JP3221142B2 - Loading method of metal fine particles - Google Patents

Loading method of metal fine particles

Info

Publication number
JP3221142B2
JP3221142B2 JP06083493A JP6083493A JP3221142B2 JP 3221142 B2 JP3221142 B2 JP 3221142B2 JP 06083493 A JP06083493 A JP 06083493A JP 6083493 A JP6083493 A JP 6083493A JP 3221142 B2 JP3221142 B2 JP 3221142B2
Authority
JP
Japan
Prior art keywords
fine particles
fine
gold
particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06083493A
Other languages
Japanese (ja)
Other versions
JPH06269684A (en
Inventor
英史 平井
貴明 酒井
伸治 菅
富彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP06083493A priority Critical patent/JP3221142B2/en
Publication of JPH06269684A publication Critical patent/JPH06269684A/en
Application granted granted Critical
Publication of JP3221142B2 publication Critical patent/JP3221142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属微粒子を種々の担体
に担持させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supporting fine metal particles on various carriers.

【0002】[0002]

【従来の技術】従来の金属種の吸着方法としては、水溶
液中で各種金属イオンを多孔体表面、あるいは細孔部に
吸着して還元処理により分散担持する方法(特開平4−
254408号公報)、オートクレーブ中で窒素雰囲気
で熱処理による物理吸着方法(特開昭63−31763
3号公報)、脂肪酸や界面活性剤を使用して吸着担持す
る方法(特開平2−41370号公報、特開平3−14
6769号公報)、表面に水分子を吸着させた担体と金
属アルコキシドを有機溶媒中に分散させて加水分解を行
ない化学吸着により担持させる方法(特開平2−253
837号公報)、金属微粒子の表面に界面活性剤を化学
吸着させる方法(特開平2−15101号公報)、樹脂
粉体に金属等の微粒子を混合摩砕等により静電吸着する
方法(特開昭63−188081号公報)、磁気ディス
ク基体、金属担体あるいはその保護膜上に無電解メッキ
により金属微粒子を吸着させる方法(特開平2−587
30号公報、特開平3−181019号公報)等が挙げ
られる。
2. Description of the Related Art As a conventional method for adsorbing metal species, there is a method in which various metal ions are adsorbed on a porous body surface or a pore portion in an aqueous solution and dispersed and supported by a reduction treatment (Japanese Patent Laid-Open Publication No.
254408), a physical adsorption method by heat treatment in a nitrogen atmosphere in an autoclave (JP-A-63-31763).
No. 3), a method of adsorbing and supporting by using a fatty acid or a surfactant (JP-A-2-41370, JP-A-3-14).
No. 6769), a method in which a carrier having water molecules adsorbed on its surface and a metal alkoxide are dispersed in an organic solvent, hydrolyzed, and supported by chemical adsorption (JP-A-2-253).
No. 837), a method in which a surfactant is chemically adsorbed on the surface of metal fine particles (Japanese Patent Application Laid-Open No. 2-15101), and a method in which fine particles of metal or the like are electrostatically adsorbed to a resin powder by mixing and grinding (Japanese Patent Application Laid-Open No. H11-15101). JP-A-2-18881), a method of adsorbing metal fine particles on a magnetic disk substrate, a metal carrier or a protective film thereof by electroless plating.
No. 30, JP-A-3-181010).

【0003】[0003]

【発明が解決しようとする課題】しかし上記の方法では
次のような問題が挙げられる。まずイオン還元処理法に
おいては還元剤反応物等が不純物として担体に吸着する
可能性がある。また、界面活性剤等を使用する場合には
界面活性剤等に起因する不純物の混入の恐れがある。あ
るいは各種微粒子が表面を界面活性剤等により被覆され
ることによりその活性が低下するのを免れない。そし
て、物理吸着法では水分散液であるために各種金属の吸
着速度が非常に小さく、オートクレーブや濾過膜等の特
別な、もしくは高価な装置を必要とする。更に、イオン
還元処理法及び無電解メッキ法においては溶媒中で微粒
子の形成を行なうため粒径制御が困難で金属微粒子の粒
度分布はかなりの幅をもっており微粒子担持体比表面積
等の担持挙動に再現性を期待できない等の問題点があ
る。
However, the above method has the following problems. First, in the ion reduction treatment method, there is a possibility that a reactant of the reducing agent or the like is adsorbed on the carrier as impurities. When a surfactant or the like is used, there is a possibility that impurities due to the surfactant or the like may be mixed. Alternatively, it is inevitable that the activity is reduced by coating the surface of various fine particles with a surfactant or the like. In the physical adsorption method, the adsorption speed of various metals is extremely low because of the aqueous dispersion, and special or expensive equipment such as an autoclave or a filtration membrane is required. In addition, in the ion reduction and electroless plating methods, fine particles are formed in a solvent, so it is difficult to control the particle size, and the particle size distribution of metal fine particles has a considerable width. There is a problem that the property cannot be expected.

【0004】[0004]

【課題を解決するための手段】本発明は以上の問題点を
解決するためのものであって、すなわち水と相溶しない
非水溶媒中に金属微粒子を分散させた分散液を担体と接
触させることを特徴とする金属微粒子の担持方法であ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, that is, a dispersion of fine metal particles in a non-aqueous solvent insoluble in water is brought into contact with a carrier. A method for supporting metal fine particles, characterized in that:

【0005】本発明に使用される金属微粒子としては、
特に限定されないが、例えば長周期型周期表において水
素、フランシウムを除く第1A亜族、ラジウムを除く第
2A亜族、第3A亜族、第4A亜族、第5A亜族、第6A亜
族、第7A亜族、第8族、第1B亜族、第2B亜族、ホウ
素を除く第3B亜族、炭素を除く第4B亜族、窒素を除く
第5B亜族、その他セレン、テルルを含む元素のうち、
少なくとも1種類以上の成分を含む金属単体、混合金
属、合金、金属間化合物等の微粒子が挙げられる。好ま
しい例としては第1B亜族、第8族、具体的には金、
銀、銅、白金、ロジウム、パラジウム、ルテニウム、イ
リジウム及びオスミウム等の微粒子が挙げられる。
The metal fine particles used in the present invention include:
Although not particularly limited, for example, in the long-period table, hydrogen, 1A subgroup excluding francium, 2A subgroup excluding radium, 3A subgroup, 4A subgroup, 5A subgroup, 6A subgroup, Group 7A, Group 8, Group 1B, Group 2B, Group 3B excluding boron, Group 4B excluding carbon, Group 5B excluding nitrogen, other elements including selenium and tellurium Of which
Examples include fine particles of a single metal, a mixed metal, an alloy, an intermetallic compound, and the like containing at least one or more components. Preferred examples are subgroups 1B and 8; specifically, gold,
Fine particles of silver, copper, platinum, rhodium, palladium, ruthenium, iridium, osmium and the like can be mentioned.

【0006】本発明における分散液としての非水溶媒
は、特に限定されないが、例えば芳香族溶媒としてキシ
レン、ベンゼン等、塩素系溶媒として四塩化炭素、クロ
ロホルム、また炭化水素系溶媒としてシクロヘキサン、
ノルマルヘキサン等の各種非水溶媒が挙げられる。
The non-aqueous solvent used as the dispersion in the present invention is not particularly limited. Examples thereof include xylene and benzene as aromatic solvents, carbon tetrachloride and chloroform as chlorine solvents, and cyclohexane as hydrocarbon solvents.
Various non-aqueous solvents such as normal hexane are exemplified.

【0007】本発明に使用される水と相分離する非水液
体に分散した金属微粒子を製造するには種々の方法が採
用される。例えば、10〜50Torr のヘリウム中で金
属を加熱蒸発させ、アルゴンガスで金属蒸気を導き途中
で非水液体蒸気を混入しこの混合物を液体窒素の冷却ト
ラップ中で凝縮させ、それを加熱融解して分散液とする
方法(ガス中蒸発法)、また油溶性界面活性剤を用いて
少量の水を含む非水液体中で逆ミセルのマイクロエマル
ジョンを作る場合、このマイクロエマルジョン粒子内に
は微量の水が取り込まれており、マイクロエマルジョン
粒子は水と相分離する多量の非水液体中に分散している
ので、この微量水中に貴金属塩を溶解させておき、還元
剤を加えることにより分散液とする方法(マイクロエマ
ルジョン法)等が知られている。
Various methods are employed for producing metal fine particles dispersed in a non-aqueous liquid which is phase-separated with water used in the present invention. For example, a metal is heated and evaporated in helium at 10 to 50 Torr, a metal vapor is introduced with argon gas, a non-aqueous liquid vapor is mixed in the middle, and this mixture is condensed in a liquid nitrogen cooling trap, and heated and melted. In the case of a method of preparing a dispersion (evaporation in gas) or a method of forming a reverse micelle microemulsion in a non-aqueous liquid containing a small amount of water using an oil-soluble surfactant, a small amount of water is contained in the microemulsion particles. The microemulsion particles are dispersed in a large amount of non-aqueous liquid that separates with water, so the noble metal salt is dissolved in this trace water and a reducing agent is added to form a dispersion. A method (microemulsion method) and the like are known.

【0008】また最近では、貴金属塩を水溶液から抽出
剤を用いて非水液体相に移動させ、これを水相に加えた
還元剤により還元することにより、貴金属微粒子の分散
液とする方法(抽出法)も試みられている。
Recently, a method of preparing a dispersion of fine particles of a noble metal by transferring a noble metal salt from an aqueous solution to a non-aqueous liquid phase using an extractant and reducing the same with a reducing agent added to the aqueous phase (extraction method) Law) has also been attempted.

【0009】特に好ましい方法として本発明者の中の1
人の発明にかかわる次の方法が挙げられる(特願平3ー
358548号)。 すなわち金属微粒子及び/又は金
属化合物微粒子の水分散液を界面活性剤の存在下、水と
相分離する非水液体を接触させ、その接触前及び/又は
接触後に、水溶性無機酸塩及び/又は水溶性有機酸塩を
添加し、微粒子を水分散液より非水液体中に移動させ、
この二相混合物より非水分散液を単離することができ
る。本法によれば簡便な操作で特殊な装置を必要とせ
ず、大量又は高濃度の金属微粒子の非水分散液を容易に
調製することができる。
As a particularly preferred method, one of the present inventors
The following method relating to human invention is disclosed (Japanese Patent Application No. 3-358548). That is, in the presence of a surfactant, an aqueous dispersion of metal fine particles and / or metal compound fine particles is brought into contact with a non-aqueous liquid that separates from water, and before and / or after the contact, a water-soluble inorganic acid salt and / or Adding a water-soluble organic acid salt, moving the fine particles from the aqueous dispersion into the non-aqueous liquid,
A non-aqueous dispersion can be isolated from this two-phase mixture. According to this method, a non-aqueous dispersion of a large amount or high concentration of metal fine particles can be easily prepared by a simple operation without requiring a special device.

【0010】このようにして得られた非水分散液に分散
する微粒子の粒径は用いる水分散液中の粒径と実質的に
同様であり、1nm〜1μmの範囲である。そして均一
に分散される金属の微粒子濃度は約0.05〜500m
mol/lである。
The particle size of the fine particles dispersed in the non-aqueous dispersion thus obtained is substantially the same as the particle size in the aqueous dispersion used, and is in the range of 1 nm to 1 μm. The concentration of fine metal particles uniformly dispersed is about 0.05 to 500 m.
mol / l.

【0011】本発明に使用される担体としては、特に限
定されないが、溶媒との接触により変質あるいは溶媒に
溶解しないものが好ましく、例えば炭素、金属、合金類
等、無機化合物としてはアルミナ、シリカ、チタニア、
ジルコニア、粘土鉱物のような複合酸化物、ゼオライ
ト、ガラス等、また有機化合物としてセルロース、でん
ぷん、繊維等の天然高分子物質、ポリスチレン、ナイロ
ン、ポリアセタール等の合成高分子物質が挙げられる。
非水溶媒を用いるので水溶性物質、例えば溶性でんぷ
ん、ヒドロキシプロピルセルロース等を担体として使用
することもできる。坦体の形状としては膜状、ゲル状、
粉体状、ウィスカー状、ファイバー状、ハニカム状等が
挙げられ、多孔体あよび非多孔体のいずれであってもよ
い。これらの1種あるいは2種以上の混合物、複合物及び
成型体を坦体とすることができる。
[0011] The carrier used in the present invention is not particularly limited, but those which are altered or do not dissolve in the solvent upon contact with a solvent are preferable. Examples of inorganic compounds such as carbon, metals and alloys include alumina, silica and the like. Titania,
Examples thereof include complex oxides such as zirconia and clay minerals, zeolites, glass, and the like, and natural polymers such as cellulose, starch, and fiber, and synthetic polymer such as polystyrene, nylon, and polyacetal as organic compounds.
Since a non-aqueous solvent is used, a water-soluble substance such as soluble starch and hydroxypropylcellulose can also be used as a carrier. The shape of the carrier is film-like, gel-like,
It may be in the form of powder, whisker, fiber, honeycomb or the like, and may be any of a porous body and a non-porous body. One or a mixture of two or more of these, a composite, and a molded article can be used as a carrier.

【0012】本発明における金属微粒子非水分散液と上
記坦体との接触手段は、特に限定はされないが、攪拌
子、攪拌羽根を用いた機械的攪拌操作以外にも超音波を
利用する方法、市販のホモジナイザーを用いる方法等種
々の手段を適用しうる。また吸着速度が速いため、吸着
装置は回分式、連続式のいずれも適用可能である。
The means for contacting the non-aqueous dispersion of metal fine particles with the carrier in the present invention is not particularly limited, but is not limited to mechanical stirring using a stirrer or a stirring blade. Various means such as a method using a commercially available homogenizer can be applied. In addition, since the adsorption speed is high, any of a batch type and a continuous type can be applied to the adsorption device.

【0013】[0013]

【作用】本発明者らの研究によると本発明によれば常
温、常圧において攪拌等の簡易な手段で殆んどの金属微
粒子が担体に担持可能であることが判明した。また金属
微粒子非水分散液と比較して金属微粒子水分散液を用い
た場合は殆んど微粒子を吸着しないか吸着速度がかなり
遅いことが明らかとなった。水系と非水系との吸着挙動
の差の理由については明確ではないが、以下の点が考え
られる。
According to the study of the present inventors, it has been found that most of the metal fine particles can be supported on the carrier by simple means such as stirring at normal temperature and normal pressure. In addition, it was revealed that when the aqueous metal particle dispersion was used as compared with the non-aqueous metal particle dispersion, almost no fine particles were adsorbed or the adsorption speed was considerably slow. Although the reason for the difference in the adsorption behavior between the aqueous system and the non-aqueous system is not clear, the following points can be considered.

【0014】1. 溶媒和及び担体表面の違い。 親水性の表面を有する物質において、水中では金属微粒
子は水和により安定な水和層を形成する。一方、非水相
中では金属微粒子は水相中での水和層のような強固な溶
媒和は存在しない。 また、同様に担体表面について考
えると、水中では担体表面の親水性の度合いにより差は
あるものの担体表面が安定に水和する。非水相の場合は
担体表面に溶媒分子のみ存在するため担体表面の水和は
起こり得ない。以上から金属微粒子の担体表面への吸着
において、非水相の場合が有利である。
1. Differences in solvation and carrier surface. In a substance having a hydrophilic surface, fine metal particles form a stable hydration layer by hydration in water. On the other hand, in the non-aqueous phase, the fine metal particles do not have a strong solvation like a hydrated layer in the aqueous phase. Similarly, when considering the surface of the carrier, the surface of the carrier is hydrated stably in water although there is a difference depending on the degree of hydrophilicity of the surface of the carrier. In the case of the non-aqueous phase, hydration of the carrier surface cannot occur because only solvent molecules are present on the carrier surface. From the above, the non-aqueous phase is advantageous in the adsorption of the metal fine particles to the surface of the carrier.

【0015】2. 担体の濡れの違い。 有機溶媒は水と比較して各担体表面で良く濡れる。一般
に細孔の存在等により担体表面形態が複雑であることが
多く、担体が分散媒に良く濡れることは金属微粒子を良
好に担持するうえで好ましい。
2. Difference in wetting of the carrier. The organic solvent wets better on each carrier surface than water. In general, the surface morphology of the carrier is often complicated due to the existence of pores and the like, and it is preferable that the carrier be well wetted by the dispersion medium in order to favorably support the metal fine particles.

【0016】3. 比重の違い。 担体の形状としては様々なものがあるが特に粉体等の比
重が小さい担体の場合、特に水に浮く場合には、水より
も比重の小さな非水溶媒の方が均一な攪拌が容易とな
る。
3. Difference in specific gravity. There are various shapes of the carrier, but in the case of a carrier having a small specific gravity, such as a powder, particularly in the case of floating in water, a non-aqueous solvent having a small specific gravity is easier to uniformly stir than water. .

【0017】[0017]

【実施例】次に実施例、比較例により本発明を具体的に
説明するが、本発明はこれらに限定されるものではな
い。なお金属微粒子分散液の調製方法及び分散液中の微
粒子の濃度の測定は前記の特願平3-358548号に基づいて
行なった。その具体的な態様は次のとおりである。
Next, the present invention will be described specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The method for preparing the metal fine particle dispersion and the measurement of the concentration of the fine particles in the dispersion were carried out based on Japanese Patent Application No. 3-358548. The specific mode is as follows.

【0018】金属微粒子水分散液の所定量を採取し、こ
れに界面活性剤を水分散液の水の量に対し、0.01〜
5重量%、好ましくは0.05〜0.5重量%になるよう
に添加する。これに水分散液の容量の0.01〜50
倍、好ましくは0.05〜10倍の非水液体を加えて1
5分〜8時間、好ましくは2〜6時間、混合攪拌し非水
液体を水分散液中に(又は逆でもよい)分散し乳化させ
る。 この場合、温度は0〜90℃、好ましくは20〜
60℃の範囲で一定に保つことが望ましい。 その後、
水溶性無機酸塩及び/又は実質的に界面活性作用を有さ
ない水溶性有機酸塩を水分散液の水の量に対し、0.0
05〜30重量%、好ましくは0.01〜15重量%に
なるように添加し、30秒〜30分間、好ましくは1〜
2分間攪拌を加える。これにより実質的に全部の金属微
粒子が水相より非水液体相へ移動する。その後、2時間
〜2日間静置すると微粒子の分散していない水相と微粒
子の分散した非水液体相とが上下二相に分離するので分
液ロートを用いるか、あるいは非水液体相の吸い出しに
より、微粒子の分散した非水液体を容易に得ることがで
きる。
A predetermined amount of the aqueous metal particle dispersion is sampled, and a surfactant is added to the aqueous dispersion in an amount of 0.01 to 0.01% based on the amount of water in the aqueous dispersion.
It is added in an amount of 5% by weight, preferably 0.05 to 0.5% by weight. The volume of the aqueous dispersion is 0.01 to 50
2 times, preferably 0.05 to 10 times of the non-aqueous liquid
The non-aqueous liquid is dispersed and emulsified in the aqueous dispersion (or vice versa) for 5 minutes to 8 hours, preferably 2 to 6 hours, by mixing and stirring. In this case, the temperature is 0 to 90 ° C, preferably 20 to 90 ° C.
It is desirable to keep the temperature constant in the range of 60 ° C. afterwards,
The water-soluble inorganic acid salt and / or the water-soluble organic acid salt having substantially no surfactant effect is added to the aqueous dispersion in an amount of 0.0
0.5 to 30% by weight, preferably 0.01 to 15% by weight, and added for 30 seconds to 30 minutes, preferably 1 to 30% by weight.
Add stirring for 2 minutes. Thereby, substantially all of the metal fine particles move from the aqueous phase to the non-aqueous liquid phase. After that, if left for 2 hours to 2 days, an aqueous phase in which fine particles are not dispersed and a non-aqueous liquid phase in which fine particles are dispersed are separated into upper and lower two phases, so that a separating funnel is used or a non-aqueous liquid phase is sucked out. Thereby, a non-aqueous liquid in which fine particles are dispersed can be easily obtained.

【0019】この方法において用いられる水溶性無機酸
塩及び/又は水溶性有機酸塩の例としては、水溶性のア
ンモニウム、リチウム、ナトリウム、カリウム、マグネ
シウム、カルシウム、ストロンチウム、バリウム、アル
ミニウム、ランタン等の硫酸塩、ハロゲン化物、酢酸
塩、硝酸塩、炭酸塩、クエン酸塩及び酒石酸塩等が挙げ
られる。
Examples of the water-soluble inorganic acid salt and / or water-soluble organic acid salt used in this method include water-soluble ammonium, lithium, sodium, potassium, magnesium, calcium, strontium, barium, aluminum, lanthanum and the like. Sulfate, halide, acetate, nitrate, carbonate, citrate, tartrate and the like.

【0020】金属微粒子の水分散液の調製方法は公知の
方法、例えば、日本化学会編、新実験化学講座18巻、
界面とコロイド、319〜340頁、丸善、1977
の記載を応用して行なうことができる。また、界面活性
剤を加えることにより分散状態を安定化した金属微粒子
の水分散液の調製は公知の方法、例えば、Y. Nakao and
K. Kaeriyama, Journal of Colloid and Interface Sci
ence 110巻、No.1、82〜87頁、March 1986
に記載の方法を応用して行なうことができる。金属微粒
子の水分散液中における濃度は0.005〜100mm
ol/lであり、通常0.02〜70mmol/l で
あるが濃度の高い法が好ましい。
A method for preparing an aqueous dispersion of metal fine particles is a known method, for example, the Chemical Society of Japan, New Experimental Chemistry, Vol.
Interfaces and Colloids, 319-340, Maruzen, 1977
Can be applied by applying the description of The preparation of an aqueous dispersion of fine metal particles in which the dispersion state is stabilized by adding a surfactant is a known method, for example, Y. Nakao and
K. Kaeriyama, Journal of Colloid and Interface Sci
ence 110, No. 1, pp. 82-87, March 1986.
Can be performed by applying the method described in (1). The concentration of the metal fine particles in the aqueous dispersion is 0.005 to 100 mm.
ol / l, usually 0.02 to 70 mmol / l, but a method with a high concentration is preferred.

【0021】非水溶媒中における金属微粒子濃度の測定
は、金属微粒子濃度と透過率が良好な直線関係を示すた
め、検量線法により簡便に微粒子濃度を求めることがで
きる。
In the measurement of the concentration of fine metal particles in a nonaqueous solvent, the concentration of fine metal particles shows a good linear relationship with the transmittance, so that the concentration of fine particles can be easily obtained by the calibration curve method.

【0022】(1)黒褐色を示す多くの金属微粒子分散
液の場合:数種の異なる濃度の金属微粒子を調製し、そ
れらの紫外可視吸収スペクトルを測定する。金属微粒子
の濃度と500nmと700nmの吸光度の差との間には良好
な直線関係がある。これらの測定点に最小二乗法を用い
て検量線を作成した。微粒子濃度を測定する金属微粒子
分散液の紫外可視吸収スペクトルを測定し500nmと700
nmの吸光度の差を求め、検量線から液中の金属微粒子
の濃度を算出した。
(1) In the case of a dispersion of many fine metal particles exhibiting blackish brown: several kinds of fine metal particles having different concentrations are prepared, and their ultraviolet-visible absorption spectra are measured. There is a good linear relationship between the concentration of fine metal particles and the difference between the absorbance at 500 nm and 700 nm. A calibration curve was created for these measurement points using the least squares method. The UV-visible absorption spectrum of the metal fine particle dispersion for measuring the fine particle concentration was measured to be 500 nm and 700 nm.
The difference in absorbance at nm was determined, and the concentration of metal fine particles in the liquid was calculated from the calibration curve.

【0023】(2)特性吸収を示す着色した微粒子の場
合: 金微粒子 金微粒子分散液の特性吸収帯(460〜630nm)の両側の最
低部に接線を引き、これをベースラインとして520nmの
吸光度を測定し、これを用いて検量線を作成し、金微粒
子濃度を測定した以外は上記(1)の方法に準じて行な
った。 銀微粒子 銀微粒子分散液の特性吸収帯(320〜700nm)の両側の最
低部に接線を引き、これをベースラインとして400nmの
吸光度を測定し、これを用いて検量線を作成し、銀微粒
子濃度を測定した以外は上記(1)の方法に準じて行な
った。
(2) In the case of colored fine particles exhibiting characteristic absorption: Gold fine particles A tangent line is drawn at the lowest part on both sides of the characteristic absorption band (460 to 630 nm) of the gold fine particle dispersion, and the absorbance at 520 nm is taken as a baseline. The measurement was performed, and a calibration curve was prepared using the measurement result. The measurement was performed according to the method (1) except that the concentration of the fine gold particles was measured. Silver fine particle A tangent line is drawn at the lowest part on both sides of the characteristic absorption band (320 to 700 nm) of the silver fine particle dispersion, and the absorbance at 400 nm is measured using this line as a baseline, and a calibration curve is created using this, and the silver fine particle concentration is calculated. Was performed according to the method of the above (1) except that was measured.

【0024】実施例1 金濃度0.288 mmol/lの金コロイドシクロヘキサン分散液
20mlをシリカゲル(ダイソー(株)製、平均粒径5μm、
細孔径10 nm、比表面積300m2/g)0.1g と共に50ml
のフラスコに設置し、10分間マク゛ネチックスターラーにより攪拌を
行なった。赤色を呈していた金微粒子分散液は攪拌後無
色透明となり、白色であったシリカゲルは赤色に着色し
た。攪拌後シクロヘキサンの透過率を測定して、残存す
る金微粒子濃度を測定した結果、シクロヘキサン中に残
存する金微粒子は0%であり、すべての金微粒子がシリ
カゲルに吸着された。次に該金微粒子分散液とシリカゲ
ルの混合物に界面活性剤としてオレイン酸ナトリウム
(東京化成(株)製 試薬特級)0.020gを加えて1時間
攪拌したところ、シリカゲルの着色の変化は認められな
かった。一方、分散液の透過率を測定して残存する金微
粒子濃度を測定した結果、金微粒子濃度は0%で界面活
性剤添加により一度シリカゲルに担持された金微粒子の
脱離は認められなかった。
Example 1 Gold colloid cyclohexane dispersion having a gold concentration of 0.288 mmol / l
20 ml of silica gel (Daiso Co., Ltd., average particle size 5 μm,
50 ml together with 0.1 g of pore diameter 10 nm, specific surface area 300 m 2 / g)
And stirred with a magnetic stirrer for 10 minutes. The gold fine particle dispersion having a red color became colorless and transparent after stirring, and the white silica gel was colored red. After stirring, the transmittance of cyclohexane was measured, and the concentration of the remaining gold particles was measured. As a result, 0% of the gold particles remained in the cyclohexane, and all the gold particles were adsorbed on the silica gel. Next, 0.020 g of sodium oleate (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a surfactant to the mixture of the gold fine particle dispersion and silica gel, and the mixture was stirred for 1 hour. No change in coloring of the silica gel was observed. . On the other hand, as a result of measuring the transmittance of the dispersion and measuring the concentration of the remaining gold fine particles, the concentration of the gold fine particles was 0%, and no desorption of the gold fine particles once supported on the silica gel by the addition of the surfactant was observed.

【0025】比較例1 金濃度0.288 mmol/lの金微粒子水分散液20mlを実施例1
と同様にシリカゲル0.1gと共に攪拌を行なった。赤色を
呈していた金微粒子分散液は攪拌後も色変化がなく、シ
リカゲルの着色もほとんど認められなかった。攪拌後水
の透過率を測定して残存する金微粒子濃度を測定した結
果、水中に残存する金微粒子は88%であり、12%の
金微粒子がシリカゲルに吸着された。引き続いて4週間
にわたって攪拌を継続したところ、水分散液に残存する
金微粒子は53%であり、47%の金微粒子がシリカゲ
ルに吸着され、シリカゲルは赤色に着色した。次に該金
微粒子水分散液とシリカゲルの混合物に界面活性剤とし
てオレイン酸ナトリウム(東京化成(株)製 試薬特
級)0.020gを加えて1時間攪拌したところ、シリカゲル
の着色は認められず白色になった。一方、水分散液の透
過率を測定して残存する金微粒子濃度を測定した結果、
分散液中の金微粒子濃度は増加して吸着前の92%にな
り、界面活性剤添加により一度シリカゲルに担持された
金微粒子の脱離が確認された。
Comparative Example 1 20 ml of an aqueous dispersion of fine gold particles having a gold concentration of 0.288 mmol / l was prepared in Example 1.
In the same manner as described above, the mixture was stirred with 0.1 g of silica gel. The red gold particle dispersion having a red color did not change color even after stirring, and almost no coloring of silica gel was observed. As a result of measuring the transmittance of water after stirring and measuring the concentration of the remaining gold fine particles, 88% of the gold fine particles remained in the water, and 12% of the gold fine particles were adsorbed on the silica gel. Subsequently, stirring was continued for 4 weeks. As a result, 53% of the fine gold particles remained in the aqueous dispersion, 47% of the fine gold particles were adsorbed on the silica gel, and the silica gel was colored red. Next, 0.020 g of sodium oleate (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) as a surfactant was added to the mixture of the aqueous dispersion of gold particles and silica gel, and the mixture was stirred for 1 hour. became. On the other hand, as a result of measuring the transmittance of the aqueous dispersion and measuring the concentration of the remaining gold fine particles,
The concentration of the fine gold particles in the dispersion increased to 92% before the adsorption, and the desorption of the fine gold particles once supported on the silica gel by the addition of the surfactant was confirmed.

【0026】実施例2 金濃度0.288 mmol/lの金微粒子キシレン分散液20 mlを
シリカゲル(ダイソー(株)製、平均粒径5μm、細孔
径10 nm、比表面積300m2/g)0.1g と共に50mlのフラ
スコに設置し、10分間マク゛ネチックスターラーにより攪拌を行なっ
た。赤色を呈していた金微粒子分散液は攪拌後無色透明
となり、白色であったシリカゲルは赤色に着色した。攪
拌後キシレンの透過率を測定して残存する金微粒子濃度
を測定した結果、キシレン中に残存する金微粒子は0%
であり、すべての金微粒子がシリカゲルに吸着された。
Example 2 50 ml of a dispersion of 20 ml of xylene dispersion of fine gold particles having a gold concentration of 0.288 mmol / l together with 0.1 g of silica gel (manufactured by Daiso Co., Ltd., average particle diameter 5 μm, pore diameter 10 nm, specific surface area 300 m 2 / g) And stirred with a magnetic stirrer for 10 minutes. The gold fine particle dispersion having a red color became colorless and transparent after stirring, and the white silica gel was colored red. As a result of measuring the transmittance of xylene after stirring and measuring the concentration of the remaining gold fine particles, 0% of the gold fine particles remaining in the xylene was 0%.
And all the gold fine particles were adsorbed on the silica gel.

【0027】実施例3 金濃度0.288 mmol/lの金微粒子シクロヘキサン分散液20
mlをカーボン粉末(東海カーボン(株)製、シーストS、
平均粒径58μm)0.1g と共に50mlのフラスコに設置
し、10分間マク゛ネチックスターラーにより攪拌を行なった。赤色を
呈していた金微粒子分散液は攪拌後無色透明となった。
攪拌後シクロヘキサンの透過率を測定して残存する金微
粒子濃度を測定した結果、シクロヘキサン中に残存する
金微粒子は0%であり、すべての金微粒子がカーボンに
吸着された。
Example 3 A gold fine particle cyclohexane dispersion liquid having a gold concentration of 0.288 mmol / l 20
ml of carbon powder (Tokai Carbon Co., Ltd., Seast S,
The mixture was placed in a 50 ml flask together with 0.1 g of an average particle size (58 μm), and stirred with a magnetic stirrer for 10 minutes. The gold fine particle dispersion having a red color became colorless and transparent after stirring.
After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining gold fine particles. As a result, 0% of the gold fine particles remained in the cyclohexane, and all the gold fine particles were adsorbed on the carbon.

【0028】実施例4 金濃度0.288 mmol/lの金微粒子キシレン分散液20mlをカ
ーボン粉末(東海カーボン(株)製、シーストS、平均粒
径58μm)0.1g と共に50mlのフラスコに設置し、10分
間マク゛ネチックスターラーにより攪拌を行なった。赤色を呈してい
た金微粒子分散液は攪拌後無色透明となった。攪拌後キ
シレンの透過率を測定して残存する金微粒子濃度を測定
した結果、キシレン中に残存する金微粒子は0%であ
り、すべての金微粒子がカーボンに吸着された。
Example 4 20 ml of a gold particle xylene dispersion having a gold concentration of 0.288 mmol / l was placed in a 50 ml flask together with 0.1 g of carbon powder (manufactured by Tokai Carbon Co., Ltd., Seast S, average particle size: 58 μm) for 10 minutes. Stirring was performed with a magnetic stirrer. The gold fine particle dispersion having a red color became colorless and transparent after stirring. After stirring, the transmittance of xylene was measured to measure the concentration of the remaining gold fine particles. As a result, 0% of the gold fine particles remained in the xylene, and all the gold fine particles were adsorbed on the carbon.

【0029】実施例5 金濃度0.288 mmol/lの金微粒子シクロヘキサン分散液20
mlを多孔質ガラス粉末(松浪硝子工業(株)製、M-31、平
均粒径150μm、細孔径43 nm、比表面積88m2/g)0.1
g と共に50mlのフラスコに設置し、10分間マク゛ネチックスターラー
により攪拌を行なった。赤色を呈していた金微粒子分散
液は攪拌後無色透明となり、白色であった多孔質ガラス
粉末は赤紫色に着色した。攪拌後シクロヘキサンの透過
率を測定して残存する金微粒子濃度を測定した結果、シ
クロヘキサン中に残存する金微粒子は0%であり、すべ
ての金微粒子が多孔質ガラス粉末に吸着された。
Example 5 Gold Particle Cyclohexane Dispersion 20 with 0.288 mmol / l Gold Concentration
0.1 ml of porous glass powder (M-31, manufactured by Matsunami Glass Industry Co., Ltd., average particle diameter 150 μm, pore diameter 43 nm, specific surface area 88 m 2 / g)
g and placed in a 50 ml flask, and stirred with a magnetic stirrer for 10 minutes. The red gold particle dispersion liquid which was red became colorless and transparent after stirring, and the white porous glass powder was colored reddish purple. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining gold fine particles. As a result, 0% of the gold fine particles remained in the cyclohexane, and all the gold fine particles were adsorbed to the porous glass powder.

【0030】実施例6 金濃度0.288 mmol/lの金微粒子キシレン分散液20mlを多
孔質ガラス粉末(松浪硝子工業(株)製、M-31、平均粒径
150 μm、細孔径43 nm、比表面積88 m2/g)0.1g と
共に50 mlのフラスコに設置し、10分間マク゛ネチックスターラーに
より攪拌を行なった。赤色を呈していた金微粒子分散液
は攪拌後無色透明となり、白色であった多孔質ガラス粉
末は赤紫色に着色した。攪拌後キシレンの透過率を測定
して残存する金微粒子濃度を測定した結果、キシレン中
に残存する金微粒子は0%であり、すべての金微粒子が
多孔質ガラス粉末に吸着された。
Example 6 20 ml of a xylene dispersion of fine gold particles having a gold concentration of 0.288 mmol / l was mixed with a porous glass powder (M-31, manufactured by Matsunami Glass Industry Co., Ltd., average particle size).
The mixture was placed in a 50 ml flask together with 0.1 g of 150 μm, a pore diameter of 43 nm, and a specific surface area of 88 m 2 / g), and stirred with a magnetic stirrer for 10 minutes. The red gold particle dispersion liquid which was red became colorless and transparent after stirring, and the white porous glass powder was colored reddish purple. As a result of measuring the transmittance of xylene after stirring and measuring the concentration of the remaining fine gold particles, 0% of the fine gold particles remained in the xylene, and all the fine gold particles were adsorbed on the porous glass powder.

【0031】比較例2 金濃度0.288 mmol/lの金微粒子水分散液20mlを実施例5
と同様に多孔質ガラス粉末0.1g と共に攪拌を行なっ
た。赤色を呈していた金微粒子分散液は攪拌後も色変化
がなく、多孔質ガラス粉末の着色もほとんど認められな
かった。攪拌後水の透過率を測定して残存する金微粒子
濃度を測定した結果、水中に残存する金微粒子は100
%であり、金微粒子は多孔質ガラス粉末に吸着されなか
った。
Comparative Example 2 20 ml of an aqueous dispersion of fine gold particles having a gold concentration of 0.288 mmol / l was prepared in Example 5.
Similarly to the above, stirring was carried out together with 0.1 g of the porous glass powder. The red fine gold particle dispersion did not change color even after stirring, and coloring of the porous glass powder was hardly recognized. As a result of measuring the transmittance of water after stirring and measuring the concentration of the remaining gold particles, 100% of the gold particles remaining in the water were found.
%, And the fine gold particles were not adsorbed on the porous glass powder.

【0032】実施例7 金濃度0.288 mmol/lの金微粒子シクロヘキサン分散液20
mlをポリスチレン:2%ジビニルベンゼン共重合体ビー
ズ(コダック(株)製)0.1g と共に50mlのフラスコに設
置し、10分間マク゛ネチックスターラーにより攪拌を行なった。 赤
色を呈していた金微粒子分散液は攪拌後無色透明とな
り、白色であった該ビーズは赤紫色に着色した。攪拌後
シクロヘキサンの透過率を測定して残存する金微粒子濃
度を測定した結果、シクロヘキサン中に残存する金微粒
子濃度は攪拌前の8%であり、92%の金微粒子がポリ
スチレン:2%ジビニルベンゼン共重合体ビーズに吸着
された。
Example 7 Cyclohexane dispersion 20 of fine gold particles having a gold concentration of 0.288 mmol / l
The mixture was placed in a 50 ml flask together with 0.1 g of polystyrene: 2% divinylbenzene copolymer beads (manufactured by Kodak Co., Ltd.), and stirred with a magnetic stirrer for 10 minutes. The red gold particle dispersion liquid which became red became colorless and transparent after stirring, and the white beads were colored red-purple. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining gold fine particles. As a result, the concentration of the gold fine particles remaining in the cyclohexane was 8% before stirring, and 92% of the gold fine particles contained polystyrene: 2% divinylbenzene. Adsorbed on polymer beads.

【0033】実施例8 金濃度0.288 mmol/lの金微粒子キシレン分散液20mlをポ
リスチレン:2%ジビニルベンゼン共重合体ビーズ(コ
ダック(株)製)0.1g と共に50mlのフラスコに設置し、1
0分間マク゛ネチックスターラーにより攪拌を行なった。赤色を呈し
ていた金微粒子分散液は攪拌後無色透明となり、白色で
あった該ビーズは赤紫色に着色した。攪拌後キシレンの
透過率を測定して残存する金微粒子濃度を測定した結
果、キシレン中に残存する金微粒子濃度は攪拌前の20
%であり、80%の金微粒子がポリスチレン:2%ジビ
ニルベンゼン共重合体ビーズに吸着された。
Example 8 20 ml of a gold fine particle xylene dispersion having a gold concentration of 0.288 mmol / l was placed in a 50 ml flask together with 0.1 g of polystyrene: 2% divinylbenzene copolymer beads (manufactured by Kodak Co., Ltd.).
Stirring was performed with a magnetic stirrer for 0 minutes. The red gold particle dispersion liquid which became red became colorless and transparent after stirring, and the white beads were colored red-purple. As a result of measuring the transmittance of xylene after stirring and measuring the concentration of remaining gold fine particles, the concentration of gold fine particles remaining in xylene was 20% before stirring.
%, And 80% of the fine gold particles were adsorbed on the polystyrene: 2% divinylbenzene copolymer beads.

【0034】比較例3 金濃度0.288 mmol/lの金微粒子水分散液20mlを実施例7
と同様にポリスチレン:2%ジビニルベンゼン共重合体
ビーズ0.1g と共に攪拌を行なった。赤色を呈していた
金微粒子分散液は攪拌後も色変化がなく、ポリスチレ
ン:2%ジビニルベンゼン共重合体ビーズの着色も全く
認められなかった。攪拌後、該水分散液の透過率を測定
して残存する金微粒子濃度を測定した結果、水中に残存
する金微粒子は100%であり、金微粒子はポリスチレ
ン:2%ジビニルベンゼン共重合体ビーズに吸着されな
かった。
Comparative Example 3 20 ml of an aqueous dispersion of fine gold particles having a gold concentration of 0.288 mmol / l was prepared in Example 7.
Similarly to the above, stirring was performed together with 0.1 g of polystyrene: 2% divinylbenzene copolymer beads. The red fine particle dispersion having a red color had no color change even after stirring, and no coloring of the polystyrene: 2% divinylbenzene copolymer beads was observed at all. After stirring, the transmittance of the aqueous dispersion was measured to measure the concentration of the remaining gold particles. As a result, 100% of the gold particles remained in the water, and the gold particles were converted to polystyrene: 2% divinylbenzene copolymer beads. Not adsorbed.

【0035】実施例9 金濃度0.288 mmol/lの金微粒子シクロヘキサン分散液20
mlを溶性でんぷん粉末(林純薬工業(株)製、試薬特級)
0.1g と共に50mlのフラスコに設置し、10分間マク゛ネチックスタ
ーラーにより攪拌を行なった。赤色を呈していた金微粒子
分散液は攪拌後無色透明となり、白色であったでんぷん
粉末は赤紫色に着色した。攪拌後シクロヘキサンの透過
率を測定して残存する金微粒子濃度を測定した結果、シ
クロヘキサン中に残存する金微粒子は0%であり、すべ
ての金微粒子がでんぷん粉末に吸着された。
Example 9 A gold fine particle cyclohexane dispersion liquid having a gold concentration of 0.288 mmol / l 20
ml of soluble starch powder (Hayashi Junyaku Kogyo Co., Ltd., reagent grade)
The mixture was placed in a 50 ml flask together with 0.1 g, and stirred with a magnetic stirrer for 10 minutes. The red gold particle dispersion liquid which was red became colorless and transparent after stirring, and the starch powder which was white was colored red-purple. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining gold fine particles. As a result, 0% of the fine gold particles remained in the cyclohexane, and all the fine gold particles were adsorbed on the starch powder.

【0036】実施例10 金濃度0.288 mmol/lの金微粒子キシレン分散液20mlを溶
性でんぷん粉末(林純薬工業(株)製、試薬特級)0.1g
と共に50mlのフラスコに設置し、10分間マク゛ネチックスターラーに
より攪拌を行なった。赤色を呈していた金微粒子分散液
は攪拌後無色透明となり、白色であったでんぷん粉末は
赤紫色に着色した。攪拌後キシレンの透過率を測定して
残存する金微粒子濃度を測定した結果、キシレン中に残
存する金微粒子は0%であり、すべての金微粒子がでん
ぷん粉末に吸着された。
Example 10 0.1 g of soluble starch powder (reagent grade, manufactured by Hayashi Junyaku Kogyo Co., Ltd.) was added to 20 ml of a xylene dispersion of fine gold particles having a gold concentration of 0.288 mmol / l.
And placed in a 50 ml flask, and stirred with a magnetic stirrer for 10 minutes. The red gold particle dispersion liquid which was red became colorless and transparent after stirring, and the starch powder which was white was colored red-purple. As a result of measuring the transmittance of xylene after stirring and measuring the concentration of the remaining fine gold particles, 0% of the fine gold particles remained in the xylene, and all the fine gold particles were adsorbed on the starch powder.

【0037】実施例11 銀濃度14.8 mmol/lの銀微粒子シクロヘキサン分散液20m
lをシリカゲル(ダイソー(株)製、平均粒径5μm、細孔
径10 nm、比表面積300m2/g)0.2g と共に50mlのフラ
スコに設置し、10分間マク゛ネチックスターラーにより攪拌を行なっ
た。褐色を呈していた銀微粒子分散液は攪拌後無色透明
となり、白色であったシリカゲルは褐色に着色した。攪
拌後シクロヘキサンの透過率を測定して残存する銀微粒
子濃度を測定した結果、シクロヘキサン中に残存する銀
微粒子は0%であり、すべての銀微粒子がシリカゲルに
吸着された。
Example 11 20 m of cyclohexane dispersion of fine silver particles having a silver concentration of 14.8 mmol / l
l was placed in a 50 ml flask together with 0.2 g of silica gel (manufactured by Daiso Co., Ltd., average particle size: 5 μm, pore size: 10 nm, specific surface area: 300 m 2 / g), and stirred by a magnetic stirrer for 10 minutes. The silver fine particle dispersion having a brown color became colorless and transparent after stirring, and the white silica gel was colored brown. After stirring, the transmittance of cyclohexane was measured to determine the concentration of the remaining silver fine particles. As a result, the silver fine particles remaining in the cyclohexane were 0%, and all the silver fine particles were adsorbed on the silica gel.

【0038】実施例12 銀濃度1.48 mmol/lの銀微粒子シクロヘキサン分散液20m
lを多孔質ガラス粉末(松浪硝子工業(株)製、M-31、平
均粒径150μm、細孔径43 nm、比表面積88m2/g)0.5
g と共に50mlのフラスコに設置し、10分間マク゛ネチックスターラー
により攪拌を行なった。褐色を呈していた銀微粒子分散
液は攪拌後無色透明となり、白色であった多孔質ガラス
粉末は褐色に着色した。攪拌後シクロヘキサンの透過率
を測定して残存する銀微粒子濃度を測定した結果、シク
ロヘキサン中に残存する銀微粒子は0%であり、すべて
の銀微粒子が多孔質ガラス粉末に吸着された。
Example 12 20 m of a cyclohexane dispersion of fine silver particles having a silver concentration of 1.48 mmol / l
l is a porous glass powder (M-31, manufactured by Matsunami Glass Industry Co., Ltd., M-31, average particle diameter 150 μm, pore diameter 43 nm, specific surface area 88 m 2 / g) 0.5
g and placed in a 50 ml flask, and stirred with a magnetic stirrer for 10 minutes. The silver fine particle dispersion having a brown color became colorless and transparent after stirring, and the white porous glass powder was colored brown. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining silver fine particles. As a result, the silver fine particles remaining in the cyclohexane were 0%, and all the silver fine particles were adsorbed to the porous glass powder.

【0039】実施例13 銀濃度1.48 mmol/lの銀微粒子シクロヘキサン分散液20m
lをカーボン粉末(東海カーボン(株)製、シーストS、平
均粒径58μm)0.5g と共に50mlのフラスコに設置し、1
0分間マク゛ネチックスターラーにより攪拌を行なった。褐色を呈し
ていた銀微粒子分散液は攪拌後無色透明となった。攪拌
後シクロヘキサンの透過率を測定して残存する銀微粒子
濃度を測定した結果、シクロヘキサン中に残存する銀微
粒子は0%であり、すべての銀微粒子がカーボンに吸着
された。
Example 13 20 m of cyclohexane dispersion of fine silver particles having a silver concentration of 1.48 mmol / l
l in a 50 ml flask together with 0.5 g of carbon powder (Tokai Carbon Co., Ltd., Seast S, average particle size 58 μm).
Stirring was performed with a magnetic stirrer for 0 minutes. The silver fine particle dispersion having a brown color became colorless and transparent after stirring. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining silver fine particles. As a result, 0% of the silver fine particles remained in the cyclohexane, and all the silver fine particles were adsorbed on the carbon.

【0040】比較例4 銀濃度0.288 mmol/lの銀微粒子水分散液20mlを実施例1
2と同様に 多孔質ガラス粉末(松浪硝子工業(株)製、M
-31、平均粒径150μm、細孔径43 nm、比表面積88m2/
g)0.5g と共に攪拌を行なった。褐色を呈していた銀
微粒子分散液は攪拌後も色変化がなく、多孔質ガラス粉
末の着色も全く認められなかった。攪拌後、該水分散液
の透過率を測定して残存する金微粒子濃度を測定した結
果、水中に残存する銀微粒子は100%であり、銀微粒
子は多孔質ガラス粉末に吸着されなかった。
Comparative Example 4 20 ml of an aqueous dispersion of silver fine particles having a silver concentration of 0.288 mmol / l was prepared in Example 1.
Porous glass powder (Matsunami Glass Industry Co., Ltd., M
-31, average particle size 150μm, pore size 43nm, specific surface area 88m2 /
g) The mixture was stirred with 0.5 g. The silver fine particle dispersion having a brown color did not change color even after stirring, and no coloring of the porous glass powder was observed at all. After stirring, the transmittance of the aqueous dispersion was measured to determine the concentration of the remaining gold fine particles. As a result, 100% of the fine silver particles remained in the water, and the fine silver particles were not adsorbed to the porous glass powder.

【0041】実施例14 ロジウム濃度0.5 mmol/lのロジウム微粒子シクロヘキサ
ン分散液20mlをシリカゲル(ダイソー(株)製、平均粒径
5μm、細孔径10 nm、比表面積300m2/g)0.2gと共に
50mlのフラスコに設置し、10分間マク゛ネチックスターラーにより攪
拌を行なった。茶褐色を呈していたロジウム微粒子分散
液は攪拌後無色透明となり、白色であったシリカゲルは
茶褐色に着色した。攪拌後シクロヘキサンの透過率を測
定して残存するロジウム微粒子濃度を測定した結果、シ
クロヘキサン中に残存するロジウム微粒子は0%であ
り、すべてのロジウム微粒子がシリカゲルに吸着され
た。
Example 14 20 ml of a cyclohexane dispersion of rhodium microparticles having a rhodium concentration of 0.5 mmol / l was mixed with silica gel (manufactured by Daiso Corporation, average particle size).
5μm, pore size 10nm, specific surface area 300m 2 / g) 0.2g
The flask was placed in a 50 ml flask and stirred with a magnetic stirrer for 10 minutes. The rhodium fine particle dispersion having a brown color became colorless and transparent after stirring, and the white silica gel was colored brown. After stirring, the transmittance of cyclohexane was measured to determine the concentration of the remaining rhodium fine particles. As a result, 0% of the rhodium fine particles remained in the cyclohexane, and all the rhodium fine particles were adsorbed on the silica gel.

【0042】実施例15 ロジウム濃度0.5 mmol/lのロジウム微粒子シクロヘキサ
ン分散液20mlを多孔質ガラス粉末(松浪硝子工業(株)
製、M-31、平均粒径150μm、細孔径43 nm、比表面積88
2/g)0.5g と共に50mlのフラスコに設置し、10分間
マク゛ネチックスターラーにより攪拌を行なった。茶褐色を呈してい
たロジウム微粒子分散液は攪拌後無色透明となり、白色
であった多孔質ガラス粉末は茶褐色に着色した。攪拌後
シクロヘキサンの透過率を測定して残存するロジウム微
粒子濃度を測定した結果、シクロヘキサン中に残存する
ロジウム微粒子は0%であり、すべてのロジウム微粒子
が多孔質ガラス粉末に吸着された。
Example 15 20 ml of a cyclohexane dispersion of fine particles of rhodium having a rhodium concentration of 0.5 mmol / l were mixed with a porous glass powder (Matsunami Glass Industry Co., Ltd.).
M-31, average particle size 150 μm, pore size 43 nm, specific surface area 88
The mixture was placed in a 50 ml flask together with 0.5 g of m 2 / g) and stirred with a magnetic stirrer for 10 minutes. The rhodium fine particle dispersion having a brown color became colorless and transparent after stirring, and the white porous glass powder was colored brown. After stirring, the transmittance of cyclohexane was measured to determine the concentration of the remaining rhodium fine particles. As a result, 0% of the rhodium fine particles remained in the cyclohexane, and all the rhodium fine particles were adsorbed to the porous glass powder.

【0043】実施例16 ルテニウム濃度0.5 mmol/lのルテニウム微粒子シクロヘ
キサン分散液20mlをシリカゲル(ダイソー(株)製、平均
粒径5μm、細孔径10 nm、比表面積300m2/g)0.2g
と共に50mlのフラスコに設置し、10分間マク゛ネチックスターラーに
より攪拌を行なった。黒色を呈していたルテニウム微粒
子分散液は攪拌後無色透明となり、白色であったシリカ
ゲルは茶褐色に着色した。攪拌後シクロヘキサンの透過
率を測定して残存するルテニウム微粒子濃度を測定した
結果、シクロヘキサン中に残存するルテニウム微粒子は
0%であり、すべてのルテニウム微粒子がシリカゲルに
吸着された。
Example 16 0.2 g of silica gel (manufactured by Daiso Corporation, average particle diameter 5 μm, pore diameter 10 nm, specific surface area 300 m 2 / g) was mixed with 20 ml of a ruthenium fine particle cyclohexane dispersion having a ruthenium concentration of 0.5 mmol / l.
And placed in a 50 ml flask, and stirred with a magnetic stirrer for 10 minutes. The black ruthenium fine particle dispersion became colorless and transparent after stirring, and the white silica gel was colored brown. As a result of measuring the transmittance of cyclohexane after stirring and measuring the concentration of remaining ruthenium fine particles, the ruthenium fine particles remaining in cyclohexane were
0%, and all the ruthenium microparticles were adsorbed on the silica gel.

【0044】実施例17 ルテニウム濃度0.5 mmol/lのルテニウム微粒子シクロヘ
キサン分散液20mlを多孔質ガラス粉末(松浪硝子工業
(株)製、M-31、平均粒径150μm、細孔径43 nm、比表面
積88m2/g)0.5g と共に50mlのフラスコに設置し、10
分間マク゛ネチックスターラーにより攪拌を行なった。黒色を呈して
いたルテニウム微粒子分散液は攪拌後無色透明となり、
白色であった多孔質ガラス粉末は茶褐色に着色した。攪
拌後シクロヘキサンの透過率を測定して残存するルテニ
ウム微粒子濃度を測定した結果、シクロヘキサン中に残
存するルテニウム微粒子は0%であり、すべてのルテニ
ウム微粒子が多孔質ガラス粉末に吸着された。
Example 17 20 ml of a dispersion of ruthenium microparticles in cyclohexane having a ruthenium concentration of 0.5 mmol / l was mixed with a porous glass powder (Matsunami Glass Co., Ltd.).
Co., Ltd., M-31, average particle size 150 μm, pore size 43 nm, specific surface area 88 m 2 / g)
Stirring was performed with a magnetic stirrer for minutes. The ruthenium fine particle dispersion liquid that was black became colorless and transparent after stirring,
The white porous glass powder was colored brown. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining ruthenium fine particles. As a result, the ruthenium fine particles remaining in the cyclohexane were 0%, and all the ruthenium fine particles were adsorbed to the porous glass powder.

【0045】実施例18 パラジウム濃度0.5 mmol/lのパラジウム微粒子シクロヘ
キサン分散液20mlをシリカゲル(ダイソー(株)製、平均
粒径5μm、細孔径10 nm、比表面積300m2/g)0.2g
と共に50mlのフラスコに設置し、10分間マク゛ネチックスターラーに
より攪拌を行なった。黒色を呈していたパラジウム微粒
子分散液は攪拌後無色透明となり、白色であったシリカ
ゲルは黒色に着色した。攪拌後シクロヘキサンの透過率
を測定して残存するパラジウム微粒子濃度を測定した結
果、シクロヘキサン中に残存するパラジウム微粒子は0
%であり、すべてのパラジウム微粒子がシリカゲルに吸
着された。
Example 18 0.2 g of silica gel (manufactured by Daiso Co., Ltd., average particle diameter 5 μm, pore diameter 10 nm, specific surface area 300 m 2 / g) was added to 20 ml of cyclohexane dispersion liquid of palladium fine particles having a palladium concentration of 0.5 mmol / l.
And placed in a 50 ml flask, and stirred with a magnetic stirrer for 10 minutes. The black palladium fine particle dispersion became colorless and transparent after stirring, and the white silica gel was colored black. As a result of measuring the transmittance of cyclohexane after stirring and measuring the concentration of the remaining palladium fine particles, palladium fine particles remaining in cyclohexane were 0%.
%, And all the fine palladium particles were adsorbed on the silica gel.

【0046】実施例19 パラジウム濃度0.5 mmol/lのパラジウム微粒子シクロヘ
キサン分散液20mlを多孔質ガラス粉末(松浪硝子工業
(株)製、M-31、平均粒径150μm、細孔径43 nm、比表面
積88m2/g)0.5g と共に50mlのフラスコに設置し、10
分間マク゛ネチックスターラーにより攪拌を行なった。黒色を呈して
いたパラジウム微粒子分散液は攪拌後無色透明となり、
白色であった多孔質ガラス粉末は黒色に着色した。攪拌
後シクロヘキサンの透過率を測定して残存するパラジウ
ム微粒子濃度を測定した結果、シクロヘキサン中に残存
するパラジウム微粒子は0%であり、すべてのパラジウ
ム微粒子が多孔質ガラス粉末に吸着された。
Example 19 A porous glass powder (Matsunami Glass Industry Co., Ltd.) was prepared by adding 20 ml of a dispersion of cyclohexane fine particles having a palladium concentration of 0.5 mmol / l to a porous glass powder.
Co., Ltd., M-31, average particle size 150 μm, pore size 43 nm, specific surface area 88 m 2 / g)
Stirring was performed with a magnetic stirrer for minutes. The black palladium fine particle dispersion becomes colorless and transparent after stirring,
The white porous glass powder was colored black. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining palladium fine particles. As a result, 0% of the palladium fine particles remained in the cyclohexane, and all the palladium fine particles were adsorbed on the porous glass powder.

【0047】実施例20 イリジウム濃度0.288 mmol/lのイリジウム微粒子シクロ
ヘキサン分散液20mlを溶性でんぷん粉末(林純薬工業
(株)製、試薬特級)粉末0.4gと共に50mlのフラスコに設
置し、10分間マク゛ネチックスターラーにより攪拌を行なった。黒色
を呈していたイリジウム微粒子分散液は攪拌後無色透明
となり、白色であった該でんぷんは黒色に着色した。攪
拌後シクロヘキサンの透過率を測定して残存するイリジ
ウム微粒子濃度を測定した結果、シクロヘキサン中に残
存するイリジウム微粒子は0%であり、すべてのイリジ
ウム微粒子がでんぷんに吸着された。
Example 20 20 ml of an iridium fine particle cyclohexane dispersion having an iridium concentration of 0.288 mmol / l was dissolved in soluble starch powder (Hayashi Junyaku Kogyo Co., Ltd.).
The mixture was placed in a 50 ml flask together with 0.4 g of powder (manufactured by Reagent Co., Ltd.) and stirred with a magnetic stirrer for 10 minutes. The black iridium fine particle dispersion became colorless and transparent after stirring, and the white starch was colored black. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining iridium fine particles. As a result, 0% of the iridium fine particles remained in the cyclohexane, and all the iridium fine particles were adsorbed on the starch.

【0048】実施例21 パラジウム、ルテニウム各濃度0.25 mmol/lのパラジウ
ム−ルテニウム混合微粒子シクロヘキサン分散液20mlを
シリカゲル(ダイソー(株)製、平均粒径5μm、細孔径1
0 nm、比表面積300m2/g)0.2g と共に50mlのフラス
コに設置し、10分間マク゛ネチックスターラーにより攪拌を行なっ
た。黒色を呈していたパラジウム−ルテニウム混合微粒
子分散液は攪拌後無色透明となり、白色であったシリカ
ゲルは黒色に着色した。攪拌後シクロヘキサンの透過率
を測定して残存するパラジウム−ルテニウム混合微粒子
濃度を測定した結果、シクロヘキサン中に残存するパラ
ジウム−ルテニウム混合微粒子は0%であり、すべての
パラジウム−ルテニウム混合微粒子がシリカゲルに吸着
された。
Example 21 20 ml of a dispersion of cyclohexane mixed fine particles of palladium and ruthenium having a concentration of 0.25 mmol / l each of palladium and ruthenium was mixed with silica gel (manufactured by Daiso Corporation, average particle size 5 μm, pore size 1).
The mixture was placed in a 50-ml flask together with 0.2 g of 0 nm and a specific surface area of 300 m 2 / g), and stirred for 10 minutes with a magnetic stirrer. The palladium-ruthenium mixed fine particle dispersion having a black color became colorless and transparent after stirring, and the white silica gel was colored black. After stirring, the transmittance of cyclohexane was measured and the concentration of the remaining palladium-ruthenium mixed fine particles was measured. As a result, 0% of the palladium-ruthenium mixed fine particles remained in cyclohexane, and all the palladium-ruthenium mixed fine particles were adsorbed on silica gel. Was done.

【0049】実施例22 銀濃度0.5 mmol/lの銀コロイドシクロヘキサン分散液20
mlを市販の6、6-ナイロン長繊維(太さ15デニール)0.2g
と共に50mlのフラスコに設置し、10分間マク゛ネチックスターラー
により攪拌を行なった。褐色を呈していた銀微粒子分散
液は攪拌後無色透明となり、白色であった6、6-ナイロン
長繊維は褐色に着色した。攪拌後シクロヘキサンの透過
率を測定して残存する銀微粒子濃度を測定した結果、シ
クロヘキサン中に残存する銀微粒子は0%であり、すべ
ての銀微粒子が6、6-ナイロン長繊維に吸着された。次に
該銀微粒子分散液と6、6-ナイロン長繊維の混合物に界面
活性剤としてオレイン酸ナトリウム(東京化成(株)製
試薬特級)0.020gを加えて1時間攪拌したところ、6、
6-ナイロン長繊維の着色の変化は認められなかった。一
方、分散液の透過率を測定して残存する銀微粒子濃度を
測定した結果、銀微粒子濃度は3%で界面活性剤添加に
より一度6、6-ナイロン長繊維に担持された銀微粒子の脱
離はほとんど認められなかった。
Example 22 Silver colloidal cyclohexane dispersion 20 having a silver concentration of 0.5 mmol / l
0.2 g of commercially available 6,6-nylon long fiber (thickness: 15 denier)
And placed in a 50 ml flask, and stirred with a magnetic stirrer for 10 minutes. The brown silver fine particle dispersion became colorless and transparent after stirring, and the white 6,6-nylon filaments were colored brown. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining silver fine particles. As a result, 0% of the silver fine particles remained in the cyclohexane, and all the silver fine particles were adsorbed to the 6,6-nylon long fibers. Next, 0.020 g of sodium oleate (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a surfactant to a mixture of the silver fine particle dispersion and 6,6-nylon long fibers, and the mixture was stirred for 1 hour.
No change in coloring of the 6-nylon filaments was observed. On the other hand, as a result of measuring the transmittance of the dispersion liquid and measuring the concentration of the remaining silver fine particles, the concentration of the silver fine particles was 3%. Was rarely observed.

【0050】比較例5 銀濃度0.288 mmol/lの銀微粒子水分散液20mlを実施例1
と同様に6、6-ナイロン長繊維(太さ15デニール)0.2g
と共に攪拌を行なった。攪拌中6、6-ナイロン長繊維は水
分散液上部にて浮遊していた。褐色を呈していた銀微粒
子分散液は攪拌後もほとんど色変化がなく、6、6-ナイロ
ン長繊維の着色もほとんど認められなかった。攪拌後水
の透過率を測定して残存する銀微粒子濃度を測定した結
果、水中に残存する銀微粒子は98%であり、2%の銀
微粒子が6、6-ナイロン長繊維に吸着された。引き続いて
1週間にわたって攪拌を継続したところ、水分散液に残
存する銀微粒子は95%であり、5%の銀微粒子が6、6-
ナイロン長繊維に吸着され、6、6-ナイロン長繊維は淡黄
色に着色した。次に該銀微粒子水分散液と6、6-ナイロン
長繊維の混合物に界面活性剤としてオレイン酸ナトリウ
ム(東京化成(株)製 試薬特級)0.020gを加えて1時
間攪拌したところ、6、6-ナイロン長繊維の着色は認めら
れず白色になった。一方、水分散液の透過率を測定して
残存する銀微粒子濃度を測定した結果、分散液中の銀微
粒子濃度は増加して吸着前の100%になり、界面活性剤
添加により一度6、6-ナイロン長繊維に担持された銀微粒
子の脱離が確認された。
Comparative Example 5 20 ml of an aqueous dispersion of silver fine particles having a silver concentration of 0.288 mmol / l was prepared in Example 1.
0.2 g of 6,6-nylon filament (15 denier thickness)
And stirring. During the stirring, the 6,6-nylon filaments floated above the aqueous dispersion. The silver fine particle dispersion having a brown color showed almost no color change even after stirring, and little coloring of 6,6-nylon filaments was observed. After stirring, the transmittance of water was measured to determine the concentration of the remaining silver fine particles. As a result, 98% of the fine silver particles remained in the water, and 2% of the fine silver particles were adsorbed on the 6,6-nylon filament. In succession
When stirring was continued for one week, 95% of the silver fine particles remained in the aqueous dispersion, and 5% of the silver fine particles were 6,6-
The 6,6-nylon filaments were adsorbed by the nylon filaments and were colored pale yellow. Next, 0.020 g of sodium oleate (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) as a surfactant was added to a mixture of the aqueous dispersion of silver fine particles and 6,6-nylon long fibers, and the mixture was stirred for 1 hour. -Coloring of the nylon filaments was not observed, and the fibers turned white. On the other hand, as a result of measuring the transmittance of the aqueous dispersion and measuring the concentration of the remaining silver fine particles, the concentration of the silver fine particles in the dispersion was increased to 100% before adsorption, and once the surfactant was added, the concentration of the silver fine particles was reduced to 6,6. -Desorption of silver fine particles carried on nylon long fibers was confirmed.

【0051】実施例23 金濃度0.288 mmol/lの金微粒子シクロヘキサン分散液20
mlをヒドロキシプロピルセルロース粉末(和光純薬工業
製、試薬1級)0.2g と共に50mlのフラスコに設置し、1
0分間マク゛ネチックスターラーにより攪拌を行なった。赤色を呈し
ていた金微粒子分散液は攪拌後無色透明となった。ま
た、白色を呈していたヒドロキシプロピルセルロース粉
末は赤色に着色した。攪拌後シクロヘキサンの透過率を
測定して残存する金微粒子濃度を測定した結果、キシレ
ン中に残存する金微粒子は0%であり、すべての金微粒
子がヒドロキシプロピルセルロース粉末に吸着された。
Example 23 Gold Particle Cyclohexane Dispersion Solution 20 with 0.288 mmol / l Gold Concentration
ml was placed in a 50 ml flask together with 0.2 g of hydroxypropylcellulose powder (Wako Pure Chemical Industries, reagent 1 grade),
Stirring was performed with a magnetic stirrer for 0 minutes. The gold fine particle dispersion having a red color became colorless and transparent after stirring. The white hydroxypropylcellulose powder was colored red. As a result of measuring the transmittance of cyclohexane after stirring and measuring the concentration of the remaining gold fine particles, 0% of the gold fine particles remained in xylene, and all the gold fine particles were adsorbed to the hydroxypropylcellulose powder.

【0052】比較例6 金濃度0.288 mmol/lの金微粒子水分散液20mlを実施例2
3と同様にヒドロキシプロピルセルロース粉末と共に攪
拌を行なった。 攪拌中にヒドロキシプロピルセルロー
ス粉末は水に完全に溶解し、赤色を呈していた金微粒子
水分散液は攪拌後も色変化がなく、ヒドロキシプロピル
セルロース粉末への吸着は認められなかった。
Comparative Example 6 20 ml of an aqueous dispersion of fine gold particles having a gold concentration of 0.288 mmol / l was prepared in Example 2.
Stirring was carried out together with hydroxypropylcellulose powder in the same manner as in Example 3. During the stirring, the hydroxypropylcellulose powder was completely dissolved in water, and the red gold fine particle aqueous dispersion did not change color even after stirring, and no adsorption to the hydroxypropylcellulose powder was observed.

【0053】実施例24 金濃度0.288 mmol/lの金微粒子シクロヘキサン分散液20
mlをハイドロタルサイト粉末(協和化学工業製、DHT-4A
-2)0.2g と共に50mlのフラスコに設置し、10分間マク゛ネチ
ックスターラーにより攪拌を行なった。赤色を呈していた金微
粒子分散液は攪拌後無色透明となった。白色のハイドロ
タルサイトは赤色に着色した。攪拌後シクロヘキサンの
透過率を測定して残存する金微粒子濃度を測定した結
果、シクロヘキサン中に残存する金微粒子は0%であ
り、すべての金微粒子がハイドロタルサイトに吸着され
た。
Example 24 Cyclohexane dispersion 20 of fine gold particles having a gold concentration of 0.288 mmol / l
ml of hydrotalcite powder (manufactured by Kyowa Chemical Industry, DHT-4A
-2) The mixture was placed in a 50 ml flask together with 0.2 g, and stirred with a magnetic stirrer for 10 minutes. The gold fine particle dispersion having a red color became colorless and transparent after stirring. The white hydrotalcite was colored red. After stirring, the transmittance of cyclohexane was measured to measure the concentration of the remaining gold fine particles. As a result, 0% of the gold fine particles remained in the cyclohexane, and all the gold fine particles were adsorbed to the hydrotalcite.

【0054】[0054]

【発明の効果】本発明の効果を列挙すると次の如くであ
る。 1)各種金属微粒子、各種担体に適用可能で応用範囲が
広い。 2)常温、常圧で担持可能で操作が簡便であり、処理時
間も短くてよい(約10分程度)。 3)界面活性剤、保護コロイドの影響を最小限に抑制で
き、脱着し難く、また担持量の制御が容易である。 4)混合金属の担持、異種金属の積層、複合担持が可能
である。 5)小粒径の金属微粒子の担持が可能であり、また微粒
子の粒径制御が可能である。
The effects of the present invention are listed as follows. 1) It can be applied to various metal fine particles and various carriers and has a wide application range. 2) It can be carried at normal temperature and normal pressure, the operation is simple, and the processing time may be short (about 10 minutes). 3) The influence of the surfactant and the protective colloid can be suppressed to a minimum, the desorption is difficult, and the control of the loading amount is easy. 4) Support of mixed metals, lamination of different metals, and composite support are possible. 5) Metal fine particles having a small particle diameter can be supported, and the particle diameter of the fine particles can be controlled.

【0055】本発明法による金属微粒子の担持体は導電
体、触媒、センサー、クロマトグラフ用充填剤、抗菌・
消臭剤、顔料、磁性材料、超伝導材料、傾斜機能材料等
の用途が期待される。
The carrier of the metal fine particles according to the method of the present invention includes a conductor, a catalyst, a sensor, a filler for chromatography, an antibacterial agent,
Applications for deodorants, pigments, magnetic materials, superconducting materials, functionally gradient materials, etc. are expected.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−120249(JP,A) 特開 昭58−174495(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 2/00 B01J 13/00 - 13/22 B01J 37/02 301 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-120249 (JP, A) JP-A-58-174495 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 2/00 B01J 13/00-13/22 B01J 37/02 301

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水と相溶しない非水溶媒中に金属微粒子
を分散させた分散液を担体と接触させることを特徴とす
る金属微粒子の担持方法。
1. A method for supporting fine metal particles, comprising contacting a dispersion of fine metal particles in a non-aqueous solvent incompatible with water with a carrier.
【請求項2】 金属微粒子が金属単体、混合金属、合
金、又は金属間化合物の微粒子である請求項1に記載の
金属微粒子の担持方法。
2. The method according to claim 1, wherein the fine metal particles are fine particles of a simple metal, a mixed metal, an alloy, or an intermetallic compound.
【請求項3】 担体が炭素、金属、合金、アルミナ、シ
リカ、チタニア、ジルコニア、無機複合酸化物、ゼオラ
イト、ガラス、天然高分子物質及び合成高分子物質より
選ばれる1種又は2種以上である請求項1又は2に記載
の金属微粒子の担持方法。
3. The carrier is at least one selected from the group consisting of carbon, metal, alloy, alumina, silica, titania, zirconia, inorganic composite oxide, zeolite, glass, natural polymer, and synthetic polymer. The method for supporting metal fine particles according to claim 1.
【請求項4】 金属微粒子の水分散液を、界面活性剤の
存在下、水と相分離する非水液体と接触させ、その接触
前及び/又は接触後に水溶性無機酸塩及び/又は水溶性
有機酸塩を添加し、上記金属微粒子を該水分散液より該
非水液体中に移動させ、このようにして水性相と分離し
て得られた金属微粒子が分散した非水分散液相を取り出
して使用することを特徴とする請求項1に記載の金属微
粒子の担持方法。
4. An aqueous dispersion of fine metal particles is brought into contact with a non-aqueous liquid that separates from water in the presence of a surfactant, and before and / or after the contact, a water-soluble inorganic acid salt and / or An organic acid salt is added, the metal fine particles are moved from the aqueous dispersion into the non-aqueous liquid, and the non-aqueous dispersion liquid phase in which the metal fine particles obtained by separating from the aqueous phase in this manner are dispersed is taken out. The method for supporting metal fine particles according to claim 1, wherein the method is used.
JP06083493A 1993-03-22 1993-03-22 Loading method of metal fine particles Expired - Fee Related JP3221142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06083493A JP3221142B2 (en) 1993-03-22 1993-03-22 Loading method of metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06083493A JP3221142B2 (en) 1993-03-22 1993-03-22 Loading method of metal fine particles

Publications (2)

Publication Number Publication Date
JPH06269684A JPH06269684A (en) 1994-09-27
JP3221142B2 true JP3221142B2 (en) 2001-10-22

Family

ID=13153791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06083493A Expired - Fee Related JP3221142B2 (en) 1993-03-22 1993-03-22 Loading method of metal fine particles

Country Status (1)

Country Link
JP (1) JP3221142B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US7678367B2 (en) 2003-10-16 2010-03-16 Kimberly-Clark Worldwide, Inc. Method for reducing odor using metal-modified particles
US7754197B2 (en) 2003-10-16 2010-07-13 Kimberly-Clark Worldwide, Inc. Method for reducing odor using coordinated polydentate compounds
US7794737B2 (en) 2003-10-16 2010-09-14 Kimberly-Clark Worldwide, Inc. Odor absorbing extrudates
US7837663B2 (en) 2003-10-16 2010-11-23 Kimberly-Clark Worldwide, Inc. Odor controlling article including a visual indicating device for monitoring odor absorption
US8168563B2 (en) 2003-10-16 2012-05-01 Kimberly-Clark Worldwide, Inc. Metal-modified silica particles for reducing odor
US8211369B2 (en) 2003-10-16 2012-07-03 Kimberly-Clark Worldwide, Inc. High surface area material blends for odor reduction, articles utilizing such blends and methods of using same
US8221328B2 (en) 2003-10-16 2012-07-17 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440378B1 (en) 1997-12-22 2002-08-27 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases, a method of producing the same, and a method of purifying exhaust gases
JP4123644B2 (en) * 1999-06-22 2008-07-23 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN1313376C (en) * 2002-04-25 2007-05-02 通用电气公司 Preparation of nanosized copper (I) compounds
JP2005082795A (en) * 2003-09-11 2005-03-31 Shinwa Kako Kk Method for surface-coating of particulate on solid substrate
JP4665225B2 (en) * 2004-06-02 2011-04-06 学校法人神奈川大学 Method for preparing visible light sensitive photocatalyst and visible light sensitive photocatalyst prepared thereby
EP1960471A1 (en) * 2005-12-05 2008-08-27 Solvay (Societe Anonyme) Aromatic sulfone polymer composition comprising tetrafluoroethylene polymer particles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US7678367B2 (en) 2003-10-16 2010-03-16 Kimberly-Clark Worldwide, Inc. Method for reducing odor using metal-modified particles
US7754197B2 (en) 2003-10-16 2010-07-13 Kimberly-Clark Worldwide, Inc. Method for reducing odor using coordinated polydentate compounds
US7794737B2 (en) 2003-10-16 2010-09-14 Kimberly-Clark Worldwide, Inc. Odor absorbing extrudates
US7837663B2 (en) 2003-10-16 2010-11-23 Kimberly-Clark Worldwide, Inc. Odor controlling article including a visual indicating device for monitoring odor absorption
US8168563B2 (en) 2003-10-16 2012-05-01 Kimberly-Clark Worldwide, Inc. Metal-modified silica particles for reducing odor
US8211369B2 (en) 2003-10-16 2012-07-03 Kimberly-Clark Worldwide, Inc. High surface area material blends for odor reduction, articles utilizing such blends and methods of using same
US8221328B2 (en) 2003-10-16 2012-07-17 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US8702618B2 (en) 2003-10-16 2014-04-22 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath

Also Published As

Publication number Publication date
JPH06269684A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JP3221142B2 (en) Loading method of metal fine particles
Schmid et al. Catalytic properties of layered gold–palladium colloids
EP1954393B1 (en) Highly dispersed metal calatysts
EP0476765B1 (en) Hydrogenation catalyst consisting of a particle-bearing composite and method for producing the same
Garten et al. Structure of Pt Ir catalysts: Mössbauer spectroscopy studies employing 57Fe as a probe
US6197720B1 (en) Palladium clusters and their use as catalysts
JP3932478B2 (en) Noble metal pore body and method for producing the same
EP1844841B1 (en) Silver nanoparticle-containing polymer film for facilitated olefin transport and method for the fabrication thereof
JP5840475B2 (en) Porous oxide-coated particles, supported catalyst, and production method thereof
EP0015585B1 (en) Liquid-gas catalytic reaction process
Hua et al. Enhanced colorimetric detection of hydrogen using PdO-decorated ZnO covered with a metal-organic framework membrane
Bronstein et al. Nanoparticulate catalysts based on nanostructured polymers
CA1236075A (en) Silica-based chromatographic supports containing additives
JPH09225317A (en) Nickel/noble metal binary metal cluster and catalyst made from the cluster and its preparation
US5145578A (en) Packing material for liquid chromatography
Király et al. Thermodynamics of multilayer adsorption of aqueous butanol solution onto Printex and graphitised Printex carbon blacks
JP4683399B2 (en) Metal colloid liquid
Cavallaro et al. Mercury removal from waste gases by manganese oxide acceptors
Kawakami et al. Selective permeation of ethylene and propylene through rh3+—Polyethylene glycol liquid membranes
EP3956086B1 (en) Method for the synthesis of mesoporous platinum nanoparticles in an aqueous environment
Kurokawa Nanoscopic particle-doped polymer membrane prepared by the counter diffusion method and its properties
JP3221153B2 (en) Method for supporting fine particles
Miner Jr et al. Synthesis, characteristics and catalytic activity of monodisperse platinum alloys with gold and palladium
DE19734973A1 (en) Nano-porous alumina membrane containing noble metal, useful as catalyst in vinyl acetate synthesis
WO2007117087A1 (en) Facilitated olefin transporting polymer membrane containing metal nanoparticle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees