JP3258889B2 - Optical axis adjustment method in scattering particle size distribution analyzer - Google Patents

Optical axis adjustment method in scattering particle size distribution analyzer

Info

Publication number
JP3258889B2
JP3258889B2 JP02193296A JP2193296A JP3258889B2 JP 3258889 B2 JP3258889 B2 JP 3258889B2 JP 02193296 A JP02193296 A JP 02193296A JP 2193296 A JP2193296 A JP 2193296A JP 3258889 B2 JP3258889 B2 JP 3258889B2
Authority
JP
Japan
Prior art keywords
optical axis
light
particle size
size distribution
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02193296A
Other languages
Japanese (ja)
Other versions
JPH09189653A (en
Inventor
達夫 伊串
喜昭 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP02193296A priority Critical patent/JP3258889B2/en
Priority to DE1997100379 priority patent/DE19700379B4/en
Publication of JPH09189653A publication Critical patent/JPH09189653A/en
Application granted granted Critical
Publication of JP3258889B2 publication Critical patent/JP3258889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4716Using a ring of sensors, or a combination of diaphragm and sensors; Annular sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光源からの光を
試料に対して光を照射し、そのとき散乱光を集光レンズ
を介して光検出器に入射させ、このとき得られる散乱光
強度パターンに基づいて試料中の粒度分布を測定する散
乱式粒度分布測定装置における光軸調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a sample with light from a light source, and then causing scattered light to be incident on a photodetector via a condenser lens. The present invention relates to an optical axis adjusting method in a scattering type particle size distribution measuring device for measuring a particle size distribution in a sample based on a pattern.

【0002】[0002]

【従来の技術】図4は、一般的な散乱式粒度分布測定装
置の要部を示すもので、この図において、1はレーザ光
2を発するレーザ管、3はレーザ光2を適宜拡大するビ
ーム拡大器、4は試料5を収容するセル、6はセル4の
後方に設けられる集光レンズ、7は集光レンズ6からの
散乱光を検出するフォトダイオードからなる光検出器、
8は光検出器7からの信号を取り込むマルチプレクサ、
9はマルチプレクサ8からの信号が入力され、散乱光強
度パターンに基づいて演算を行って粒度分布を求めるC
PUである。
2. Description of the Related Art FIG. 4 shows a main part of a general scattering type particle size distribution measuring apparatus. In this figure, reference numeral 1 denotes a laser tube for emitting a laser beam 2, and 3 denotes a beam for appropriately expanding the laser beam 2. Magnifier 4, a cell for housing sample 5, 6 a condenser lens provided behind cell 4, 7 a photodetector comprising a photodiode for detecting scattered light from condenser lens 6,
8 is a multiplexer for taking in the signal from the photodetector 7;
9 receives a signal from the multiplexer 8 and performs a calculation based on the scattered light intensity pattern to obtain a particle size distribution.
PU.

【0003】前記散乱式粒度分布測定装置においては、
セル4に試料5を収容して、レーザ光2を試料セル4に
対して照射すると、レーザ光2の一部がセル4内の試料
5中の粒子を照射して散乱光10となり、残りの光は粒
子と粒子との間を通過して透過光11となる。そして、
これら散乱光10および透過光11はともに、集光レン
ズ6を経て光検出器7に至る。
In the scattering type particle size distribution measuring device,
When the sample 5 is accommodated in the cell 4 and the laser light 2 is irradiated on the sample cell 4, a part of the laser light 2 irradiates the particles in the sample 5 in the cell 4 to become scattered light 10, and the remaining The light passes between the particles and becomes transmitted light 11. And
Both the scattered light 10 and the transmitted light 11 reach the photodetector 7 via the condenser lens 6.

【0004】ところで、上記散乱式粒度分布測定装置に
おいては、光源であるレーザ管1と光検出器7との光軸
が厳密に一致していなければならないが、レーザ管1が
熱歪みを起こしたり、セル4、レンズ6、光検出器7な
どを設けたベンチ(図示してない)が熱で歪んだり、ま
た、セル4を交換したりする場合、その取付け位置が変
化するなどして、前記光軸にずれが生ずることがあっ
た。
In the scattering type particle size distribution measuring apparatus, the optical axis of the laser tube 1 as a light source and the optical axis of the photodetector 7 must be strictly coincident with each other. The bench (not shown) provided with the cell 4, the lens 6, the photodetector 7, etc. is distorted by heat, and when the cell 4 is replaced, the mounting position is changed. The optical axis sometimes shifted.

【0005】そこで、従来の散乱式粒度分布測定装置に
おいては、光検出器7の光軸中心部7Aに、図5に示す
ように、例えばフォトダイオードよりなる4分割の光軸
調整用受光部12を設け、この光軸調整用受光部12を
構成する4つの受光素子12a〜12dからそれぞれ出
力される強度信号の大きさが等しくなるように、光検出
器7の位置を調整し、これによって光軸合わせを行うよ
うにしていた。
Therefore, in a conventional scattering type particle size distribution measuring apparatus, as shown in FIG. And the position of the photodetector 7 is adjusted so that the intensity signals output from the four light receiving elements 12a to 12d constituting the optical axis adjusting light receiving unit 12 are equal to each other. Axis alignment was performed.

【0006】なお、図5において、13は光軸調整用受
光部12を中心にして同心状に設けられる複数の散乱光
受光素子13a,13b,13c,…13nからなる散
乱光検出用測定部、14は各散乱光受光素子13a〜1
3nの間に設けられるアイソレーションギャップ14で
ある。
In FIG. 5, reference numeral 13 denotes a scattered light detecting measuring unit comprising a plurality of scattered light receiving elements 13a, 13b, 13c,... 13n provided concentrically around the optical axis adjusting light receiving unit 12. 14 is each scattered light receiving element 13a-1
3n is an isolation gap 14 provided between 3n.

【0007】そして、上述のようにして光軸調整を行う
には、光軸調整用受光部12は、レーザ管1から発せら
れるレーザ光の変動分の大きさと同等かそれ以上の半径
を持つようにしておく必要があり、レーザ光が例えば最
大100μm変動する場合、この変動を測定するために
半径100μmの光軸調整用受光部12が必要であっ
た。
In order to perform the optical axis adjustment as described above, the optical axis adjusting light receiving section 12 has a radius equal to or larger than the variation of the laser light emitted from the laser tube 1. When the laser beam fluctuates, for example, by a maximum of 100 μm, the optical axis adjusting light receiving unit 12 having a radius of 100 μm is required to measure the fluctuation.

【0008】[0008]

【発明が解決しようとする課題】ところで、散乱式粒度
分布測定装置においては、粒子の径が大きくなるほど、
その散乱光の光軸となす角度は小さくなるので、光軸中
心部7Aに近い位置にまで散乱光検出用測定部13を形
成する必要があるが、上述のように、かなりの大きさの
光軸調整用受光部12を設けるような場合、光軸中心部
7Aに近接して散乱光受光素子13aなどを設けること
ができず、したがって、径の大きい粒子の測定には、あ
る限界が生じていた。
By the way, in the scattering type particle size distribution measuring device, the larger the particle diameter,
Since the angle of the scattered light with the optical axis becomes small, it is necessary to form the scattered light detection measurement unit 13 at a position close to the optical axis center part 7A. In the case where the light receiving unit 12 for adjusting the axis is provided, the scattered light receiving element 13a or the like cannot be provided in the vicinity of the center 7A of the optical axis, and therefore, there is a certain limit in the measurement of particles having a large diameter. Was.

【0009】この発明は、上述の事柄に留意してなされ
たもので、その目的は、光検出器の光軸中心部に十分近
接して散乱光受光素子を設けても光軸合わせを確実
うことができる散乱式粒度分布測定装置における光軸調
整方法(以下、単に光軸調整方法という)を提供するこ
とである。
[0009] The present invention has been made in mind the above-mentioned matters, and its object is also sufficiently close to the optical axis center of the photodetector provided scattered light receiving element to ensure optical axis alignment An object of the present invention is to provide an optical axis adjustment method (hereinafter simply referred to as an optical axis adjustment method) in a scattering type particle size distribution measuring device that can perform the method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、この発明では、光源と光検出器とを結ぶ光軸上に回
折光発生手段を設け、この回折光発生手段によって発生
する回折光を用いて光軸調整を行うようにしている。
According to the present invention, a diffracted light generating means is provided on an optical axis connecting a light source and a photodetector, and diffracted light generated by the diffracted light generating means is provided. To adjust the optical axis.

【0011】[0011]

【発明の実施の形態】この発明では、光源からの光を試
料に対して照射し、そのとき散乱光を集光レンズを介
して光検出器に入射させ、このとき得られる散乱光強度
パターンに基づいて試料中の粒度分布を測定する散乱式
粒度分布測定装置において、前記光源と集光レンズとの
間の光路中に回折光発生手段を設けるとともに、前記光
検出器の光軸中心部の周囲に3以上の回折光検出器を、
前記光検出器に設けられている散乱光測定用検出部と重
ならないように等配置し、光源からの光が回折光発生手
段を通過する際に発生する回折光が前記回折光検出器に
入射したときの各出力が等しくなるように光検出器また
は光源の位置を変更することにより、光軸調整を行うよ
うにしている。
According to the present invention, a sample is irradiated with light from a light source , and scattered light at that time is made incident on a photodetector via a condenser lens, and a scattered light intensity pattern obtained at this time is obtained. In a scattering particle size distribution measuring device that measures the particle size distribution in the sample based on the above, while providing a diffracted light generating means in the optical path between the light source and the condensing lens, the optical axis center of the photodetector Around three or more diffracted light detectors,
Equivalently arranged so as not to overlap with the scattered light measurement detection unit provided in the photodetector, diffracted light generated when light from the light source passes through the diffracted light generation means enters the diffracted light detector. The optical axis is adjusted by changing the position of the photodetector or the light source so that the respective outputs at the same time become equal.

【0012】前記回折光発生手段としては、例えば光を
遮断するような板体にピンホールを形成してもよく、逆
に、光透過性の板体に小径の遮光部を形成してもよい。
いずれの場合においても望ましい回折光を得ることがで
きる。
As the diffracted light generating means, for example, a pinhole may be formed in a plate that blocks light, and conversely, a small-diameter light-shielding portion may be formed in a light-transmitting plate. .
In any case, desired diffracted light can be obtained.

【0013】前記回折光による光強度に基づく調整を行
うに際して、集光レンズによって集光された光が最大に
なるように光軸を微調整すれば、光軸位置精度をより向
上させることができる。
In performing the adjustment based on the light intensity of the diffracted light, if the optical axis is finely adjusted so that the light condensed by the condenser lens is maximized, the optical axis position accuracy can be further improved. .

【0014】[0014]

【実施例】実施例について、図面を参照しながら説明す
る。以下の図において、図4および図5に示した符号と
同一のものは同一物であるので、その説明は省略する。
Embodiments will be described with reference to the drawings. In the following drawings, the same components as those shown in FIGS. 4 and 5 are the same components, and the description thereof will be omitted.

【0015】図1は、この発明が適用される散乱式粒度
分布測定装置の構成を示す。この散乱式粒度分布測定装
置は、図4に示した散乱式粒度分布測定装置と基本的に
は同じものであり、レーザ管1と集光レンズ6との間の
光路中に光軸調整の際に用いる回折光発生手段15を設
けるとともに、この回折光発生手段15によって発生し
た回折光を光検出器16によって検出するようにした点
が大きく異なる。以下、これらの詳細について説明す
る。
FIG. 1 shows the configuration of a scattering type particle size distribution measuring apparatus to which the present invention is applied. This scattering type particle size distribution measuring device is basically the same as the scattering type particle size distribution measuring device shown in FIG. 4, and is used for adjusting the optical axis in the optical path between the laser tube 1 and the condenser lens 6. The difference is that the diffracted light generating means 15 used for the above is provided and the diffracted light generated by the diffracted light generating means 15 is detected by the photodetector 16. Hereinafter, these details will be described.

【0016】図2は、前記回折光発生手段15の一例を
示すもので、この図において、17は光遮断性の材料よ
りなる板材で、そのほぼ中央にピンホール18が開設さ
れている。
FIG. 2 shows an example of the diffracted light generating means 15. In FIG. 2, reference numeral 17 denotes a plate made of a light-blocking material, and a pinhole 18 is opened substantially at the center thereof.

【0017】図3は、前記光検出器16の平面的な構成
の一例を示すもので、この図において、19は光検出器
16の光軸中心部Oに設けられる出力モニター用検出器
で、レーザ光2のビーム径と同等の受光部を備えてい
る。20は光軸中心部O(出力モニター用検出器19)
を中心として、90°の広がり角度をもって扇状かつ同
心状に設けられる複数の散乱光受光素子20a〜20n
よりなる散乱光検出用測定部で、21は散乱光受光素子
20a〜20nの間に設けられるアイソレーションギャ
ップである。そして、22は出力モニター用検出器19
を中心にし、かつ散乱光受光素子20a〜20nと重な
らない位置に設けられる回折光検出器で、図示例では、
円周を4等配するように設けられている。
FIG. 3 shows an example of a planar configuration of the photodetector 16. In FIG. 3, reference numeral 19 denotes an output monitoring detector provided at the center O of the optical axis of the photodetector 16. It has a light receiving section equivalent to the beam diameter of the laser light 2. 20 is the optical axis center O (output monitor detector 19)
And a plurality of scattered light receiving elements 20a to 20n provided concentrically in a fan shape with a spread angle of 90 °
A scattered light detecting measurement unit 21 includes an isolation gap 21 provided between the scattered light receiving elements 20a to 20n. 22 is an output monitoring detector 19
And a diffracted light detector provided at a position that does not overlap with the scattered light receiving elements 20a to 20n.
It is provided so that the circumference may be evenly distributed.

【0018】上記構成の散乱式粒度分布測定装置におい
ては、試料5の粒度分布を測定する場合、セル4に試料
5を収容した状態でレーザ管1によってレーザ光2を照
射する。このとき、回折光発生手段15は、図1におい
て矢印U方向に移動して、光路から退避させて測定の妨
げにならないようにしておく。前記レーザ光2の一部が
セル4内の試料5中の粒子を照射して散乱光10とな
り、残りの光は粒子と粒子との間を通過して透過光11
となる。そして、これら散乱光10および透過光11は
ともに、集光レンズ6を経て光検出器16に至る。そし
て、このとき得られる光検出器16の出力をマルチプレ
クサ8を介してCPU9に入力し、このCPU9におい
て散乱光強度パターンに基づいて演算を行うことにより
粒度分布を求めることができる。
In the scattering type particle size distribution measuring apparatus having the above configuration, when measuring the particle size distribution of the sample 5, the laser beam 2 is irradiated by the laser tube 1 in a state where the sample 5 is accommodated in the cell 4. At this time, the diffracted light generating means 15 moves in the direction of arrow U in FIG. 1 and is retracted from the optical path so as not to disturb the measurement. Part of the laser light 2 irradiates the particles in the sample 5 in the cell 4 to become scattered light 10, and the remaining light passes between the particles and transmits light 11.
Becomes Then, both the scattered light 10 and the transmitted light 11 reach the photodetector 16 via the condenser lens 6. Then, the output of the photodetector 16 obtained at this time is input to the CPU 9 via the multiplexer 8, and the CPU 9 performs an arithmetic operation based on the scattered light intensity pattern to obtain the particle size distribution.

【0019】そして、光軸調整を行う場合、回折光発生
手段15を、図1において矢印V方向に移動して、ビー
ム拡大器3とセル4との間に介装する。この状態でレー
ザ光2をセル方向に向けて発すると、下記フラウンフォ
ーファー回折Iで近似される回折光が発生する。
When adjusting the optical axis, the diffracted light generating means 15 is moved in the direction of arrow V in FIG. 1 and is interposed between the beam expander 3 and the cell 4. When the laser light 2 is emitted toward the cell in this state, a diffracted light approximated by Fraunhofer diffraction I is generated.

【0020】 I=I0 (J1 (x)/x)2 x=2πrs/λf ここで、λf;波長 r;ピンホール半径 s;検出器位置 J1 ;第1次ベッセル関数 I0 ;入射光強度I = I 0 (J 1 (x) / x) 2 x = 2πrs / λf where λf; wavelength r; pinhole radius s; detector position J 1 ; first-order Bessel function I 0 ; Light intensity

【0021】この場合、回折光発生手段15によって生
じた回折光が、光検出器16における各回折光検出器2
2に入射するように、板材17に設けられるピンホール
18の径を適宜設定する。そして、4つの回折光検出器
22からの出力が等しくなるように、光検出器16の位
置を微動させる。そして、各回折光検出器22の出力が
互いに等しくなったところを求め、その位置に光検出器
16を固定する。例えば、50μmの位置に最大回折光
強度の1/2の光強度がくるようにするためには、ピン
ホール18の径は320μmであればよく。そのときの
回折光は、半径820μmまで広がる。したがって、こ
の範囲内のレーザ光2の光軸変動を調整することができ
る。
In this case, the diffracted light generated by the diffracted light generating means 15
The diameter of the pinhole 18 provided in the plate member 17 is appropriately set so as to be incident on the plate 2. Then, the position of the photodetector 16 is finely moved so that the outputs from the four diffracted light detectors 22 become equal. Then, a point where the outputs of the respective diffracted light detectors 22 become equal to each other is obtained, and the light detector 16 is fixed at that position. For example, the diameter of the pinhole 18 only needs to be 320 μm so that the light intensity of 1 / of the maximum diffracted light intensity comes to the position of 50 μm. The diffracted light at that time spreads to a radius of 820 μm. Therefore, it is possible to adjust the optical axis fluctuation of the laser beam 2 within this range.

【0022】そして、図3から理解されるように、回折
光検出器22を構成する受光素子22a〜22dは、散
乱光検出用測定部20の散乱光受光素子20a〜20n
とは重ならない位置に設けられ、しかも、散乱光検出用
測定部20の内側の素子(この場合20a)を、光検出
器16の光軸中心部Oにきわめて近づけた状態で配置さ
れている。したがって、光軸中心部Oにかなり接近して
散乱光検出用測定部20の受光素子を配置することがで
きるので、従来は困難であった径の大きい粒子の測定を
も十分行うことができる。
As can be understood from FIG. 3, the light receiving elements 22a to 22d constituting the diffracted light detector 22 are the scattered light receiving elements 20a to 20n of the scattered light detecting measurement unit 20.
And the element (in this case, 20 a) inside the scattered light detection measurement unit 20 is arranged in a state very close to the optical axis center O of the photodetector 16. Therefore, since the light receiving element of the scattered light detection measurement unit 20 can be arranged very close to the optical axis center O, it is possible to sufficiently measure particles having a large diameter, which has been conventionally difficult.

【0023】この発明は、上述の実施例に限られるもの
ではなく、種々に変形して実施することができる。例え
ば、回折光を発生させる手段15としては、透光性部材
に小径の遮光部を形成したものを用いてもよい。すなわ
ち、図2に示した板材17を透光性とし、ピンホール1
8に代えて、この部分に遮光性素材よりなる球形の粒子
を形成してもよい。
The present invention is not limited to the above embodiment, but can be implemented in various modifications. For example, as the means 15 for generating the diffracted light, a device in which a small-diameter light-shielding portion is formed on a translucent member may be used. That is, the plate 17 shown in FIG.
Instead of 8, spherical particles made of a light-shielding material may be formed in this portion.

【0024】そして、前記回折光発生手段15の光路へ
の挿入、退避を適宜の機構によって自動的に行わせるよ
うにしてもよい。また、回折光発生手段15の設置位置
は、レーザ管1と集光レンズ6との間の光路であればど
こでもよい。
The insertion and retreat of the diffracted light generating means 15 into and out of the optical path may be automatically performed by an appropriate mechanism. Further, the installation position of the diffracted light generating means 15 may be any position as long as it is an optical path between the laser tube 1 and the condenser lens 6.

【0025】上述の光軸調整方法は、セル4を光路に設
けた状態で、回折光発生手段15を挿入するようにして
いたので、セル4を取外しできないような散乱式粒度分
布測定装置に好適であるが、この方法に代えて、セル4
を光路から外し、その位置に回折光発生手段15をセッ
トするようにしてもよい。
In the above-described optical axis adjustment method, since the diffracted light generating means 15 is inserted with the cell 4 provided in the optical path, it is suitable for a scattering type particle size distribution measuring apparatus in which the cell 4 cannot be removed. However, instead of this method, cell 4
May be removed from the optical path, and the diffracted light generating means 15 may be set at that position.

【0026】また、光検出器16に設けられる回折光検
出器22を構成する受光素子の数は、4つでなくてもよ
く、レーザ光2が図3において矢印X,Y方向で示す方
向、つまり二次元方向においてずれていることを検出
し、これを矯正できればよいから、少なくとも3つの受
光素子があればよく、好ましくは、光軸中心部Oを中心
に同心配置してあればなおよい。
The number of light receiving elements constituting the diffracted light detector 22 provided in the light detector 16 may not be four, and the laser light 2 may be directed in the directions indicated by arrows X and Y in FIG. In other words, it is only necessary to detect a shift in the two-dimensional direction and correct the shift. Therefore, at least three light receiving elements are required, and more preferably, they are arranged concentrically around the optical axis center O.

【0027】さらに、上述した各種の光軸調整方法にお
いて、集光レンズ6によって集光されたレーザ光が最大
になるように光軸を微調整すれば、光軸位置精度をより
向上させることができる。
Further, in the various optical axis adjustment methods described above, if the optical axis is finely adjusted so that the laser beam condensed by the condenser lens 6 is maximized, the optical axis position accuracy can be further improved. it can.

【0028】なお、この光軸調整方法は、レーザ2のみ
ならず、他の光線を用いた散乱式粒度分布測定装置にも
適用できることはいうまでもない。
It is needless to say that this optical axis adjusting method can be applied not only to the laser 2 but also to a scattering type particle size distribution measuring apparatus using other light beams.

【0029】[0029]

【発明の効果】この発明は、以上のような形態で実施さ
れ、以下のような効果を奏する。
The present invention is embodied in the above-described embodiment and has the following effects.

【0030】従来に比べて、光検出器の光軸中心部によ
り近い部分に散乱光検出用測定部の受光素子を配置する
ことができるので、従来よりも大径の粒子の測定が可能
になり、より測定範囲の広い粒度分布を一度に測定でき
る。
Since the light-receiving element of the measuring unit for detecting scattered light can be arranged closer to the center of the optical axis of the photodetector than in the prior art, it is possible to measure particles having a larger diameter than before. , A particle size distribution having a wider measurement range can be measured at a time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光軸調整方法が適用される散乱式粒
度分布測定装置の一例を概略的に示す図である。
FIG. 1 is a diagram schematically showing an example of a scattering type particle size distribution measuring apparatus to which an optical axis adjusting method of the present invention is applied.

【図2】前記光軸調整方法で用いる回折光発生手段の一
例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a diffracted light generating means used in the optical axis adjusting method.

【図3】前記散乱式粒度分布測定装置の光検出器の平面
構成を概略的に示す図である。
FIG. 3 is a diagram schematically showing a planar configuration of a photodetector of the scattering type particle size distribution measuring device.

【図4】一般的な散乱式粒度分布測定装置の構成を概略
的に示す図である。
FIG. 4 is a diagram schematically showing a configuration of a general scattering type particle size distribution measuring device.

【図5】前記散乱式粒度分布測定装置の光検出器の平面
構成を概略的に示す図である。
FIG. 5 is a diagram schematically showing a planar configuration of a photodetector of the scattering type particle size distribution measuring device.

【符号の説明】[Explanation of symbols]

1…光源、6…集光レンズ、10…散乱光、15…回折
光発生手段、16…光検出器、17…遮光性部材、18
…ピンホール、19…出力検出用モニター検出器、22
…回折光検出器、O…光軸中心部。
DESCRIPTION OF SYMBOLS 1 ... Light source, 6 ... Condensing lens, 10 ... Scattered light, 15 ... Diffracted light generation means, 16 ... Photodetector, 17 ... Light shielding member, 18
... pinhole, 19 ... monitor detector for output detection, 22
… Diffraction light detector, O… Center of optical axis.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−215662(JP,A) 特開 昭62−100637(JP,A) 特開 平5−273114(JP,A) 特開 平5−172730(JP,A) 実開 平1−124550(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 15/02 G01N 21/47 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-215662 (JP, A) JP-A-62-100637 (JP, A) JP-A-5-273114 (JP, A) 172730 (JP, A) Hikaru Hei 1-124550 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 15/02 G01N 21/47

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源と光検出器とを結ぶ光軸上に回折光
発生手段を設け、この回折光発生手段によって発生する
回折光を用いて光軸調整を行うようにしたことを特徴と
する散乱式粒度分布測定装置における光軸調整方法。
1. A diffractive light generating means is provided on an optical axis connecting a light source and a photodetector, and an optical axis is adjusted using diffracted light generated by the diffracted light generating means. Optical axis adjustment method in scattering type particle size distribution measuring device.
【請求項2】 光源からの光を試料に対して照射し、そ
のとき散乱光を集光レンズを介して光検出器に入射さ
せ、このとき得られる散乱光強度パターンに基づいて試
料中の粒度分布を測定する散乱式粒度分布測定装置にお
いて、前記光源と集光レンズとの間の光路中に回折光発
生手段を設けるとともに、前記光検出器の光軸中心部の
周囲に3以上の回折光検出器を、前記光検出器に設けら
れている散乱光測定用検出部と重ならないように等配置
し、光源からの光が回折光発生手段を通過する際に発生
する回折光が前記回折光検出器に入射したときの各出力
が等しくなるように光検出器または光源の位置を変更す
ることにより、光軸調整を行うようにしたことを特徴と
する散乱式粒度分布測定装置における光軸調整方法。
2. A light from a light source is applied to a sample, and scattered light at that time is made incident on a photodetector via a condenser lens. In a scattering type particle size distribution measuring apparatus for measuring a particle size distribution, a diffracted light generating means is provided in an optical path between the light source and the condenser lens, and three or more diffraction lights are provided around an optical axis center of the photodetector. The photodetectors are equally arranged so as not to overlap with the scattered light measurement detection unit provided in the photodetector, and the diffracted light generated when light from the light source passes through the diffracted light generating means is diffracted by the diffracted light. The optical axis in a scattering type particle size distribution measuring device, characterized in that the optical axis is adjusted by changing the position of the optical detector or the light source so that each output when entering the optical detector becomes equal. Adjustment method.
【請求項3】 回折光発生手段として、遮光性部材にピ
ンホールを形成したものを用いる請求項1または2に記
載の散乱式粒度分布測定装置における光軸調整方法。
3. The method for adjusting an optical axis in a scattering type particle size distribution measuring apparatus according to claim 1, wherein a means for forming a pinhole in a light-shielding member is used as the diffracted light generating means.
【請求項4】 回折光発生手段として、透光性部材に小
径の遮光部を形成したものを用いる請求項1または2に
記載の散乱式粒度分布測定装置における光軸調整方法。
4. The optical axis adjusting method in a scattering type particle size distribution measuring apparatus according to claim 1, wherein a means for forming a small-diameter light-shielding portion on a translucent member is used as the diffracted light generating means.
【請求項5】 光軸中心部に出力検出用モニター検出器
を設け、集光レンズを経た透過光が前記モニター検出器
に入射したときのモニター出力が最大となるようにして
なる請求項1〜4のいずれかに記載の散乱式粒度分布測
定装置における光軸調整方法。
5. An output detection monitor detector is provided at a center portion of an optical axis, and a monitor output when light transmitted through a condenser lens is incident on the monitor detector is maximized. 5. An optical axis adjustment method in the scattering type particle size distribution measuring device according to any one of 4.
JP02193296A 1996-01-11 1996-01-11 Optical axis adjustment method in scattering particle size distribution analyzer Expired - Fee Related JP3258889B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02193296A JP3258889B2 (en) 1996-01-11 1996-01-11 Optical axis adjustment method in scattering particle size distribution analyzer
DE1997100379 DE19700379B4 (en) 1996-01-11 1997-01-08 Method for adjusting the optical axis of a measuring device for measuring the particle size distribution by means of the scattering effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02193296A JP3258889B2 (en) 1996-01-11 1996-01-11 Optical axis adjustment method in scattering particle size distribution analyzer

Publications (2)

Publication Number Publication Date
JPH09189653A JPH09189653A (en) 1997-07-22
JP3258889B2 true JP3258889B2 (en) 2002-02-18

Family

ID=12068833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02193296A Expired - Fee Related JP3258889B2 (en) 1996-01-11 1996-01-11 Optical axis adjustment method in scattering particle size distribution analyzer

Country Status (2)

Country Link
JP (1) JP3258889B2 (en)
DE (1) DE19700379B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527224A (en) * 2014-09-29 2016-04-27 安东帕有限公司 For symmetrizing geometrical shape of incident beam and scattered beam to adjust orientation of sample rack so as to compensate distortion related to refractive index

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958729C2 (en) * 1999-12-01 2002-02-28 Fresenius Hemocare Gmbh Method for determining a particle concentration and device for carrying out the method
JP4818527B2 (en) * 2001-04-06 2011-11-16 株式会社堀場製作所 Scattering particle size distribution measuring device
US9087371B2 (en) 2012-03-30 2015-07-21 Sony Corporation Microparticle sorting device and method of optimizing fluid stream therein
US9915935B2 (en) 2012-03-30 2018-03-13 Sony Corporation Microchip-type optical measuring apparatus and optical position adjusting method thereof
JP5924077B2 (en) 2012-03-30 2016-05-25 ソニー株式会社 Fine particle sorting device and method for determining orbit direction in fine particle sorting device
EP2950079B1 (en) 2013-01-28 2021-06-16 Sony Corporation Fine particle fractionation device, fine particle fractionation method and program
EP3035030B1 (en) 2013-10-16 2019-07-10 Sony Corporation Particle fractionation device, particle fractionation method, and program
WO2015122071A1 (en) 2014-02-13 2015-08-20 ソニー株式会社 Particle sorting apparatus, particle sorting method, program, and particle sorting system
CN104345018B (en) * 2014-06-04 2019-03-05 秦少平 A kind of streaming particulate matter measuring instrument based on detector array
JP6657625B2 (en) 2014-09-05 2020-03-04 ソニー株式会社 Droplet sorting apparatus, drop sorting method and program
US10605714B2 (en) 2015-10-19 2020-03-31 Sony Corporation Image processing device, fine particle sorting device, and image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527224A (en) * 2014-09-29 2016-04-27 安东帕有限公司 For symmetrizing geometrical shape of incident beam and scattered beam to adjust orientation of sample rack so as to compensate distortion related to refractive index
CN105527224B (en) * 2014-09-29 2019-02-22 安东帕有限公司 It is a kind of for analyzing the device and method of sample

Also Published As

Publication number Publication date
JPH09189653A (en) 1997-07-22
DE19700379A1 (en) 1997-07-24
DE19700379B4 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
TWI435181B (en) A projection exposure tool for microlithography with a measuring apparatus and a method for measuring and irradiation strength distribution
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
KR101857950B1 (en) High accuracy real-time particle counter
JP2863874B2 (en) Particle size distribution analyzer
US6061131A (en) Optical axis adjustment apparatus and method for particle size distribution measuring equipment
US6476910B1 (en) Light scattering apparatus and method for determining radiation exposure to plastic detectors
JP2002116133A (en) Scattering particle diameter distribution measuring apparatus
GB1298658A (en) Photometer for measuring total radiant energy at selected angles
JPH09126984A (en) Particle size distribution measuring device
JP3285309B2 (en) Photo detector
JPH0749302A (en) Method and apparatus of measuring particle size of microparticle in fluid
JP2626009B2 (en) Particle size distribution analyzer
JPH05215664A (en) Method and device for detecting submicron particle
JP4105888B2 (en) Particle size distribution measuring device
JPH02193041A (en) Particle size distribution apparatus
JP2876253B2 (en) Particle size distribution analyzer
JPH0277636A (en) Particle measuring device
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPH0515976B2 (en)
JP2003130784A (en) Apparatus for detecting particulate in fluid
JP2674128B2 (en) Particle size distribution analyzer
JP4818527B2 (en) Scattering particle size distribution measuring device
JPH07260669A (en) Grain size distribution measuring device
JP3258890B2 (en) Scattering type particle size distribution analyzer
JP2876255B2 (en) Particle size distribution analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees