nitrogen can be supplied to a process requiring high-purity nitrogen, and oxygen-enriched air can be supplied. As a result, the combustion efficiency of the combustion furnace as a heating source can be increased, so that it greatly contributes to the reduction of the utility basic unit required for semiconductor production in the whole factory. In addition, these gas supply devices not only can supply compressed raw material air as a product without waste, but also use energy from oxygen-enriched air combustion in the heating and heating process. And efficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2…原料空気圧縮機、3…再生ガス加熱用熱交換器、4
…ドレーンセパレーター、5…熱交換器、6…昇温器、
7…熱媒体ヒーター、8…触媒塔、9…冷却器、10…
フレオン冷凍機、12a,12b…吸着塔、13…熱媒
体ヒーター、18…主熱交換器、19…単精留塔、24
…凝縮蒸発器、25,26,27…熱交換流路、30…
液体窒素貯槽、32…膨張弁、35…膨張タービン、3
9…バーナー、40…加熱炉、46…コールドボック
ス、56…加圧蒸発器、59…調節弁、60…蒸発器、
61…圧力指示調節計
2: Raw material air compressor, 3: Heat exchanger for heating regeneration gas, 4
... Drain separator, 5 ... Heat exchanger, 6 ... Heater
7 ... Heat medium heater, 8 ... Catalyst tower, 9 ... Cooler, 10 ...
Freon refrigerators, 12a, 12b adsorption tower, 13 heating medium heater, 18 main heat exchanger, 19 single rectification tower, 24
... condensation evaporator, 25, 26, 27 ... heat exchange channel, 30 ...
Liquid nitrogen storage tank, 32: expansion valve, 35: expansion turbine, 3
9 burner, 40 heating furnace, 46 cold box, 56 pressurized evaporator, 59 control valve, 60 evaporator,
61… Pressure indicating controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/68 H01L 21/68 A T (72)発明者 河村 守 三重県桑名郡多度町大字御衣野1563 日 本酸素株式会社内 (72)発明者 中村 真喜 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 滝 一哉 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 岡田 修一 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭61−225568(JP,A) 特開 昭62−158979(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/04 F25J 3/04 F25J 3/08 ──────────────────────────────────────────────────続 き Continuing on the front page (51) Int.Cl. 7 Identification symbol FI H01L 21/68 H01L 21/68 AT (72) Inventor Mamoru Kawamura Mojino, Tadomachi, Kuwana-gun, Mie Prefecture 1563 Nihon Oki Stock Inside the company (72) Inventor Maki Nakamura 1015 Uedanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Co., Ltd. Shuichi 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Fujitsu Limited (56) References JP-A-61-225568 (JP, A) JP-A-62-158979 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) B01D 53/04 F25J 3/04 F25J 3/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定圧力に圧縮した原料空気を触媒塔に
導入して含有する一酸化炭素及び水素を触媒反応により
二酸化炭素及び水分に変換し、該触媒反応後の昇温空気
を5〜10℃に冷却後、吸着塔に導入して二酸化炭素,
水分及びその他の微量不純物を吸着除去して精製し、得
られた精製空気の一部を製品高純度空気として採取し、
残部の精製空気を主熱交換器に導入して帰還ガスとの熱
交換により略液化温度にまで冷却し、冷却後の精製空気
を単精留塔に導入して液化精留を行い、該単精留塔の頂
部から高純度窒素を導出して前記主熱交換器で寒冷を回
収後に製品高純度窒素ガスとして採取するとともに、前
記単精留塔の底部から酸素富化液化空気を導出し、膨張
させて前記単精留塔の凝縮蒸発器に導入し、該凝縮蒸発
器で気化して導出した酸素富化空気を前記主熱交換器に
導入して中間温度まで昇温し、該中間温度の酸素富化空
気を膨張タービンに導入して膨張降温させて寒冷を発生
させた後、再度前記主熱交換器に導入して寒冷を回収
し、製品酸素富化空気として採取することを特徴とする
半導体製造工場向け各種ガスの製造方法。
1. A raw material air compressed to a predetermined pressure is introduced into a catalyst tower to convert contained carbon monoxide and hydrogen into carbon dioxide and moisture by a catalytic reaction. After cooling to ° C, the mixture was introduced into an adsorption tower,
Purification by adsorbing and removing water and other trace impurities, collecting a portion of the purified air obtained as product high-purity air,
The remaining purified air is introduced into the main heat exchanger and cooled to approximately the liquefaction temperature by heat exchange with the return gas, and the cooled purified air is introduced into a single rectification column to perform liquefaction rectification. While extracting high purity nitrogen from the top of the rectification column and collecting the product as high-purity nitrogen gas after collecting the cold in the main heat exchanger, oxygen-enriched liquefied air is derived from the bottom of the single rectification column, Expanded and introduced into the condensing evaporator of the single rectification column, and the oxygen-enriched air vaporized and led out by the condensing evaporator is introduced into the main heat exchanger and heated to an intermediate temperature. After introducing the oxygen-enriched air into the expansion turbine and causing the temperature to expand and cool to generate cold, the cold is recovered again by introducing the air into the main heat exchanger and collected as product oxygen-enriched air. Of various gases for semiconductor manufacturing plants.
【請求項2】 前記酸素富化空気を、半導体製造工場の
恒温設備用等の熱源を供給する加熱炉の燃焼用助燃ガス
として供給することを特徴とする請求項1記載の半導体
製造工場向け各種ガスの製造方法。
2. The semiconductor manufacturing plant according to claim 1, wherein the oxygen-enriched air is supplied as a combustion supporting gas for a heating furnace for supplying a heat source for a constant temperature facility of a semiconductor manufacturing plant. Gas production method.
【請求項3】 原料空気を所定圧に圧縮する圧縮機と、
該圧縮機で昇圧した圧縮空気を導入して含有する極微量
の一酸化炭素及び水素を触媒反応により二酸化炭素及び
水分に変換する触媒塔と、触媒反応後の昇温空気を冷却
する冷却器と、原料空気中の二酸化炭素,水分及びその
他の微量不純物を吸着除去する吸着塔と、該吸着塔を導
出した精製空気の一部を製品高純度空気として導出する
導管と、精製空気の残部を帰還ガスと熱交換させて略液
化温度にまで冷却する主熱交換器と、該主熱交換器で冷
却後の冷却精製空気を導入して液化精留を行い、塔頂部
から高純度窒素を、塔底部から酸素富化液化空気をそれ
ぞれ導出する単精留塔と、該単精留塔の上部から導出し
た高純度窒素と前記単精留塔の底部から導出した酸素富
化液化空気とを熱交換させて液化窒素を生成するととも
に酸素富化液化空気を気化させる凝縮蒸発器と、該凝縮
蒸発器で気化した酸素富化空気を膨張降温させる膨張タ
ービンと、該膨張タービンにて膨張降温した酸素富化空
気を前記主熱交換器にて熱交換した後製品酸素富化空気
として採取する導管とを備えたことを特徴とする半導体
製造工場向け各種ガスの製造装置。
3. A compressor for compressing raw air to a predetermined pressure,
A catalyst tower for converting the trace amounts of carbon monoxide and hydrogen contained by introducing compressed air pressurized by the compressor into carbon dioxide and moisture by a catalytic reaction, and a cooler for cooling heated air after the catalytic reaction. , An adsorption tower that adsorbs and removes carbon dioxide, moisture and other trace impurities in the raw material air, a conduit through which part of the purified air derived from the adsorption tower is derived as product high-purity air, and a return of the remaining purified air A main heat exchanger that exchanges heat with a gas to cool to approximately a liquefaction temperature, and liquefaction rectification is performed by introducing cooling purified air that has been cooled by the main heat exchanger, and high-purity nitrogen is passed from the top of the column to the column. Heat exchange between a single rectification column for extracting oxygen-enriched liquefied air from the bottom and high-purity nitrogen derived from the top of the single rectification column and oxygen-enriched liquefied air derived from the bottom of the single rectification column, respectively; To produce liquefied nitrogen and oxygen-enriched liquefied air A condenser evaporator to vaporize, and expansion turbine for expanding cooled oxygen-enriched air is vaporized in the reboiler-condenser, oxygen Tomikasora inflated cooled by said expansion turbine
After the heat exchange in the main heat exchanger, the product oxygen-enriched air
An apparatus for producing various gases for a semiconductor manufacturing plant, comprising: a conduit for sampling as gas.
JP09620093A 1993-04-22 1993-04-22 Method and apparatus for producing various gases for semiconductor manufacturing plants Expired - Fee Related JP3277340B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP09620093A JP3277340B2 (en) 1993-04-22 1993-04-22 Method and apparatus for producing various gases for semiconductor manufacturing plants
US08/351,476 US5656557A (en) 1993-04-22 1994-04-22 Process for producing various gases for semiconductor production factories
GB9426063A GB2283562B (en) 1993-04-22 1994-04-22 Method of and apparatus for manufacturing various kinds of gases to be supplied to semiconductor manufacturing factories
PCT/JP1994/000676 WO1994024501A1 (en) 1993-04-22 1994-04-22 Method of and apparatus for manufacturing various kinds of gases to be supplied to semiconductor manufacturing factories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09620093A JP3277340B2 (en) 1993-04-22 1993-04-22 Method and apparatus for producing various gases for semiconductor manufacturing plants

Publications (2)

Publication Number Publication Date
JPH06304432A JPH06304432A (en) 1994-11-01
JP3277340B2 true JP3277340B2 (en) 2002-04-22

Family

ID=14158648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09620093A Expired - Fee Related JP3277340B2 (en) 1993-04-22 1993-04-22 Method and apparatus for producing various gases for semiconductor manufacturing plants

Country Status (4)

Country Link
US (1) US5656557A (en)
JP (1) JP3277340B2 (en)
GB (1) GB2283562B (en)
WO (1) WO1994024501A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739304B1 (en) * 1995-09-29 1997-10-24 Air Liquide COMPRESSED AIR CLEANING PROCESS AND DEVICE, AIR DISTILLATION PROCESS AND INSTALLATION USING THEM
GB9607792D0 (en) * 1996-04-15 1996-06-19 Boc Group Plc Air separation apparatus
FR2751561A1 (en) * 1996-07-29 1998-01-30 Air Liquide Elimination of carbon mon:oxide and carbon di:oxide from air
US5711166A (en) * 1997-01-22 1998-01-27 The Boc Group, Inc. Air separation method and apparatus
GB9702074D0 (en) * 1997-01-31 1997-03-19 Boc Group Plc Production of cryogenic liquid mixtures
JP3634115B2 (en) * 1997-05-23 2005-03-30 大陽日酸株式会社 Gas purification method and apparatus
JPH10340909A (en) 1997-06-06 1998-12-22 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH1137643A (en) * 1997-07-18 1999-02-12 Osaka Oxygen Ind Ltd Method and facility for separating air
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPH1157371A (en) * 1997-08-11 1999-03-02 Taiyo Toyo Sanso Co Ltd Production of ultraclean air
JP3466437B2 (en) * 1997-09-24 2003-11-10 ジャパン・エア・ガシズ株式会社 Air separation equipment
JP3665451B2 (en) * 1997-09-24 2005-06-29 ジャパン・エア・ガシズ株式会社 Air purifier
JP4169820B2 (en) * 1998-01-30 2008-10-22 日本パイオニクス株式会社 Method for removing impurities in oxygen gas
JPH11218318A (en) * 1998-02-03 1999-08-10 Air Liquide Japan Ltd Exhaust gas treating facility
WO1999041557A1 (en) * 1998-02-12 1999-08-19 Shell Internationale Research Maatschappij B.V. Air prepurification for a large scale cryogenic air separation plant
TW423987B (en) * 1998-07-07 2001-03-01 Nippon Oxygen Co Ltd A manufacture method and device of highly pure dry air
JP4519954B2 (en) * 1998-07-07 2010-08-04 大陽日酸株式会社 Highly clean dry air and method and apparatus for producing dry air
JP2000024444A (en) * 1998-07-07 2000-01-25 Nippon Sanso Kk Production of highly purified dry air and device therefor
TW392058B (en) * 1998-07-08 2000-06-01 Nippon Oxygen Co Ltd System and method for producing and supplying highly clean dry air
US6106593A (en) * 1998-10-08 2000-08-22 Air Products And Chemicals, Inc. Purification of air
EP1005895A1 (en) * 1998-12-04 2000-06-07 Air Products And Chemicals, Inc. Purification of gases
JP4294910B2 (en) * 2002-03-27 2009-07-15 株式会社東芝 Substance supply system in semiconductor device manufacturing plant
US7524358B2 (en) * 2002-05-31 2009-04-28 Praxair Technology, Inc. Production of high purity and ultra-high purity gas
KR20120065439A (en) * 2002-10-17 2012-06-20 엔테그리스, 아이엔씨. Method for purifying carbon dioxide
DE10249383A1 (en) * 2002-10-23 2004-05-06 Linde Ag Method and device for the variable generation of oxygen by low-temperature separation of air
US6709485B1 (en) 2002-12-04 2004-03-23 Olin Corporation Process of removing carbon dioxide from a chlor/alkali plant tail gas stream
DE102005035432A1 (en) * 2005-07-28 2007-02-01 Linde Ag Provide bubble-free carbon dioxide
CN100424451C (en) * 2006-05-15 2008-10-08 白杨 Super low pressure low temperature method for separating air and making oxygen
DE102007051182A1 (en) * 2007-10-25 2009-04-30 Linde Aktiengesellschaft An electronic industrial plant and method for operating an electronic industrial plant
FR2957408B1 (en) 2010-03-09 2015-07-17 Air Liquide METHOD AND APPARATUS FOR HEATING AN AIR GAS FROM AN AIR SEPARATION APPARATUS
EP3756658A1 (en) * 2012-09-24 2020-12-30 Aker Biomarine Antarctic As Omega -3 compositions
US8940263B2 (en) 2013-04-10 2015-01-27 Air Products And Chemicals, Inc. Removal of hydrogen and carbon monoxide impurities from gas streams
JP6056638B2 (en) 2013-04-30 2017-01-11 株式会社Ihi Method and apparatus for supplying alkali adjusting agent for compressor impurity separation mechanism
FR3035656B1 (en) * 2015-04-30 2019-03-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PRODUCTION OF HELIUM FROM A GASEOUS CURRENT CONTAINING HYDROGEN
US10156373B1 (en) * 2015-05-15 2018-12-18 The United States Of America, As Represented By The Secretary Of The Navy Thermal integration of a catalytic burner and a carbon dioxide removal unit
JP6800622B2 (en) * 2016-06-16 2020-12-16 エア・ウォーター株式会社 Purified gas production method and refined gas production equipment
CN107525347B (en) * 2017-09-13 2023-05-05 湖北和远气体股份有限公司 Device for guaranteeing high-purity argon gas supply quality of monocrystalline silicon argon-rich tail gas purification

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA735366A (en) * 1966-05-31 H. Breault Homer High purity nitrogen production
JPS5242158B2 (en) * 1973-01-26 1977-10-22
JPS5814628B2 (en) * 1975-09-30 1983-03-19 横河電機株式会社 RELENO
JPS5895181A (en) * 1981-11-30 1983-06-06 株式会社日立製作所 Pre-treatment method for air separator
GB2129115B (en) * 1982-10-27 1986-03-12 Air Prod & Chem Producing gaseous nitrogen
JPS60132196A (en) * 1983-12-20 1985-07-15 新日本製鐵株式会社 Pipe joint
JPS61225568A (en) * 1985-03-29 1986-10-07 株式会社日立製作所 Air separator
JPH0633934B2 (en) * 1985-04-02 1994-05-02 大同ほくさん株式会社 Air separation device
JPS6454187A (en) * 1987-08-25 1989-03-01 Nippon Oxygen Co Ltd Manufacture of nitrogen gas
JP2645137B2 (en) * 1989-05-22 1997-08-25 テイサン株式会社 Equipment for purifying raw material air for nitrogen production equipment
JP2920392B2 (en) * 1989-11-20 1999-07-19 日本酸素株式会社 Supercooling method of liquefied nitrogen in air liquefaction separator
JPH0621182B2 (en) * 1990-04-18 1994-03-23 アキレス株式会社 Conductive polyurethane foam
JPH0454187A (en) * 1990-06-21 1992-02-21 Nippon Soda Co Ltd Production of fluoran compound
JP2838623B2 (en) * 1992-08-06 1998-12-16 日本エア・リキード株式会社 Ultra high purity nitrogen production method and apparatus
JP3443465B2 (en) * 1994-09-20 2003-09-02 富士写真フイルム株式会社 Silver halide photographic emulsion and photographic material using the same
JPH10225568A (en) * 1997-02-17 1998-08-25 Sankyo Kk Device for game
JPH10228286A (en) * 1997-02-18 1998-08-25 Sony Corp Sound field compensating device
JP3935687B2 (en) * 2001-06-20 2007-06-27 アルプス電気株式会社 Thin film resistance element and manufacturing method thereof

Also Published As

Publication number Publication date
GB2283562B (en) 1996-10-30
GB2283562A (en) 1995-05-10
GB9426063D0 (en) 1995-03-01
US5656557A (en) 1997-08-12
WO1994024501A1 (en) 1994-10-27
JPH06304432A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP3277340B2 (en) Method and apparatus for producing various gases for semiconductor manufacturing plants
EP0211957B1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
WO1999011437A1 (en) Method and apparatus for purification of argon
WO2005118466A2 (en) Method and apparatus for cooling in hydrogen plants
CN115069057B (en) Method for purifying and recovering carbon dioxide by low-temperature rectification
JP4782380B2 (en) Air separation device
CN102602899B (en) Helium purification method and device
WO1986000694A1 (en) Apparatus for producing high-purity nitrogen gas
JP2000088455A (en) Method and apparatus for recovering and refining argon
CN108645118A (en) A kind of device and method improving the argon gas rate of recovery
JP2585955B2 (en) Air separation equipment
JPS6158747B2 (en)
CN217661593U (en) Device for purifying and recovering carbon dioxide by low-temperature rectification
JP3959168B2 (en) Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air
JPH11228116A (en) Recovering and purifying method of argon and device therefor
CN212842469U (en) Single-tower cryogenic rectification argon recovery system with argon circulation and hydrogen circulation
JP3532465B2 (en) Air separation device
CN111637685A (en) Single-tower cryogenic rectification argon recovery system and method with argon circulation and hydrogen circulation
CN107300295B (en) Device and method for producing high-purity nitrogen product by raw material nitrogen deep cooling method
JP3466437B2 (en) Air separation equipment
JPH1137642A (en) Method and facility for separating air
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH0579754A (en) Manufacturing method of high purity nitrogen
WO2013089584A2 (en) Method and device for producing a krypton/xenon mixture
JP2002274811A (en) Hydrogen preparation process and device used for the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees