JP3244017B2 - Method for producing electrolyte solution for lithium secondary battery - Google Patents

Method for producing electrolyte solution for lithium secondary battery

Info

Publication number
JP3244017B2
JP3244017B2 JP07223497A JP7223497A JP3244017B2 JP 3244017 B2 JP3244017 B2 JP 3244017B2 JP 07223497 A JP07223497 A JP 07223497A JP 7223497 A JP7223497 A JP 7223497A JP 3244017 B2 JP3244017 B2 JP 3244017B2
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
electrolyte
solvent
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07223497A
Other languages
Japanese (ja)
Other versions
JPH10270075A (en
Inventor
俊一 浜本
敦男 日高
浩司 安部
洋介 上野
則行 大平
昌彦 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13483397&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3244017(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP07223497A priority Critical patent/JP3244017B2/en
Publication of JPH10270075A publication Critical patent/JPH10270075A/en
Application granted granted Critical
Publication of JP3244017B2 publication Critical patent/JP3244017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サイクル特性に優
れ、更に電気容量、保存安定性などの電池特性にも優れ
たリチウム二次電池を構成できるリチウム二次電池用電
解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery, which can form a lithium secondary battery having excellent cycle characteristics and also excellent battery characteristics such as electric capacity and storage stability.

【0002】[0002]

【従来の技術】リチウム二次電池用電解液としては、環
状カーボネートや、鎖状カーボネート、エーテルなどの
溶媒にLiPF6 などの含フッ素電解質を溶解した非水
系電解液が、高電圧及び高容量の電池を得るのに好適で
あることからよく利用されている。しかしながら、この
ような電解液にはHFが多く含まれており、この電解液
を用いるリチウム二次電池は、サイクル特性、電気容
量、保存安定性などの電池特性において必ずしも満足で
きるものではなく、特に電池性能の低下を起こさないサ
イクル特性に優れたリチウム二次電池用電解液が望まれ
ている。環状カーボネートからジオール類を除去する方
法として、シリカゲル、活性炭、活性アルミナ、モレキ
ュラーシーブス等の吸着剤による吸着法が知られてい
る。例えば、特開平5−74485号には、非水電解液
の溶媒として環状カーボネートを含む溶液が開示され、
非水電解液中のジオールを1500ppm以下の低濃度
にするために、環状カーボネートを蒸留する方法や、吸
着剤により処理する方法が記載されている。他方、ジオ
ールを不純物として含有する環状カーボネートを鎖状カ
ーボネートの存在下に合成ゼオライトと接触させて、環
状カーボネート中のジオールを除去する方法が報告され
ている。すなわち、特開平8−325208号に環状カ
ーボネートと鎖状カーボネートの共存下にゼオライトで
エチレングリコールと鎖状カーボネートを反応させてモ
ノアルコールを生成させ、このアルコールをモレキュラ
ーシーブスで除去処理する方法が記載されている。
2. Description of the Related Art As an electrolyte for a lithium secondary battery, a non-aqueous electrolyte obtained by dissolving a fluorine-containing electrolyte such as LiPF 6 in a solvent such as a cyclic carbonate, a chain carbonate, or an ether has a high voltage and a high capacity. It is often used because it is suitable for obtaining batteries. However, such an electrolyte contains a large amount of HF, and a lithium secondary battery using this electrolyte is not always satisfactory in battery characteristics such as cycle characteristics, electric capacity, and storage stability. There is a demand for an electrolyte for a lithium secondary battery having excellent cycle characteristics that does not cause a decrease in battery performance. As a method for removing diols from the cyclic carbonate, an adsorption method using an adsorbent such as silica gel, activated carbon, activated alumina, and molecular sieves is known. For example, JP-A-5-74485 discloses a solution containing a cyclic carbonate as a solvent of a non-aqueous electrolyte,
In order to reduce the diol concentration in the nonaqueous electrolyte to a low level of 1500 ppm or less, a method of distilling a cyclic carbonate and a method of treating with a sorbent are described. On the other hand, there has been reported a method of removing a diol in a cyclic carbonate by bringing a cyclic carbonate containing a diol as an impurity into contact with a synthetic zeolite in the presence of a chain carbonate. That is, JP-A-8-325208 describes a method in which ethylene glycol and a chain carbonate are reacted with zeolite in the presence of a cyclic carbonate and a chain carbonate to produce a monoalcohol, and the alcohol is removed with a molecular sieve. ing.

【0003】[0003]

【発明が解決しようとする課題】前記のようなリチウム
二次電池用電解液が有する問題を鑑みて、電解液中のH
Fを低減し、電池特性、特にサイクル特性に優れたリチ
ウム二次電池を構成できるリチウム二次電池用電解液を
提供することを課題とする。
In view of the above-mentioned problems of the electrolyte for a lithium secondary battery, H in the electrolyte has been considered.
It is an object of the present invention to provide an electrolyte for a lithium secondary battery capable of forming a lithium secondary battery having a low F and excellent battery characteristics, particularly excellent cycle characteristics.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記のよ
うなリチウム二次電池用電解液が有する問題を鑑みて鋭
意研究した結果、非水溶媒中のアルコール類が含フッ素
電解質と常温で徐々に反応してHFが生成するというこ
とを見い出した。アルコールの含有量が多くなると、該
非水溶媒と含フッ素電解質とからなる電解液を用いたリ
チウム二次電池はサイクル特性が低下し、更に電気容
量、保存安定性などの電池特性も低下してくることか
ら、電解溶媒中の含有量を低減させることを検討し、本
発明に至った。本発明は、非水溶媒及びリチウムイオン
を放出できる含フッ素電解質からなるリチウム二次電池
用電解液の製造方法において、前記非水溶媒が高誘電率
溶媒と低粘度溶媒とを含有し、前記高誘電率溶媒と低粘
度溶媒とを個別に精製処理した後に、混合して得られた
非水溶媒と前記含フッ素電解質とを混合することにより
製造され、前記非水溶媒中のジオール類が20ppm未
であることを特徴とするリチウム二次電池用電解液の
製造方法に関する。また本発明は、前記製造方法により
得られた電解液を用いるリチウム二次電池に関する。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the above-mentioned problems of the electrolyte solution for a lithium secondary battery, and as a result, have found that the alcohols in the non-aqueous solvent are different from the fluorine-containing electrolyte at room temperature. It was found that HF was formed by reacting slowly. When the content of the alcohol increases, the lithium secondary battery using the electrolytic solution composed of the nonaqueous solvent and the fluorinated electrolyte has reduced cycle characteristics, and further has reduced battery characteristics such as electric capacity and storage stability. Therefore, the present inventors have studied to reduce the content in the electrolytic solvent, and have reached the present invention. The present invention provides a method for producing an electrolyte solution for a lithium secondary battery comprising a non-aqueous solvent and a fluorine-containing electrolyte capable of releasing lithium ions, wherein the non-aqueous solvent contains a high dielectric constant solvent and a low-viscosity solvent; It is produced by separately purifying a dielectric solvent and a low-viscosity solvent, and then mixing the non-aqueous solvent obtained by mixing with the fluorinated electrolyte, wherein the diols in the non-aqueous solvent are less than 20 ppm.
The present invention relates to a method for producing an electrolyte for a lithium secondary battery, wherein the electrolyte is full . Further, the present invention relates to a lithium secondary battery using the electrolytic solution obtained by the production method.

【0005】[0005]

【発明の実施の形態】本発明で使用される非水溶媒とし
ては、高誘電率溶媒と低粘度溶媒とからなるものが好ま
しい。高誘電率溶媒としては、例えば、エチレンカーボ
ネート(EC)、プロピレンカーボネート(PC)、ブ
チレンカーボネート(BC)などの環状カーボネート類
が好適に挙げられる。これらの高誘電率溶媒は一種類で
使用してもよく、また二種類以上組み合わせて使用して
もよい。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous solvent used in the present invention is preferably a solvent comprising a high dielectric constant solvent and a low viscosity solvent. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0006】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。前記高誘電率溶媒と低粘度溶媒とはそ
れぞれ任意に選択され組み合わせて使用される。なお、
前記の高誘電率溶媒および低粘度溶媒は、容量比(高誘
電率溶媒:低粘度溶媒)で通常1:9〜4:1、好まし
くは1:4〜7:3の割合で使用される。
As the low-viscosity solvent, for example, dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are each arbitrarily selected and used in combination. In addition,
The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3.

【0007】本発明で使用されるリチウムイオンを放出
できる含フッ素電解質としては、例えば、LiPF6
ようなフルオロリン酸塩、LiBF4 のようなフルオロ
ホウ素酸塩、LiAsF6 のようなフルオロヒ素酸塩、
またはLiOSO2 CF3 などのトリフレート塩などが
挙げられる。これらの電解質は、少なくとも1種類が選
択されて使用される。これら含フッ素電解質は前記非水
溶媒に通常0.1M〜3M、好ましくは0.5〜1.5
Mの濃度で溶解されて使用される。
The fluorine-containing electrolyte capable of releasing lithium ions used in the present invention includes, for example, fluorophosphates such as LiPF 6 , fluoroborates such as LiBF 4 , and fluoroarsenic acids such as LiAsF 6 salt,
Or a triflate salt such as LiOSO 2 CF 3 . At least one of these electrolytes is selected and used. These fluorinated electrolytes are usually added to the non-aqueous solvent in an amount of 0.1 M to 3 M, preferably 0.5 to 1.5 M.
It is used after being dissolved at a concentration of M.

【0008】本発明のリチウム二次電池用電解液として
は、前記の非水溶媒及びリチウムイオンを放出できる含
フッ素電解質を含有するものであって、非水溶媒中のア
ルコール類が50ppm未満、ジオール類が20ppm
未満、モノアルコール類が30ppm未満が良い。ジオ
ール類としては、エチレングリコール及び/またはジエ
チレングリコール、プロピレングリコール、ジプロピレ
ングリコールなどが挙げられ、モノアルコールとして
は、メタノール及び/またはエタノール、プロパノー
ル、ブタノールなどが挙げられる。
The electrolyte for a lithium secondary battery according to the present invention contains the above-mentioned non-aqueous solvent and a fluorine-containing electrolyte capable of releasing lithium ions, wherein the alcohol in the non-aqueous solvent is less than 50 ppm, 20 ppm
And the content of monoalcohols is preferably less than 30 ppm. Examples of the diols include ethylene glycol and / or diethylene glycol, propylene glycol, and dipropylene glycol, and examples of the monoalcohol include methanol and / or ethanol, propanol, and butanol.

【0009】そこで、各使用原料を以下のような方法に
より精製して、アルコール類を除去した。非水溶媒を構
成する市販の高誘電率溶媒及び低粘度溶媒は、まずエチ
レンカーボネートのような常温で固体の原料は晶析処理
を行うことが好ましく、またジエチルカーボネートのよ
うな常温で液体の原料は、還流比率0.01〜300、
理論段数5〜90段で精密蒸留したものを使用すること
が好ましい。晶析は、アセトニトリル、アセトン、トル
エンのような溶媒を使用して行うことが望ましい。精密
蒸留の条件は、使用される市販原料に不純物として含ま
れるアルコールの種類と量によっても異なるが、通常上
記条件で精製するのが好ましい。なお、市販原料の精製
に際し、晶析に代えて精密蒸留を採用することもでき、
また晶析を行った後、精密蒸留することもできる。次い
で前記非水溶媒を構成する高誘電率溶媒と低粘度溶媒
は、それぞれモレキュラーシーブス(商品名。以下同
じ。)4A及び/またはモレキュラーシーブス5Aのよ
うな吸着剤により精製処理し、アルコール類を除去する
のが好ましい。これら高誘電率溶媒と低粘度溶媒とを所
定の比率となるように調製した後、更に精製するために
前記と同様なモレキュラーシーブス4A及び/またはモ
レキュラーシーブス5Aのような吸着剤により精製処理
し、アルコール類を除去するようにしても良い。以上の
ように吸着剤処理した非水溶媒に、LiPF6 のような
含フッ素電解質を所定濃度となるように溶解した。
Therefore, each raw material used was purified by the following method to remove alcohols. Commercially available high-dielectric solvent and low-viscosity solvent constituting the non-aqueous solvent are preferably first subjected to crystallization treatment at room temperature such as ethylene carbonate, and also at room temperature as raw material such as diethyl carbonate. Is a reflux ratio of 0.01 to 300,
It is preferable to use one that has been subjected to precision distillation with 5 to 90 theoretical plates. The crystallization is desirably performed using a solvent such as acetonitrile, acetone, and toluene. The conditions for precision distillation vary depending on the type and amount of alcohol contained as impurities in the commercially available raw materials to be used, but it is usually preferable to purify under the above conditions. In the purification of commercial raw materials, precision distillation can be used instead of crystallization,
After crystallization, precision distillation can also be performed. Next, the high dielectric constant solvent and the low viscosity solvent constituting the non-aqueous solvent are purified by an adsorbent such as Molecular Sieves (trade name; the same applies hereinafter) 4A and / or Molecular Sieves 5A to remove alcohols. Is preferred. After preparing these high-dielectric solvent and low-viscosity solvent so as to have a predetermined ratio, for further purification, purification treatment with an adsorbent such as molecular sieves 4A and / or molecular sieves 5A similar to the above, Alcohols may be removed. In the non-aqueous solvent treated as described above, a fluorinated electrolyte such as LiPF 6 was dissolved to a predetermined concentration.

【0010】以下に非水溶媒の具体的な精製処理方法に
ついて詳述する。高誘電率溶媒及び低粘度溶媒のそれぞ
れの精製処理も同様な方法で行われる。前記精製処理に
用いられる吸着剤として、シリカゲル、アルミナ、活性
炭、モレキュラーシーブス4A、モレキュラーシーブス
5Aなどが挙げられる。接触方法は非水溶媒を連続的に
通液する方法(以下、連続法という。)、または、非水
溶媒中に吸着剤を添加し、静置または攪拌する方法(以
下、バッチ法という。)が挙げられる。連続法の場合、
接触時間は液空間速度(LHSV)として0.1〜4/
時間であることが好ましい。また、接触温度は10℃〜
60℃が好ましい。バッチ法の場合は非水溶媒に対して
0.1〜30重量%を添加し、0.5時間〜24時間処
理することが好ましい。非水溶媒中に含まれるアルコー
ル量が多い場合は、蒸留や晶析を繰り返したり、吸着法
の滞留時間あるいは接触時間を長くして十分に精製して
非水溶媒中のアルコール量を50ppm未満とすること
ができる。前記吸着剤の中でモレキュラーシーブス4A
を使用した場合にはアルコール類の選択的な吸着能が高
く、しかも吸着破過時間が大きいので好ましい。
Hereinafter, a specific method for purifying a non-aqueous solvent will be described in detail. The respective purification treatments of the high dielectric constant solvent and the low viscosity solvent are performed in the same manner. Examples of the adsorbent used for the purification treatment include silica gel, alumina, activated carbon, molecular sieves 4A, and molecular sieves 5A. The contact method is a method in which a non-aqueous solvent is passed continuously (hereinafter, referred to as a continuous method), or a method in which an adsorbent is added to a non-aqueous solvent and left standing or stirred (hereinafter, referred to as a batch method). Is mentioned. In the case of the continuous method,
The contact time is 0.1 to 4 / liquid hourly space velocity (LHSV).
It is preferably time. The contact temperature is 10 ° C ~
60 ° C. is preferred. In the case of a batch method, it is preferable to add 0.1 to 30% by weight based on the non-aqueous solvent, and to process for 0.5 to 24 hours. When the amount of alcohol contained in the non-aqueous solvent is large, distillation and crystallization are repeated, or the residence time or contact time of the adsorption method is lengthened to sufficiently purify the alcohol and the amount of alcohol in the non-aqueous solvent is reduced to less than 50 ppm. can do. Molecular sieves 4A among the adsorbents
The use of is preferred because the ability to selectively adsorb alcohols is high and the adsorption breakthrough time is long.

【0011】精製方法や精製条件は使用される各原料の
種類やそれに含まれるアルコールの種類と量により異な
るので、適宜、適切な精製方法や精製条件を選択するこ
とが必要である。これらの原料を用いて作製したリチウ
ム二次電池用電解液中のアルコール量は、50ppm未
満となり、リチウム二次電池を構成した場合にサイクル
特性が向上する。
Since the purification method and purification conditions vary depending on the type of each raw material used and the type and amount of alcohol contained therein, it is necessary to appropriately select appropriate purification methods and purification conditions. The amount of alcohol in the lithium secondary battery electrolyte prepared using these materials is less than 50 ppm, and the cycle characteristics are improved when a lithium secondary battery is configured.

【0012】本発明のリチウム二次電池用電解液を用い
たリチウム二次電池は、サイクル特性が良好であり、さ
らに電気容量、保存安定性などの電池特性に優れてい
る。電解液以外のリチウム二次電池の構成部材について
は特に限定されず、従来使用されている種々の構成部材
を使用できる。例えば、正極材料(正極活物質)として
は、クロム、バナジウム、マンガン、鉄、コバルト及び
ニッケルよりなる群から選ばれる少なくとも一種の金属
とリチウムとの複合金属酸化物が使用される。このよう
な複合金属酸化物としては、例えば、LiCoO2 、L
iMn2 4 、LiNiO2 などが挙げられる。
A lithium secondary battery using the electrolyte solution for a lithium secondary battery of the present invention has good cycle characteristics, and also has excellent battery characteristics such as electric capacity and storage stability. The constituent members of the lithium secondary battery other than the electrolyte are not particularly limited, and various conventionally used constituent members can be used. For example, as the positive electrode material (positive electrode active material), a composite metal oxide of lithium and at least one metal selected from the group consisting of chromium, vanadium, manganese, iron, cobalt, and nickel is used. Examples of such a composite metal oxide include LiCoO 2 , L
iMn 2 O 4 , LiNiO 2 and the like can be mentioned.

【0013】正極は、前記の正極材料をアセチレンブラ
ック、カーボンブラック等の導電剤及びポリテトラフル
オロエチレン(PTFE)、ポリフッ化ビニリデン(P
VDF)等の結着剤と混練して正極合剤とした後、この
正極合剤を集電体としてアルミニウムやステンレス製の
箔またはラス板に圧延して、50〜250℃程度の温度
で2時間程度真空下で加温処理することによって作製さ
れる。
The positive electrode is made of a conductive material such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (P).
VDF) and the like to form a positive electrode mixture, and this positive electrode mixture is rolled as a current collector into an aluminum or stainless steel foil or lath plate at a temperature of about 50 to 250 ° C. It is produced by heating under vacuum for about an hour.

【0014】負極材料(負極活物質)としては、リチウ
ム金属、リチウム合金、炭素材料(熱分解炭素類、コー
クス類、グラファイト類、ガラス状炭素類、有機高分子
化合物燃焼体、炭素繊維、活性炭等)やスズ複合酸化物
などのリチウムを吸蔵・放出することが可能な物質が使
用される。なお、炭素材料のような粉末の材料はエチレ
ンプロピレンジエンモノマー(EPDM)、ポリテトラ
フルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)等の結着剤と混練して負極合剤として使用
される。
Examples of the negative electrode material (negative electrode active material) include lithium metals, lithium alloys, carbon materials (pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound burners, carbon fibers, activated carbon, etc. ) Or a compound capable of occluding and releasing lithium, such as a tin composite oxide. A powder material such as a carbon material is kneaded with a binder such as ethylene propylene diene monomer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF) to be used as a negative electrode mixture.

【0015】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極及び単層又は複層のセパレー
ターを有するコイン型電池、更に正極、負極及びロール
状のセパレーターを有する円筒型電池や角型電池などが
一例として挙げられる。なお、セパレーターとしては、
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode and a single-layer or multi-layer separator, a cylindrical battery having a positive electrode, a negative electrode and a roll-shaped separator, and the like. A prismatic battery is an example. In addition, as a separator,
Known microporous polyolefin membranes, woven fabrics, nonwoven fabrics and the like are used.

【0016】[0016]

【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明するが、これらは本発明を何ら限定するもの
ではない。 実施例1 〔電解液の調製〕市販のECをアセトニトリルで2回晶
析し、モレキュラーシーブス4Aで吸着処理(50℃、
LHSV;1/時間)を行った。一方、DMCは還流比
1、理論段数30段で十分に精密蒸留した後、モレキュ
ラーシーブス4Aで吸着処理(25℃、LHSV;1/
時間)を行った。その後、EC:DMC(容量比)=
1:2の非水溶媒を調製した。その時、非水溶媒中のジ
オール類、及びモノアルコール類は検出されなかった。
これにLiPF6 を0.8Mの濃度になるように溶解し
た。
EXAMPLES Next, the present invention will be described specifically with reference to examples and comparative examples, but these do not limit the present invention in any way. Example 1 [Preparation of electrolytic solution] Commercially available EC was crystallized twice with acetonitrile, and adsorbed with molecular sieves 4A (50 ° C,
LHSV; 1 / hour). On the other hand, DMC was subjected to sufficiently precise distillation at a reflux ratio of 1 and 30 theoretical plates, and then subjected to an adsorption treatment with molecular sieves 4A (25 ° C., LHSV; 1 /
Time). Then, EC: DMC (volume ratio) =
A 1: 2 non-aqueous solvent was prepared. At that time, diols and monoalcohols in the non-aqueous solvent were not detected.
LiPF 6 was dissolved therein to a concentration of 0.8M.

【0017】〔リチウム二次電池の作製及び電池特性の
測定〕LiCoO2 (正極活物質)を70重量%、アセ
チレンブラック(導電剤)を20重量%、ポリテトラフ
ルオロエチレン(結着剤)を10重量%の割合で混合
し、これを圧縮成型して正極を調製した。天然黒鉛(負
極活物質)を95重量%、エチレンプロピレンジエンモ
ノマー(結着剤)を5重量%の割合で混合し、これを圧
縮成型して負極を調製した。そして、ポリプロピレン微
孔性フィルムのセパレーターを用い、上記の電解液を含
浸させてコイン型電池(直径20mm、厚さ3.2m
m)を作製した。このコイン型電池を用いて、室温(2
0℃)下、0.8mAの定電流で、充電終止電圧4.2
V、放電終止電圧2.7Vの電位規制として充放電を繰
り返したところ、100サイクル後の放電容量維持率は
90%であった。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] LiCoO 2 (cathode active material) was 70% by weight, acetylene black (conductive agent) was 20% by weight, and polytetrafluoroethylene (binder) was 10% by weight. The mixture was mixed at a ratio of weight%, and this was compression molded to prepare a positive electrode. 95% by weight of natural graphite (negative electrode active material) and 5% by weight of ethylene propylene diene monomer (binder) were mixed and compression molded to prepare a negative electrode. Then, using a separator made of polypropylene microporous film, impregnated with the above-mentioned electrolytic solution, a coin-type battery (diameter: 20 mm, thickness: 3.2 m)
m) was prepared. Room temperature (2
0 ° C.) at a constant current of 0.8 mA and a charge end voltage of 4.2
When charge and discharge were repeated as a potential regulation of 2.7 V and a discharge end voltage of 2.7 V, the discharge capacity retention rate after 100 cycles was 90%.

【0018】実施例2 市販のEC及びDMCをそれぞれ別個に、還流比1、理
論段数30段で、精密蒸留した後、それぞれをLHSV
を2/時間として、ECについては50℃、DMCにつ
いては25℃でモレキュラーシーブス4A吸着処理を行
った。その後、EC:DMC(容量比)=1:2の非水
溶媒を調製し、LHSVを2/時間として、モレキュラ
ーシーブス4A(25℃)で処理した。その時、非水溶
媒中のジオール含有量2ppm、モノアルコール含有量
1ppm、アルコール類の総含有量3ppmであった。
これにLiPF6 を0.8Mの濃度になるように溶解し
た。この電解液を用いて実施例1と同様にコイン型電池
を作製し、充放電を繰り返したところ100サイクル後
の放電容量維持率は88%であった。
Example 2 Commercially available EC and DMC were each separately subjected to precision distillation at a reflux ratio of 1 and a theoretical plate number of 30 and then each was subjected to LHSV.
2 / hour, the molecular sieve 4A adsorption treatment was performed at 50 ° C. for EC and 25 ° C. for DMC. Thereafter, a non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared, and treated with Molecular Sieves 4A (25 ° C.) at an LHSV of 2 / hour. At that time, the diol content in the non-aqueous solvent was 2 ppm, the monoalcohol content was 1 ppm, and the total content of alcohols was 3 ppm.
LiPF 6 was dissolved therein to a concentration of 0.8M. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 88%.

【0019】実施例3 市販のECをアセトニトリルで1回晶析した後、モレキ
ュラーシーブス5Aで処理(50℃、LHSV;2/時
間)を行った。一方、DECは還流比0.5、理論段数
30段で十分に精密蒸留した後、モレキュラーシーブス
4Aで吸着処理(25℃、LHSV;2/時間)を行っ
た。その後、EC:DEC(容量比)=1:2の非水溶
媒を調製し、モレキュラーシーブス4Aで処理(25
℃、LHSV;2/時間)した。その時、非水溶媒中の
ジオール含有量3ppm、モノアルコール含有量2pp
m、アルコール類の総含有量5ppmであった。これに
LiPF6 を0.8Mの濃度になるように溶解した。こ
の電解液を用いて実施例1と同様にコイン型電池を作製
し、充放電を繰り返したところ100サイクル後の放電
容量維持率は87%であった。
Example 3 Commercially available EC was crystallized once with acetonitrile, and then treated with molecular sieves 5A (50 ° C., LHSV; 2 / hour). On the other hand, DEC was subjected to sufficiently precise distillation at a reflux ratio of 0.5 and a theoretical plate number of 30 and then subjected to an adsorption treatment with molecular sieves 4A (25 ° C., LHSV; 2 / hour). Thereafter, a non-aqueous solvent of EC: DEC (volume ratio) = 1: 2 was prepared and treated with molecular sieves 4A (25
° C, LHSV; 2 / hour). At that time, the diol content in the non-aqueous solvent was 3 ppm and the monoalcohol content was 2 pp.
m and the total content of alcohols was 5 ppm. LiPF 6 was dissolved therein to a concentration of 0.8M. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 87%.

【0020】実施例4 市販のEC及びDMCをそれぞれ別個に、還流比0.
5、理論段数30段で精密蒸留した。その後、EC:D
MC(容量比)=1:2の非水溶媒を調製し、モレキュ
ラーシーブス5A(25℃、LHSV;4/時間)及び
4A(25℃、LHSV;4/時間)で処理した。その
時、非水溶媒中のジオール含有量3ppm、モノアルコ
ール含有量3ppm、アルコール類の総含有量6ppm
であった。これにLiPF6 を0.8Mの濃度になるよ
うに溶解した。この電解液を用いて実施例1と同様にコ
イン型電池を作製し、充放電を繰り返したところ100
サイクル後の放電容量維持率は87%であった。
Example 4 Commercially available EC and DMC were each separately subjected to a reflux ratio of 0.1.
5. Precision distillation was performed with 30 theoretical plates. After that, EC: D
A non-aqueous solvent having a MC (volume ratio) of 1: 2 was prepared and treated with Molecular Sieves 5A (25 ° C., LHSV; 4 / hour) and 4A (25 ° C., LHSV; 4 / hour). At that time, the diol content in the non-aqueous solvent was 3 ppm, the monoalcohol content was 3 ppm, and the total content of alcohols was 6 ppm.
Met. LiPF 6 was dissolved therein to a concentration of 0.8M. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charging and discharging were repeated.
The discharge capacity retention after the cycle was 87%.

【0021】実施例5 市販のECをモレキュラーシーブス4Aで処理(50
℃、LHSV;1/時間)を行った。一方、DMCを還
流比0.5、理論段数30段で精密蒸留した後、モレキ
ュラーシーブス4Aで吸着処理(25℃、LHSV;1
/時間)を行った。その後、EC:DMC(容量比)=
1:2の非水溶媒を調製し、モレキュラーシーブス4A
で処理(25℃、LHSV;2/時間)した。その時、
非水溶媒中のジオール含有量10ppm、モノアルコー
ル含有量11ppm、アルコール類の総含有量21pp
mであった。これにLiPF6 を0.8Mの濃度になる
ように溶解した。この電解液を用いて実施例1と同様に
コイン型電池を作製し、充放電を繰り返したところ10
0サイクル後の放電容量維持率は83%であった。
Example 5 Commercially available EC was treated with Molecular Sieves 4A (50
C., LHSV; 1 / hour). On the other hand, DMC was subjected to precision distillation at a reflux ratio of 0.5 and a theoretical plate number of 30 and then subjected to adsorption treatment with molecular sieves 4A (25 ° C., LHSV; 1).
/ Hour). Then, EC: DMC (volume ratio) =
A 1: 2 non-aqueous solvent was prepared, and molecular sieves 4A was prepared.
(25 ° C., LHSV; 2 / hour). At that time,
Diol content in non-aqueous solvent 10 ppm, monoalcohol content 11 ppm, total content of alcohols 21 pp
m. LiPF 6 was dissolved therein to a concentration of 0.8M. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charging and discharging were repeated.
The discharge capacity retention rate after 0 cycles was 83%.

【0022】[0022]

【0023】実施例6 市販のEC及び1,2−ジメトキシエタン(DME)を
それぞれ別個に、還流比0.7、理論段数30段で、精
密蒸留した。その後、EC:DME(容量比)=1:2
の非水溶媒を調製し、モレキュラーシーブス5A(25
℃、LHSV;4/時間)及び4A(25℃、LHS
V;4/時間)で処理した。その時、非水溶媒中のジオ
ール含有量2ppm、モノアルコール含有量0ppm、
アルコール類の総含有量2ppmであった。これにLi
PF6 を0.8Mの濃度になるように溶解した。この電
解液を用いて実施例1と同様にコイン型電池を作製し、
充放電を繰り返したところ100サイクル後の放電容量
維持率は88%であった。
Example 6 Commercially available EC and 1,2-dimethoxyethane (DME) were precision distilled separately at a reflux ratio of 0.7 and a theoretical plate number of 30. Thereafter, EC: DME (capacity ratio) = 1: 2
Of a non-aqueous solvent of molecular sieves 5A (25
° C, LHSV; 4 / hour) and 4A (25 ° C, LHS
V; 4 / hour). At that time, the diol content in the non-aqueous solvent was 2 ppm, the monoalcohol content was 0 ppm,
The total content of alcohols was 2 ppm. This is Li
PF6 was dissolved to a concentration of 0.8M. Using this electrolyte solution, a coin-type battery was produced in the same manner as in Example 1,
When the charge and discharge were repeated, the discharge capacity retention rate after 100 cycles was 88%.

【0024】比較例1 市販のECとDMCとを混合して、EC:DMC(容量
比)=1:2の非水溶媒を調製し、モレキュラーシーブ
ス5A(25℃)で処理した。LHSVは5/時間であ
った。その時、電解溶媒中のジオール含有量40pp
m、モノアルコール含有量45ppm、アルコール類の
総含有量85ppmであった。これにLiPF6 を0.
8Mの濃度になるように溶解した。この電解液を用いて
実施例1と同様にコイン型電池を作製し、充放電を繰り
返したところ100サイクル後の放電容量維持率は58
%であった。
Comparative Example 1 Commercially available EC and DMC were mixed to prepare a non-aqueous solvent of EC: DMC (volume ratio) = 1: 2, and treated with Molecular Sieves 5A (25 ° C.). LHSV was 5 / hr. At that time, the diol content in the electrolytic solvent was 40 pp.
m, the monoalcohol content was 45 ppm, and the total content of alcohols was 85 ppm. LiPF 6 was added to this in 0.1.
It was dissolved to a concentration of 8M. Using this electrolytic solution, a coin-type battery was manufactured in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 58%.
%Met.

【0025】[0025]

【発明の効果】本発明により、特にサイクル特性に優
れ、更に電気容量、保存安定性などの電池特性にも優れ
たリチウム二次電池を構成できるリチウム二次電池用電
解液を提供することができる。
According to the present invention, it is possible to provide an electrolyte for a lithium secondary battery capable of forming a lithium secondary battery having excellent cycle characteristics and also excellent battery characteristics such as electric capacity and storage stability. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大平 則行 山口県宇部市大字小串1978番地の10 宇 部興産株式会社 宇部ケミカル工場 宇 部統合事業所内 (72)発明者 渡部 昌彦 山口県宇部市大字小串1978番地の10 宇 部興産株式会社 宇部ケミカル工場 宇 部統合事業所内 審査官 植前 充司 (56)参考文献 特開 平5−74485(JP,A) 特開 昭59−81869(JP,A) 特開 昭61−284062(JP,A) 特開 平8−325208(JP,A) 特開 平5−226004(JP,A) 特開 平10−116631(JP,A) 特開 平10−270076(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyuki Ohira 10-78, Ogushi, Oji, Ube City, Yamaguchi Prefecture Ube Industries, Ltd. 1978 Ube Industries, Ltd. Ube Chemical Plant Ube Chemical Plant Ube Integrated Plant Examiner Mitsuji Uemae (56) References JP-A-5-74485 (JP, A) JP-A-59-81869 (JP, A) JP-A-61-284062 (JP, A) JP-A-8-325208 (JP, A) JP-A-5-226004 (JP, A) JP-A-10-116632 (JP, A) JP-A-10-270076 ( JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 10/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非水溶媒及びリチウムイオンを放出で
きる含フッ素電解質からなるリチウム二次電池用電解液
の製造方法において、前記非水溶媒が高誘電率溶媒と低
粘度溶媒とを含有し、前記高誘電率溶媒と低粘度溶媒と
を個別に精製処理した後に、混合して得られた非水溶媒
と前記含フッ素電解質とを混合することにより製造さ
れ、前記非水溶媒中のジオール類が20ppm未満であ
ることを特徴とするリチウム二次電池用電解液の製造方
法。
1. A method for producing an electrolyte for a lithium secondary battery comprising a non-aqueous solvent and a fluorine-containing electrolyte capable of releasing lithium ions, wherein the non-aqueous solvent contains a high dielectric constant solvent and a low viscosity solvent, It is produced by separately purifying a high dielectric constant solvent and a low viscosity solvent, and then mixing the non-aqueous solvent obtained by mixing with the fluorinated electrolyte, wherein the diols in the non-aqueous solvent are 20 ppm. A process for producing an electrolyte for a lithium secondary battery.
【請求項2】 前記高誘電率溶媒の精製処理が晶析、
精密蒸留及び吸着剤による精製処理から選ばれる少なく
とも一種の精製処理である請求項1記載のリチウム二次
電池用電解液の製造方法。
2. The method according to claim 1, wherein the purification of the high dielectric constant solvent is carried out by crystallization.
The method for producing an electrolyte for a lithium secondary battery according to claim 1, wherein the method is at least one kind of purification treatment selected from precision distillation and purification treatment with an adsorbent.
【請求項3】 前記高誘電率溶媒が環状カーボネート
類の少なくとも一種類を含有することを特徴とする請求
項1記載のリチウム二次電池用電解液の製造方法。
3. The method for producing an electrolyte for a lithium secondary battery according to claim 1, wherein said high dielectric constant solvent contains at least one kind of cyclic carbonates.
【請求項4】 前記低粘度溶媒の精製処理が晶析、精
密蒸留及び吸着剤による精製処理から選ばれる少なくと
も一種の精製処理である請求項1記載のリチウム二次電
池用電解液の製造方法。
4. The method for producing an electrolyte solution for a lithium secondary battery according to claim 1, wherein the purification treatment of the low-viscosity solvent is at least one purification treatment selected from crystallization, precision distillation, and purification treatment with an adsorbent.
【請求項5】 前記低粘度溶媒が鎖状カーボネート
類、エーテル類、ラクトン類、ニトリル類、エステル
類、アミド類から選ばれる少なくとも一種類を含有する
ことを特徴とする請求項1記載のリチウム二次電池用電
解液の製造方法。
5. The lithium secondary battery according to claim 1, wherein the low-viscosity solvent contains at least one selected from the group consisting of chain carbonates, ethers, lactones, nitriles, esters, and amides. Method for producing electrolyte solution for secondary battery.
【請求項6】 前記請求項1記載の製造方法により得
られるリチウム二次電池用電解液。
6. An electrolytic solution for a lithium secondary battery obtained by the method according to claim 1.
【請求項7】 前記請求項1記載の製造方法により得
られるリチウム二次電池用電解液を用いるリチウム二次
電池。
7. A lithium secondary battery using the electrolyte for a lithium secondary battery obtained by the method according to claim 1.
JP07223497A 1997-03-25 1997-03-25 Method for producing electrolyte solution for lithium secondary battery Expired - Lifetime JP3244017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07223497A JP3244017B2 (en) 1997-03-25 1997-03-25 Method for producing electrolyte solution for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07223497A JP3244017B2 (en) 1997-03-25 1997-03-25 Method for producing electrolyte solution for lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001213228A Division JP2002075440A (en) 2001-07-13 2001-07-13 Nonaqueous electrolyte and lithium secondary cell using the same

Publications (2)

Publication Number Publication Date
JPH10270075A JPH10270075A (en) 1998-10-09
JP3244017B2 true JP3244017B2 (en) 2002-01-07

Family

ID=13483397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07223497A Expired - Lifetime JP3244017B2 (en) 1997-03-25 1997-03-25 Method for producing electrolyte solution for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3244017B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563491B1 (en) 1999-09-10 2003-05-13 Ricoh Company, Ltd. Coordinate input apparatus and the recording medium thereof
US8089462B2 (en) 2004-01-02 2012-01-03 Smart Technologies Ulc Pointer tracking across multiple overlapping coordinate input sub-regions defining a generally contiguous input region
US8094137B2 (en) 2007-07-23 2012-01-10 Smart Technologies Ulc System and method of detecting contact on a display
US8115753B2 (en) 2007-04-11 2012-02-14 Next Holdings Limited Touch screen system with hover and click input methods
US8120596B2 (en) 2004-05-21 2012-02-21 Smart Technologies Ulc Tiled touch system
US8149221B2 (en) 2004-05-07 2012-04-03 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
US8289299B2 (en) 2003-02-14 2012-10-16 Next Holdings Limited Touch screen signal processing
US8384693B2 (en) 2007-08-30 2013-02-26 Next Holdings Limited Low profile touch panel systems
US8405636B2 (en) 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly
US8432377B2 (en) 2007-08-30 2013-04-30 Next Holdings Limited Optical touchscreen with improved illumination
US8456447B2 (en) 2003-02-14 2013-06-04 Next Holdings Limited Touch screen signal processing
US8508508B2 (en) 2003-02-14 2013-08-13 Next Holdings Limited Touch screen signal processing with single-point calibration

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008107B2 (en) * 2000-10-26 2012-08-22 日本カーリット株式会社 Method for producing perchlorate-containing composition
CN1215595C (en) * 2001-07-10 2005-08-17 三菱化学株式会社 Non aqueous electrolyte and secondary cell using the same
KR102468442B1 (en) 2005-10-20 2022-11-17 미쯔비시 케미컬 주식회사 Lithium secondary cell and nonaqueous electrolytic solution for use therein
CN101400667B (en) 2006-03-20 2013-12-04 三菱化学株式会社 Method of purifying ethylene carbonate, process for producing purified ethylene carbonate and ethylene carbonate
JP5543752B2 (en) * 2009-10-13 2014-07-09 旭化成株式会社 Non-aqueous electrolyte
EP3691016A4 (en) * 2017-10-25 2021-07-07 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, and lithium ion secondary battery and module
WO2022138705A1 (en) * 2020-12-24 2022-06-30 積水化学工業株式会社 Electrolytic solution and non-aqueous electrolytic solution secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563491B1 (en) 1999-09-10 2003-05-13 Ricoh Company, Ltd. Coordinate input apparatus and the recording medium thereof
US8456447B2 (en) 2003-02-14 2013-06-04 Next Holdings Limited Touch screen signal processing
US8508508B2 (en) 2003-02-14 2013-08-13 Next Holdings Limited Touch screen signal processing with single-point calibration
US8289299B2 (en) 2003-02-14 2012-10-16 Next Holdings Limited Touch screen signal processing
US8466885B2 (en) 2003-02-14 2013-06-18 Next Holdings Limited Touch screen signal processing
US8089462B2 (en) 2004-01-02 2012-01-03 Smart Technologies Ulc Pointer tracking across multiple overlapping coordinate input sub-regions defining a generally contiguous input region
US8149221B2 (en) 2004-05-07 2012-04-03 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
US8120596B2 (en) 2004-05-21 2012-02-21 Smart Technologies Ulc Tiled touch system
US8115753B2 (en) 2007-04-11 2012-02-14 Next Holdings Limited Touch screen system with hover and click input methods
US8094137B2 (en) 2007-07-23 2012-01-10 Smart Technologies Ulc System and method of detecting contact on a display
US8432377B2 (en) 2007-08-30 2013-04-30 Next Holdings Limited Optical touchscreen with improved illumination
US8384693B2 (en) 2007-08-30 2013-02-26 Next Holdings Limited Low profile touch panel systems
US8405637B2 (en) 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly with convex imaging window
US8405636B2 (en) 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly

Also Published As

Publication number Publication date
JPH10270075A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3244017B2 (en) Method for producing electrolyte solution for lithium secondary battery
US6413678B1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
JPH0652887A (en) Lithium secondary battery
US6045945A (en) Electrolyte solution for lithium secondary battery
JP3438636B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3087956B2 (en) Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH1167266A (en) Lithium secondary battery
JP2002008721A (en) Nonaqueous electrolyte and lithium secondary battery
JP2002075440A (en) Nonaqueous electrolyte and lithium secondary cell using the same
JP2001052741A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH10270074A (en) Secondary lithium battery electrolyte
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH0574485A (en) Nonaqueous electrolyte secondary battery
JP3111447B2 (en) Electrolyte for lithium secondary battery
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3198951B2 (en) Organic electrolyte for lithium secondary battery, method for producing the same, and use thereof
JP4470902B2 (en) Non-aqueous electrolyte and lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171026

Year of fee payment: 16

EXPY Cancellation because of completion of term