JP3204079B2 - Vehicle driving force control device - Google Patents

Vehicle driving force control device

Info

Publication number
JP3204079B2
JP3204079B2 JP9256796A JP9256796A JP3204079B2 JP 3204079 B2 JP3204079 B2 JP 3204079B2 JP 9256796 A JP9256796 A JP 9256796A JP 9256796 A JP9256796 A JP 9256796A JP 3204079 B2 JP3204079 B2 JP 3204079B2
Authority
JP
Japan
Prior art keywords
driving force
lower limit
limit value
driving
slip ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9256796A
Other languages
Japanese (ja)
Other versions
JPH09280080A (en
Inventor
荘太 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9256796A priority Critical patent/JP3204079B2/en
Priority to KR1019970014366A priority patent/KR100222152B1/en
Priority to US08/834,280 priority patent/US5957991A/en
Publication of JPH09280080A publication Critical patent/JPH09280080A/en
Application granted granted Critical
Publication of JP3204079B2 publication Critical patent/JP3204079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely accelerate a driving wheel while restraining racing of it by computing the slip ratio of a fluid transmission means connecting a prime mover to a driving wheel, computing the lower limit value of driving force based on the value, and regulating the driving force to be the lower limit value or more when racing of the driving wheel is judged. SOLUTION: When the slip ratio of a driving wheel 101 connected to a prime mover through a fluid transmission means 100 is over a prescribed value, the driving wheel 101 is judged to be in racing by a slip judging means, and the driving force of the driving wheel 101 is reduced by a driving force restraining means 102. In a driving force control device preventing racing of the driving wheel 101 in this way, it is provided with a slip rate computing means 103 computing the slip ratio of the fluid transmission means 100, and a lower limit value setting means 104 computing the lower limit value of driving force based on the slip ratio. When racing of the driving wheel 101 is judged by the slip judging means, the driving force being reduced by the driving force restraining means 102 is regulated to the lower limit valve or more by a driving force lower limit value regulating means 105.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、駆動輪の空転を防
いで車両の安定性及び運転性を確保する駆動力制御装置
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a driving force control device for preventing the idling of driving wheels and ensuring the stability and drivability of a vehicle.

【0002】[0002]

【従来の技術】加速時等に駆動輪が空転して、加速性能
が低下するのを防止する駆動力制御装置(あるいはとラ
クションコントロールシステム)としては、エンジン出
力や制動力を制御するものが従来から知られており、例
えば、特開平4−55156号公報等が知られている。
2. Description of the Related Art Conventionally, as a driving force control device (or traction control system) for preventing a driving wheel from spinning during acceleration or the like and deteriorating acceleration performance, a device for controlling an engine output and a braking force is conventionally used. For example, Japanese Patent Application Laid-Open No. 4-55156 is known.

【0003】これは、駆動輪が空転すると、従動輪速度
からその都度求めた車両加速度により路面摩擦係数μを
推定する一方、所定時間経過後には平均化した車両加速
度に応じて路面摩擦係数μを推定して、これら路面摩擦
係数μに応じてエンジン出力等の低減等を行うものであ
る。
[0003] In this method, when a driving wheel idles, a road surface friction coefficient μ is estimated based on a vehicle acceleration obtained each time from a driven wheel speed, and after a predetermined time elapses, a road surface friction coefficient μ is calculated according to an averaged vehicle acceleration. It is estimated to reduce the engine output and the like in accordance with the road surface friction coefficient μ.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の駆動力制御装置においては、路面摩擦係数μ
の高い登坂路等のように走行抵抗(または路面抵抗)が
大きい状態で駆動輪が空転すると、従動輪速度に基づい
て駆動力抑制制御が開始され、第1回目の制御で駆動力
の低減が過大になると、走行抵抗が大きいために充分な
加速力が得られないばかりか、駆動力の復帰を迅速に行
うことができず、所定の加速度に到達するまでに時間を
要し、加速性能の低下に加えて運転者に違和感を与えて
しまうという問題点があった。
However, in such a conventional driving force control device, the road surface friction coefficient μ
When the driving wheels idle in a state where the running resistance (or road surface resistance) is large, such as a high slope road, the driving force suppression control is started based on the driven wheel speed, and the first control reduces the driving force. If it becomes excessive, not only is it not possible to obtain a sufficient acceleration force due to a large running resistance, but also it is not possible to quickly restore the driving force, and it takes time to reach a predetermined acceleration, and the acceleration performance becomes poor. In addition to the decrease, there is a problem that the driver feels strange.

【0005】そこで本発明は、上記問題点に鑑みてなさ
れたもので、走行抵抗が大きい場合に駆動輪が空転した
場合であっても、駆動力の過大な減少と駆動輪の空転を
同時に抑制しながら確実に加速可能な駆動力制御装置を
提供することを目的とする。
Accordingly, the present invention has been made in view of the above problems, and suppresses an excessive decrease in the driving force and an idle rotation of the drive wheels at the same time even when the drive wheels idle in a case where the running resistance is large. It is an object of the present invention to provide a driving force control device capable of reliably accelerating while driving.

【0006】[0006]

【課題を解決するための手段】第1の発明は、図11に
示すように、流体伝動手段100を介して原動機に連結
された駆動輪101と、この駆動輪101の路面に対す
るスリップ率が所定値を超えたときに駆動輪の空転を判
定するスリップ判定手段109と、前記スリップ判定手
段109が駆動輪101の空転を判定したときに前記駆
動輪101の駆動力を低減する駆動力抑制手段102と
を備えた車両用駆動力制御装置において、前記流体伝動
手段100のスリップ率TRQSLPを演算するスリッ
プ率演算手段103と、このスリップ率TRQSLPに
基づいて駆動力の下限値TRQMNを演算する下限値設
定手段104と、前記スリップ判定手段109が駆動輪
の空転を判定したときに、前記駆動力抑制手段102で
低減される駆動力を前記下限値TRQMN以上に規制す
る駆動力下限値規制手段105とを備える。
According to a first aspect of the present invention, as shown in FIG. 11, a drive wheel 101 connected to a prime mover through a fluid transmission means 100 and a slip ratio of the drive wheel 101 to a road surface are determined. A slip determination unit 109 for determining idle of the drive wheel when the value exceeds the threshold value; and a drive force suppressing unit 102 for reducing the drive force of the drive wheel 101 when the slip determination unit 109 determines the idle of the drive wheel 101. A slip ratio calculating means 103 for calculating a slip ratio TRQSLP of the fluid transmission means 100, and a lower limit value for calculating a lower limit value TRQMN of the driving force based on the slip ratio TRQSLP. The driving force reduced by the driving force suppressing means 102 when the means 104 and the slip determining means 109 determine that the driving wheel is idling. And a driving force lower limit restricting means 105 for restricting the higher the lower limit TRQMN.

【0007】また、第2の発明は、図11に示すよう
に、前記第1の発明において、前記下限値設定手段10
4は、流体伝動手段のスリップ率に基づいて路面摩擦係
数を演算する路面摩擦係数演算手段106を備え、この
路面摩擦係数に応じて駆動力の下限値TRQMNを設定
する。
According to a second aspect of the present invention, as shown in FIG.
4 includes a road surface friction coefficient calculating unit 106 that calculates a road surface friction coefficient based on the slip ratio of the fluid transmission unit, and sets a lower limit value TRQMN of the driving force according to the road surface friction coefficient.

【0008】また、第3の発明は、図11に示すよう
に、前記第1の発明において、前記下限値設定手段10
4は、前記駆動輪の空転が判定されたときの駆動力の下
限値を所定時間保持する。
[0008] In a third aspect, as shown in FIG. 11, in the first aspect, the lower limit value setting means 10 is provided.
4 holds the lower limit value of the driving force when the idling of the driving wheel is determined for a predetermined time.

【0009】また、第4の発明は、図11に示すよう
に、前記第1の発明において、前記駆動力下限値規制手
段105は、車両に発生する前後加速度Xgに基づいて
目標駆動力TRQEを演算する目標駆動力演算手段10
7と、この目標駆動力と前記駆動力の下限値のうちの大
きい方を駆動力の下限値として設定する選択手段108
とを備える。
According to a fourth aspect of the present invention, as shown in FIG. 11, in the first aspect, the driving force lower limit value regulating means 105 determines a target driving force TRQE based on a longitudinal acceleration Xg generated in the vehicle. Target driving force calculating means 10 for calculating
7 and selecting means 108 for setting the larger of the target driving force and the lower limit of the driving force as the lower limit of the driving force.
And

【0010】[0010]

【作用】したがって、第1の発明は、駆動力抑制手段
は、駆動輪の路面に対するスリップ率が所定値を超える
と流体伝動装置を介して駆動輪に伝達される駆動力を低
減して、駆動輪のスリップを抑制するが、低減される駆
動力は、流体伝動手段のスリップ率に基づいて決定され
た下限値以上に規制されるため、空転防止のための駆動
力抑制が過大になるのを防ぐことができ、駆動力の下限
値を流体伝動手段のスリップ率に基づいて決定すること
により、走行抵抗の大きさに応じた駆動力の下限値を設
定でき、例えば、登坂路等で走行抵抗が大きい場合に駆
動輪が空転しても、駆動輪の空転を防ぎながら迅速に車
両の加速を行うことができる。
According to the first aspect of the present invention, the driving force suppressing means reduces the driving force transmitted to the driving wheels via the fluid transmission when the slip ratio of the driving wheels to the road surface exceeds a predetermined value, thereby reducing the driving force. Although the slip of the wheels is suppressed, the reduced driving force is regulated to a lower limit value or more determined based on the slip ratio of the fluid transmission means, so that the suppression of the driving force for preventing idling becomes excessive. By determining the lower limit of the driving force based on the slip ratio of the fluid transmission means, the lower limit of the driving force can be set in accordance with the magnitude of the running resistance. Is large, the vehicle can be quickly accelerated while preventing idle rotation of the drive wheels.

【0011】また、第2の発明は、下限値設定手段は、
流体伝動手段のスリップ率から確実に路面摩擦係数を演
算することができ、この路面摩擦係数に応じて駆動力の
下限値を設定するため、路面摩擦係数の大きさに応じた
駆動力の下限値を設定でき、例えば、高μ路等で駆動輪
が空転しても、駆動力の低減が過大になるのを防ぐこと
で、駆動輪の空転を抑制しながら迅速に車両の加速を行
うことができる。
According to a second aspect of the present invention, the lower limit setting means includes:
The road friction coefficient can be reliably calculated from the slip ratio of the fluid transmission means, and the lower limit of the driving force is set according to the road friction coefficient. For example, even if the driving wheels idle on a high μ road or the like, the vehicle can be rapidly accelerated while suppressing the driving wheels from idling by preventing the reduction of the driving force from becoming excessive. it can.

【0012】また、第3の発明は、下限値設定手段は、
駆動輪の空転が判定されたときの駆動力の下限値を所定
時間保持するため、駆動輪の空転を確実に抑制しながら
迅速に車両の加速を行うことができる。
In a third aspect of the present invention, the lower limit setting means includes:
Since the lower limit value of the driving force at the time when the idling of the driving wheel is determined is held for a predetermined time, the vehicle can be quickly accelerated while reliably suppressing the idling of the driving wheel.

【0013】また、第4の発明は、駆動力下限値規制手
段が、車両に発生する前後加速度に基づいて求めた目標
駆動力と、流体伝動手段のスリップ率から求めた駆動力
の下限値のうちの大きい方を駆動力の下限値として設定
するため、車両の加速に必要な最低限の駆動力を確保で
き、駆動輪の空転を抑制しながら迅速に車両の加速を行
うことができる。
According to a fourth aspect of the present invention, the driving force lower limit value restricting means includes a target driving force determined based on a longitudinal acceleration generated in the vehicle and a lower limit value of the driving force determined from a slip ratio of the fluid transmission means. Since the larger of the two is set as the lower limit of the driving force, the minimum driving force required for accelerating the vehicle can be secured, and the vehicle can be rapidly accelerated while suppressing the idling of the driving wheels.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings.

【0015】図1は、駆動力制御装置はマイクロコンピ
ュータ等から構成されたTCSコントローラ1と、アク
チュエータ9を介してこのTCSコントローラ1に制御
される駆動力抑制手段としての第2スロットル10から
構成した場合を示す。
FIG. 1 shows that the driving force control device comprises a TCS controller 1 composed of a microcomputer or the like and a second throttle 10 as driving force suppressing means controlled by the TCS controller 1 via an actuator 9. Show the case.

【0016】4はトルクコンバータ5を介して変速機6
に連結されたエンジンで、エンジン4はエンジンコント
ローラ2によって燃料噴射量や点火時期等を運転状態に
応じて制御されるもので、エンジン4の回転数Neはエ
ンジンコントローラ2からTCSコントローラ1へ送出
される。
Reference numeral 4 denotes a transmission 6 via a torque converter 5.
The engine 4 is controlled by the engine controller 2 to control the fuel injection amount, ignition timing, and the like according to the operation state. The engine speed Ne of the engine 4 is transmitted from the engine controller 2 to the TCS controller 1. You.

【0017】なお、変速機6は後輪RR、RLと連結さ
れるFR式を構成しており、以下、左右後輪RL、RR
を駆動輪とし、左右前輪FL、FRを従動輪とする。
The transmission 6 is of the FR type connected to the rear wheels RR, RL.
Are the driving wheels, and the left and right front wheels FL and FR are the driven wheels.

【0018】このエンジン4の吸気通路には、アクセル
ペダル7に応動する第1スロットル8と、アクチュエー
タ9を介してTCSコントローラ1に制御される第2ス
ロットル10が配設され、第1スロットル10の開度を
検出する開度センサ11は、この第1スロットル8の開
度TVOをTCSコントローラ1へ出力する。
A first throttle 8 responsive to an accelerator pedal 7 and a second throttle 10 controlled by a TCS controller 1 via an actuator 9 are disposed in an intake passage of the engine 4. The opening sensor 11 that detects the opening outputs the opening TVO of the first throttle 8 to the TCS controller 1.

【0019】トルクコンバータ5を介してエンジン4と
連結した変速機6は、変速コントローラ3によって運転
状態に応じたギア比あるいは変速比に設定されるもの
で、この変速コントローラ3は設定したギア比iGEA
RをTCSコントローラ1へ送出する。
The transmission 6 connected to the engine 4 via the torque converter 5 is set by the transmission controller 3 to a gear ratio or a transmission ratio according to the operating state. The transmission controller 3 sets the gear ratio iGEA
R is sent to the TCS controller 1.

【0020】TCSコントローラ1には、各車輪または
車軸の回転速度を検出する車輪速センサ12FR、12
FL、12RR、12RLの検出信号がそれぞれ入力さ
れ、TCSコントローラ1は、これら各車輪速VTF
R、VTFL、VTRR,VTRLに基づいて駆動輪R
R、RLの空転と車両の前後加速度Xgを検出し、駆動
輪RR、RLが空転した場合には、アクチュエータ9を
介して第2スロットル10を制御し、エンジン4の駆動
力を調整することで駆動輪の空転を抑制するものであ
る。
The TCS controller 1 has wheel speed sensors 12FR and 12FR for detecting the rotation speed of each wheel or axle.
FL, 12RR, and 12RL detection signals are input, and the TCS controller 1
R, VTFL, VTRR, drive wheel R based on VTRL
By detecting the idling of R and RL and the longitudinal acceleration Xg of the vehicle, when the driving wheels RR and RL are idling, the second throttle 10 is controlled via the actuator 9 to adjust the driving force of the engine 4. This is to suppress idling of the drive wheels.

【0021】このTCSコントローラ1で行われる制御
の一例を図2〜図4のフローチャートに示し、以下、こ
れらフローチャートを参照しながら駆動力制御について
詳述する。なお、これらフローチャートに基づく制御は
所定時間毎に実行されるものである。
An example of the control performed by the TCS controller 1 is shown in the flowcharts of FIGS. 2 to 4. Hereinafter, the driving force control will be described in detail with reference to these flowcharts. The control based on these flowcharts is executed every predetermined time.

【0022】まず、ステップS1では、各車輪速センサ
12FR〜12RLの出力を読み込んで、ステップS2
で各車輪の速度VTFR、VTFL、VTRR,VTR
Lを演算する。
First, in step S1, the output of each of the wheel speed sensors 12FR to 12RL is read, and in step S2
VTFR, VTFL, VTRR, VTR of each wheel
Calculate L.

【0023】そして、ステップS3では、エンジンコン
トローラ2と変速コントローラ3からエンジン回転数N
e、ギア比iGEARをそれぞれ読み込む。
Then, in step S3, the engine speed N
e, the gear ratio iGEAR is read.

【0024】ステップS4では、従動輪の平均速度VF
Fを、左右前輪FR、FLの車輪速VTFR、VTFL
の平均値より求め、ステップS5では、同様にして駆動
輪の平均速度VRRを左右後輪RR、RLの車輪速VT
RR、VTRLから求める。
In step S4, the average speed VF of the driven wheels
F is the wheel speed VTFR, VTFL of the left and right front wheels FR, FL
In step S5, the average speed VRR of the drive wheels is similarly calculated as the wheel speed VT of the left and right rear wheels RR and RL.
Determined from RR and VTRL.

【0025】次に、ステップS6では、駆動輪の空転を
検出するための駆動輪速しきい値VRRBSを、現在の
車速に対応する従動輪平均速VFFに所定の定数βを加
算して求める。
Next, in step S6, a drive wheel speed threshold value VRRBS for detecting idling of the drive wheels is obtained by adding a predetermined constant β to the driven wheel average speed VFF corresponding to the current vehicle speed.

【0026】VRRBS=VFF+β ステップS7では、現在の車速に応じた駆動輪速の目標
値VRRSを、従動輪平均速VFFに所定の定数αを加
算して求める。
VRRBS = VFF + β In step S7, a target value VRRS of the driving wheel speed corresponding to the current vehicle speed is obtained by adding a predetermined constant α to the driven wheel average speed VFF.

【0027】VRRS=VFF+α ただし、所定値はα<βに設定される。VRRS = VFF + α where the predetermined value is set to α <β.

【0028】ステップS8では、上記従動輪平均速VF
Fの現在の値VFF(n)と、前回の処理で求めた値VF
F(n-1)の差に所定の変換定数Kを乗じて車両の前後加
速度Xgを求める。
In step S8, the following driven wheel average speed VF
The current value VFF (n) of F and the value VF obtained in the previous process
The longitudinal acceleration Xg of the vehicle is obtained by multiplying the difference of F (n-1) by a predetermined conversion constant K.

【0029】Xg={VFF(n)−VFF(n-1)}×K 上記ステップS1〜S8で、駆動輪平均速VRR、駆動
輪速しきい値VRRBS、駆動輪速目標値VRRS及び
前後加速度Xgを求めてから、ステップS9では、駆動
輪平均速VRRが駆動輪速しきい値VRRBSを越えた
か否かを判定することで駆動輪の空転を検出し、駆動輪
が空転した場合にはステップS10の処理へ進んで、駆
動輪RR,RLの空転を抑制するための駆動力制御フラ
グFTCS(以下、TCS制御フラグとする)を1にセ
ットする。
Xg = {VFF (n) -VFF (n-1)}. Times.K In steps S1 to S8, the driving wheel average speed VRR, the driving wheel speed threshold value VRRBS, the driving wheel speed target value VRRS, and the longitudinal acceleration are calculated. After obtaining Xg, in step S9, idling of the driving wheel is detected by determining whether or not the average driving wheel speed VRR has exceeded the driving wheel speed threshold value VRRBS. Proceeding to the process of S10, a driving force control flag FTCS (hereinafter, referred to as a TCS control flag) for suppressing idling of the driving wheels RR and RL is set to 1.

【0030】次に、ステップS11では、上記ステップ
S8で求めた前後加速度Xgに基づいて、車両の加速に
必要な目標駆動トルクTRQEを次式により演算する。
Next, in step S11, based on the longitudinal acceleration Xg obtained in step S8, a target driving torque TRQE required for accelerating the vehicle is calculated by the following equation.

【0031】TRQE=Xg×INN ただし、INNは車両及び駆動系の慣性質量である。TRQE = Xg × INN where INN is the inertial mass of the vehicle and the drive train.

【0032】ステップS12では、トルコンバータ5の
タービンとインペラの回転数の比であるスリップ率TR
QSLPの演算を行う(以下、トルコンスリップ率TR
QSLPとする)。このトルコンスリップ率TRQSL
Pは、出力側のタービンと入力側のインペラの回転数が
等しい直結状態のときに1となる一方、アイドリング停
車状態ではタービン回転数が0となるためスリップ率T
RQSLPも0となる。
In step S12, the slip ratio TR, which is the ratio between the number of revolutions of the turbine of the tor converter 5 and that of the impeller,
QSLP calculation (hereinafter, torque converter slip rate TR
QSLP). This torque converter slip rate TRQSL
P becomes 1 when the output side turbine and the input side impeller are in the direct connection state in which the rotation speeds are equal, while in the idling stop state, the turbine rotation speed becomes 0, so the slip ratio T
RQSLP also becomes 0.

【0033】このトルコンスリップ率TRQSLPの演
算は、まず、ステップS3で読み込んだ変速機6のギア
位置GEARより既知の変速比iGEARを求め、同じ
く読み込んだエンジン回転数Neから、トルコンスリッ
プ率TRQSLPが1と仮定した駆動輪回転数である直
結駆動輪速VENGを次式より求める。
In the calculation of the torque converter slip rate TRQSLP, first, a known gear ratio iGEAR is obtained from the gear position GEAR of the transmission 6 read in step S3, and the torque converter slip rate TRQSLP is set to 1 based on the read engine speed Ne. The direct drive wheel speed VENG, which is the drive wheel rotational speed assumed as follows, is obtained from the following equation.

【0034】VENG=Ne/iGEAR そして、上記ステップS5で求めた実際の駆動輪回転数
である駆動輪平均速VRRと、トルコンバータ5が直結
状態と仮定した直結駆動輪速VENGの比をトルコンス
リップ率TRQSLPとし、次のように表現する。
VENG = Ne / iGEAR Then, the ratio of the driving wheel average speed VRR, which is the actual driving wheel rotation speed obtained in step S5, to the directly connected driving wheel speed VENG, assuming that the torque converter 5 is in the directly connected state, is determined by the torque converter slip. The rate TRQSLP is expressed as follows.

【0035】TRQSLP=VRR/VENG なお、トルコンバータ5にタービン及びインペラに回転
数センサを備える場合では、これらの検出回転数の比を
トルコンスリップ率TRQSLPとすればよい。
TRQSLP = VRR / VENG If the torque converter 5 is provided with a turbine and an impeller, a rotation speed sensor, the ratio of the detected rotation speeds may be set to the torque converter slip ratio TRQSLP.

【0036】次にステップS13では、現在の駆動輪の
状態が定常状態であるか否かを、上記ステップS9、1
0で設定されたTCS制御フラグFTCSが1、かつ駆
動輪平均速VRRと駆動輪速目標値VRRSの差が所定
値DS1未満であれば、ステップS14へ進む一方、そ
うでない場合にはステップS16の処理へ進む。
Next, in step S13, it is determined whether the current state of the drive wheels is in a steady state or not in steps S9 and S1.
If the TCS control flag FTCS set at 0 is 1 and the difference between the average driving wheel speed VRR and the target driving wheel speed value VRRS is less than the predetermined value DS1, the process proceeds to step S14, otherwise, the process proceeds to step S16. Proceed to processing.

【0037】ステップS14では、所定時間TS1が経
過したか否かを判定し、所定時間TS1が経過していれ
ばステップS15へ進んで、定常判断フラグFSRBを
1にセットする。
In step S14, it is determined whether or not a predetermined time TS1 has elapsed. If the predetermined time TS1 has elapsed, the flow advances to step S15 to set a steady state determination flag FSRB to 1.

【0038】すなわち、所定時間TS1経過後に駆動輪
平均速VRRがしきい値VRRBSを越えて空転した場
合でも、駆動輪平均速VRRと駆動輪速目標値VRRS
の差が所定値DS1未満であれば定常状態と判定する。
That is, even if the driving wheel average speed VRR exceeds the threshold value VRRBS and idles after the elapse of the predetermined time TS1, the driving wheel average speed VRR and the driving wheel speed target value VRRS are set.
If the difference is less than the predetermined value DS1, it is determined to be in a steady state.

【0039】なお、所定値DS1は、駆動輪速の平均値
VRRと目標値VRRSの差のしきい値を示し、例え
ば、図5に示すように、所定値DS1は後述する所定値
DS2よりも小さく、0に小さい値に設定され、また、
所定時間TS1はTCS制御フラグFTCSが0から1
に変化してからの経過時間の所定値を示すものである。
The predetermined value DS1 indicates a threshold value of a difference between the average value VRR of the driving wheel speed and the target value VRRS. For example, as shown in FIG. 5, the predetermined value DS1 is larger than a predetermined value DS2 described later. Small, set to a small value to 0, and
For a predetermined time TS1, the TCS control flag FTCS changes from 0 to 1
Indicates a predetermined value of the elapsed time after the change to.

【0040】一方、ステップS14、15の判定でNO
となった場合には、ステップS16へ進んで、駆動輪速
の平均値VRRと目標値VRRSの差が図5に示した所
定値DS2以上であれば、定常状態から逸脱したと判定
してステップS17へ進み定常判断フラグFSTBを0
にクリアする。
On the other hand, if the determination in steps S14 and S15 is NO,
In step S16, if the difference between the average value VRR of the drive wheel speed and the target value VRRS is equal to or greater than the predetermined value DS2 shown in FIG. 5, it is determined that the vehicle has deviated from the steady state. Proceed to S17 and set the steady-state determination flag FSTB to 0
To clear.

【0041】なお、定常判断フラグFSTBのセット、
クリア条件は次表のようになる。
It should be noted that setting of the steady state determination flag FSTB,
The clear conditions are as shown in the following table.

【0042】[0042]

【表1】 [Table 1]

【0043】駆動輪速の平均値と目標値の差と所定値D
S1、2を比較することにより、定常判断フラグFST
Bの設定を行った後、ステップS18へ進んでTCS制
御フラグFTCSと定常判断フラグFSTBの状態に基
づいて条件分岐を行う。
The difference between the average value of the drive wheel speeds and the target value and the predetermined value D
By comparing S1 and S2, the steady-state determination flag FST
After setting B, the process proceeds to step S18, where a conditional branch is performed based on the state of the TCS control flag FTCS and the steady state determination flag FSTB.

【0044】この条件分岐は、TCS制御フラグFTC
S=1かつ定常判断フラグ=0のときにステップS19
へ進み、目標駆動トルク下限値TRQMNの演算を行う
一方、そうでない場合には、ステップS20へ進んで目
標駆動トルク下限値TRQMNをTCS制御フラグFT
CS=1となったときの値を維持する。
This conditional branch is performed by the TCS control flag FTC.
Step S19 when S = 1 and the steady state flag = 0
To calculate the target drive torque lower limit value TRQMN, otherwise, to step S20, set the target drive torque lower limit value TRQMN to the TCS control flag FT.
The value at the time when CS = 1 is maintained.

【0045】ステップS19の演算では、上記ステップ
S12で求めたトルコンスリップ率TRQSLPに応じ
て、図6に示すように予め設定されたマップまたは関数
より目標駆動トルク下限値TRQMNを求める。なお、
このマップまたは関数は、トルコンスリップ率TRQS
LPの増大(出力側タービン回転数の増大)に応じて、
所定値まで漸減するよう設定され、入力側インペラ回転
数の方が大きい高負荷時では、目標駆動トルク下限値T
RQMNは大きな値に設定される。
In the calculation of step S19, the target drive torque lower limit value TRQMN is obtained from a preset map or function as shown in FIG. 6 according to the torque converter slip ratio TRQSLP obtained in step S12. In addition,
This map or function provides the torque converter slip rate TRQS
According to the increase in LP (increase in output turbine speed),
When the load is set to gradually decrease to a predetermined value and the input side impeller rotational speed is higher and the load is high, the target drive torque lower limit T
RQMN is set to a large value.

【0046】次にステップS21では、目標駆動トルク
下限に制限を加えるため、上記ステップS20で求めた
目標駆動トルク下限値TRQMNとステップS11で求
めた目標駆動トルクTRQEのうちの大きいほうを、目
標駆動トルクTRQE’として設定する。
Next, at step S21, in order to limit the lower limit of the target drive torque, the larger of the target drive torque lower limit value TRQMN determined at step S20 and the target drive torque TRQE determined at step S11 is determined. Set as torque TRQE '.

【0047】そして、ステップS22では、この目標駆
動トルクTRQE’と変速機6に設定され変速比iGE
ARより、目標エンジントルクTRQを次のように演算
する。
In step S22, the target drive torque TRQE 'and the gear ratio iGE set for the transmission 6 are set.
From AR, the target engine torque TRQ is calculated as follows.

【0048】TRQ=TRQE’×iGEAR ステップS23では、この目標エンジントルクTRQと
エンジン回転数Neに応じて予め設定されたマップ(F
2)より、第2スロットル10の開度THRを求める。
TRQ = TRQE '× iGEAR In step S23, a map (F) set in advance in accordance with the target engine torque TRQ and the engine speed Ne.
2), the opening degree THR of the second throttle 10 is obtained.

【0049】こうして、トルコンスリップ率TRQSL
Pに応じて求めた目標駆動トルク下限値TRQMNと前
後加速度Xgに応じて求めた目標駆動トルクTRQEの
うちの大きい方を目標駆動トルクTRQE’とし、この
目標駆動トルクTRQE’から第2スロットル開度TH
Rが求められる。
Thus, the torque converter slip rate TRQSL
The larger of the target drive torque lower limit value TRQMN determined according to P and the target drive torque TRQE determined according to the longitudinal acceleration Xg is set as the target drive torque TRQE ', and the second throttle opening degree is calculated from the target drive torque TRQE'. TH
R is required.

【0050】そして、ステップS24では、第2スロッ
トル開度THRが全開(8/8)であるか否かを判定し
て、全開であれば駆動力抑制処理を終了するため、ステ
ップS25、26でTCS制御フラグFTCS及び定常
判断フラグFSTBを0にクリアし、第2スロットル開
度THRが全開でない場合には、そのままステップS2
7で上記ステップS3で求めた第2スロットル開度TH
Rを出力し、アクチュエータ9を駆動して第2スロット
ル10を所定量だけ閉じる。
Then, in step S24, it is determined whether or not the second throttle opening THR is fully opened (8/8). If the second throttle opening THR is fully opened, the driving force suppressing process is terminated. If the TCS control flag FTCS and the steady-state determination flag FSTB are cleared to 0 and the second throttle opening THR is not fully open, step S2 is performed.
7, the second throttle opening TH obtained in step S3.
R is output, and the actuator 9 is driven to close the second throttle 10 by a predetermined amount.

【0051】以上のような制御を所定時間毎に行うこと
により、発進、加速時の駆動輪の空転を抑制しながらも
車両の加速を確実に行うことが可能となり、以下にその
一例を示す。
By performing the above-described control at predetermined time intervals, it becomes possible to surely accelerate the vehicle while suppressing the idling of the drive wheels at the time of starting and accelerating. An example is shown below.

【0052】いま、図7〜図9に示すように、路面摩擦
係数μの高い登坂路などで発進、加速を行った場合につ
いて説明すると、時間t0から運転者がアクセルペダル
7を全開まで踏み込んで行くと第1スロットル開度TV
Oが増大し、これに伴ってエンジン回転数Neも上昇し
て駆動輪平均速VRRが上昇する一方、従動輪平均速V
FFは0のまま上昇せずに駆動輪は空転状態となる。
[0052] Now, as shown in FIGS. 7 to 9, starting with such a high uphill of the road surface friction coefficient mu, the description will be given of a case where subjected to an accelerated, depressed from the time t 0 to the driver fully open the accelerator pedal 7 Go to the first throttle opening TV
O increases, the engine speed Ne also increases, and the average driving wheel speed VRR increases.
The FF remains at 0 and does not rise, and the drive wheels idle.

【0053】そして、時間t1では駆動輪平均速VRR
がしきい値VRRBSを越えて、上記ステップS9、1
0でTCS制御フラグFTCSが1にセットされるた
め、ステップS24以降で、第2スロットル開度THR
は目標駆動トルク下限値TRQMNに応じた値に閉じら
れ、目標駆動エンジントルクTRQが抑制される。
[0053] Then, the drive wheel average speed at time t 1 VRR
Exceeds the threshold value VRRBS, and the above steps S9, 1
Since the TCS control flag FTCS is set to 1 at 0, the second throttle opening THR is set after step S24.
Is closed to a value corresponding to the target drive torque lower limit value TRQMN, and the target drive engine torque TRQ is suppressed.

【0054】このとき、駆動輪平均速VRRが、図5に
示したように駆動輪速目標値VRRSより所定値DS2
を越えるため、上記ステップS16、17で定常判断フ
ラグFSTBが0にクリアされ、TCS制御フラグFT
CSが1になったときの目標駆動トルク下限値TRQM
Nが図9のように所定時間TS1の間維持される(ステ
ップS18、20)。
At this time, as shown in FIG. 5, the average driving wheel speed VRR is a predetermined value DS2 from the target driving wheel speed value VRRS.
, The steady-state determination flag FSTB is cleared to 0 in steps S16 and S17, and the TCS control flag FT
Target drive torque lower limit value TRQM when CS becomes 1
N is maintained for a predetermined time TS1 as shown in FIG. 9 (steps S18 and S20).

【0055】TCS制御フラグFTCSが1にセットさ
れたときの目標駆動トルク下限値TRQMNは、図6、
図8に示すように、駆動輪平均速VRRと直結駆動輪速
VENGの比から求めたトルコンスリップ率TRQSL
Pに応じて設定されたもので、トルコンスリップ率TR
QSLPが0に近付くほど、換言すれば、トルコンバー
タ5の入力側のインペラ回転数が、出力側のタービン回
転数よりも大きくなるほど目標駆動トルク下限値TRQ
MNは大きな値に設定される。
The target drive torque lower limit value TRQMN when the TCS control flag FTCS is set to 1 is shown in FIG.
As shown in FIG. 8, the torque converter slip ratio TRQSL obtained from the ratio of the driving wheel average speed VRR to the directly connected driving wheel speed VENG
Set according to P, torque converter slip rate TR
As QSLP approaches 0, in other words, as the impeller rotational speed on the input side of the torque converter 5 becomes greater than the turbine rotational speed on the output side, the target drive torque lower limit TRQ
MN is set to a large value.

【0056】つまり、時間t0の発進直前のように、ト
ルコンスリップ率TRQSLPが0に近い程負荷は大き
く、すなわち、走行抵抗が大きい状態であり、一方、時
間t2以降の車両が発進した後のように、トルコンスリ
ップ率TRQSLPが1に近付くほど負荷が減少した状
態、すなわち、走行抵抗が小さい状態として捕えること
ができる。
That is, as in the case immediately before the start at the time t 0 , the load increases as the torque converter slip rate TRQSLP approaches 0, that is, the running resistance increases. On the other hand, after the vehicle starts after the time t 2 , The load decreases as the torque converter slip ratio TRQSLP approaches 1, that is, the running resistance is small.

【0057】ところで、前記従来例では、時間t1で駆
動輪の空転が開始されると、第2スロットル開度THR
が、図7の一点鎖線で示すように、ほぼ全閉状態になっ
て、エンジントルクTRQは走行抵抗に比して過大に減
少される(図9)。このため、駆動輪の空転は抑制され
るものの、図7のように、時間t2以降でも従来例の駆
動輪速VRR’及び従動輪速VFF’はほとんど伸び
ず、円滑な加速を行うことができないため、運転者に違
和感を与えてしまう。
By the way, in the conventional example, when the racing of the driving wheels is started at time t 1, the second throttle opening THR
However, as shown by the dashed line in FIG. 7, the engine is almost fully closed, and the engine torque TRQ is excessively reduced as compared with the running resistance (FIG. 9). Therefore, although racing of the driving wheels is suppressed, as shown in FIG. 7, the drive wheel speed VRR 'and the driven wheel speed VFF' in the conventional example, even time t 2 later hardly stretched, is possible to perform smooth acceleration Since it is not possible, the driver feels strange.

【0058】一方、本発明のように、トルコンスリップ
率TRQSLPの大きさを走行抵抗の大きさとしてとら
えて、図6に示したように、このトルコンスリップ率T
RQSLPに応じて駆動トルクの下限値TRQMNを可
変制御することにより、前記従来例のような目標駆動ト
ルクの下限値TRQMNの過大な減少を規制し、登坂路
や路面摩擦係数μ等の走行抵抗が大きい場合には、図7
のように、第2スロットル開度THR(実線)は、従来
例(一点鎖線)よりも大きな値となって、走行抵抗に抗
して従動輪速VFFが円滑に立ち上がるとともに、駆動
輪速VRRの空転も抑制され、車速(従動輪速)の伸び
も前記従来例のVFF’に比して大きなものとなり、運
転者の運転意図に応じた加速力を得ることが可能となっ
て駆動力制御装置を備えた車両の運転性及び加速性能
を、前記従来例に比して大幅に向上させることができる
のである。
On the other hand, as in the present invention, the magnitude of the torque converter slip ratio TRQSLP is taken as the magnitude of the running resistance, and as shown in FIG.
By variably controlling the lower limit value TRQMN of the drive torque according to the RQSLP, the excessive lowering of the lower limit value TRQMN of the target drive torque as in the conventional example is regulated, and the running resistance such as the uphill road and the road surface friction coefficient μ is reduced. If it is large,
As described above, the second throttle opening THR (solid line) has a larger value than the conventional example (dashed line), the driven wheel speed VFF rises smoothly against the running resistance, and the drive wheel speed VRR increases. Slip is also suppressed, and the increase in vehicle speed (driven wheel speed) becomes larger than that of the VFF 'of the conventional example, so that it is possible to obtain an acceleration force according to the driver's driving intention, and the driving force control device Therefore, the drivability and acceleration performance of the vehicle provided with the above can be greatly improved as compared with the conventional example.

【0059】ここで、トルコンスリップ率TRQSLP
を走行抵抗の大きさとして捕えたが、このトルコンスリ
ップ率TRQSLPの大きさを路面摩擦係数μとして捕
えることもでき、この場合では、トルコンスリップ率に
対する目標駆動トルク下限値TRQMN及び路面摩擦係
数μ、走行抵抗の関係は次表のようになる。
Here, the torque converter slip rate TRQSLP
Is captured as the magnitude of the running resistance, but the magnitude of the torque converter slip ratio TRQSLP can also be captured as the road surface friction coefficient μ. In this case, the target driving torque lower limit value TRQMN and the road surface friction coefficient μ for the torque converter slip ratio are The following table shows the relationship of running resistance.

【0060】[0060]

【表2】 [Table 2]

【0061】したがって、トルコンスリップ率TRQS
LPに基づいて、路面摩擦係数μを正確に検出すること
ができ、図10に示すように、予め設定した路面摩擦係
数μと目標駆動トルク下限値TRQMNのマップあるい
は関数より、路面状態に応じて目標駆動トルク下限値T
RQMNを可変制御し、路面状態の変化に拘わらず駆動
輪の空転を抑制しながら確実な加速を行うことが可能と
なって、駆動力制御装置を備えた車両の運転性及び加速
性能を向上させることができるのである。
Therefore, the torque converter slip rate TRQS
Based on the LP, the road surface friction coefficient μ can be accurately detected. As shown in FIG. 10, a road surface friction coefficient μ and a target driving torque lower limit TRQMN map or function are used in accordance with the road surface condition. Target drive torque lower limit T
RQMN is variably controlled, and reliable acceleration can be performed while suppressing idling of the drive wheels regardless of changes in the road surface condition, thereby improving the drivability and acceleration performance of the vehicle equipped with the driving force control device. You can do it.

【0062】なお、上記実施形態において、駆動力を抑
制する手段をアクチュエータ9を介して駆動される第2
スロットル10より構成したが、図示はしないが、燃料
カットやタイミングリタード等のエンジン制御や、駆動
輪RR、RLのブレーキを作動させることでも上記と同
様の作用、効果を得ることができる。
In the above embodiment, the means for suppressing the driving force is replaced by the second means driven via the actuator 9.
Although not shown, the throttle 10 is used to control the engine such as fuel cut and timing retard, and to operate the brakes of the drive wheels RR and RL.

【0063】[0063]

【発明の効果】以上説明したように第1の発明は、駆動
力抑制手段は、駆動輪の路面に対するスリップ率が所定
値を超えると流体伝動装置を介して駆動輪に伝達される
駆動力を低減して、駆動輪のスリップを抑制するが、低
減される駆動力は、流体伝動手段のスリップ率に基づい
て決定された下限値以上に規制されるため、空転防止の
ための駆動力抑制が過大になるのを防ぐことができ、駆
動力の下限値を流体伝動手段のスリップ率に基づいて決
定することにより、走行抵抗の大きさに応じた駆動力の
下限値を設定でき、例えば、登坂路等で走行抵抗が大き
い場合に駆動輪が空転しても、駆動輪の空転を防ぎなが
ら迅速に車両の加速を行うことが可能となって、前記従
来例のように、空転直後の第1回目の駆動力抑制制御で
駆動力が過大に減少されるのを防止して、運転者の加速
意図に応じながら駆動輪の空転を抑制することが可能と
なり、駆動力制御装置を備えた車両の運転性及び加速性
能を大幅に向上させることができる。
As described above, according to the first aspect of the present invention, when the slip ratio of the driving wheel to the road surface exceeds a predetermined value, the driving force suppressing means controls the driving force transmitted to the driving wheel via the fluid transmission device. Although the driving force is reduced to suppress the slip of the driving wheels, the driving force to be reduced is restricted to a lower limit value or more determined based on the slip ratio of the fluid transmission means. It is possible to prevent the driving force from becoming excessive, and by determining the lower limit value of the driving force based on the slip ratio of the fluid transmission means, it is possible to set the lower limit value of the driving force according to the magnitude of the running resistance. Even if the driving wheels idle when the running resistance is large on a road or the like, the vehicle can be quickly accelerated while preventing the driving wheels from idling, as in the above-described conventional example. Driving force is excessively reduced by the second driving force suppression control Is prevented, and idling of the drive wheels can be suppressed while responding to the driver's intention to accelerate, and the drivability and acceleration performance of the vehicle including the driving force control device can be significantly improved. .

【0064】また、第2の発明は、流体伝動手段のスリ
ップ率に基づいて路面摩擦係数を演算することができ、
この路面摩擦係数に応じて駆動力の下限値を設定するた
め、路面状態に応じた駆動力の下限値を設定でき、例え
ば、高μ路等で駆動輪が空転しても、駆動力の低減が過
大になるのを防ぐことで、駆動輪の空転を抑制しながら
迅速に車両の加速を行うことが可能となって、運転者の
加速意図に応じながら駆動輪の空転を抑制することが可
能となり、駆動力制御装置を備えた車両の運転性及び加
速性能を大幅に向上させることができる。
Further, according to the second invention, the road surface friction coefficient can be calculated based on the slip ratio of the fluid transmission means,
Since the lower limit value of the driving force is set according to the road surface friction coefficient, the lower limit value of the driving force can be set according to the road surface condition. For example, even if the driving wheels idle on a high μ road, the driving force is reduced. By preventing the vehicle from becoming excessively large, it becomes possible to accelerate the vehicle quickly while suppressing the idling of the driving wheels, and it is possible to suppress the idling of the driving wheels according to the driver's acceleration intention. Thus, the drivability and acceleration performance of the vehicle including the driving force control device can be significantly improved.

【0065】また、第3の発明は、駆動輪の空転が判定
されたときの駆動力の下限値を所定時間保持するため、
駆動輪の空転を確実に抑制しながら迅速に車両の加速を
行って、駆動力制御装置を備えた車両の加速性能を向上
することができる。
According to the third aspect of the present invention, the lower limit of the driving force when the idling of the driving wheel is determined is held for a predetermined time.
The vehicle can be rapidly accelerated while reliably suppressing the idling of the drive wheels, and the acceleration performance of the vehicle including the driving force control device can be improved.

【0066】また、第4の発明は、駆動力下限値規制手
段が、車両に発生する前後加速度に基づいて求めた目標
駆動力と、流体伝動手段のスリップ率から求めた駆動力
の下限値のうちの大きい方を駆動力の下限値として設定
するため、車両の加速に必要な最低限の駆動力を確保で
き、駆動輪の空転を抑制しながら迅速に車両の加速を確
実に行うことができ、前記従来例のような駆動力の過大
な減少を防いで、運転者の意図に応じて車両の加速を行
いながら駆動輪の空転を抑制することが可能となって、
駆動力制御装置を備えた車両の運転性及び加速性能を大
幅に向上させることができる。
According to a fourth aspect of the present invention, the driving force lower limit value restricting means is configured to determine a target driving force obtained based on the longitudinal acceleration generated in the vehicle and a lower limit value of the driving force obtained from the slip ratio of the fluid transmission means. Since the larger of the two is set as the lower limit of the driving force, the minimum driving force required for vehicle acceleration can be secured, and the vehicle can be quickly and reliably accelerated while suppressing idling of the drive wheels. By preventing the driving force from excessively decreasing as in the conventional example, it is possible to suppress idling of the driving wheels while accelerating the vehicle according to the driver's intention,
Drivability and acceleration performance of a vehicle including the driving force control device can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す駆動力制御装置の概
略図。
FIG. 1 is a schematic diagram of a driving force control device according to an embodiment of the present invention.

【図2】同じくTCSコントローラで行われる制御の一
例を示すフローチャートで、前半部を示す。
FIG. 2 is a flowchart showing an example of control performed by the TCS controller, showing the first half.

【図3】同じくフローチャートで、中間部を示す。FIG. 3 is also a flowchart showing an intermediate part.

【図4】同じくフローチャートで、後半部を示す。FIG. 4 is a flowchart showing the latter half of the flowchart.

【図5】トルコンスリップ率TRQSLPに応じて設定
された目標駆動トルク下限値TRQMNを示すマップで
ある。
FIG. 5 is a map showing a target driving torque lower limit value TRQMN set according to the torque converter slip ratio TRQSLP.

【図6】各車輪速と目標駆動輪速並びに駆動輪速平均値
と目標値の差と所定値DS1、DS2の関係を示すグラ
フである。
FIG. 6 is a graph showing a relationship between each wheel speed and a target driving wheel speed, and a difference between a driving wheel speed average value and a target value and predetermined values DS1 and DS2.

【図7】発進の際の駆動力制御の様子を示し、車輪速、
スロットル開度、エンジン回転数と時間の関係を示すグ
ラフである。
FIG. 7 shows a state of driving force control at the time of starting, and includes a wheel speed,
4 is a graph showing a relationship between a throttle opening, an engine speed and time.

【図8】同じく、直結駆動輪速、トルコンスリップ率、
目標駆動トルク下限値と時間の関係を示すグラフであ
る。
[FIG. 8] Similarly, the direct drive wheel speed, torque converter slip ratio,
5 is a graph showing a relationship between a target driving torque lower limit and time.

【図9】同じく、目標駆動トルク、エンジントルクと時
間の関係を示すグラフである。
FIG. 9 is also a graph showing a relationship between a target drive torque, an engine torque and time.

【図10】他の実施形態を示し、路面摩擦係数μに応じ
た目標駆動トルク下限値TRQMNの関係を示すマップ
である。
FIG. 10 is a map showing a relationship between a target driving torque lower limit value TRQMN and a road surface friction coefficient μ according to another embodiment.

【図11】第1ないし第4の発明のいずれかひとつに対
応するクレーム対応図である。
FIG. 11 is a claim correspondence diagram corresponding to any one of the first to fourth inventions.

【符号の説明】[Explanation of symbols]

1 TCSコントローラ 2 エンジンコントローラ 3 変速コントローラ 4 エンジン 5 トルクコンバータ 6 変速機 7 アクセルペダル 8 第1スロットル 9 アクチュエータ 10 第2スロットル 11 スロットル開度センサ 12FR、12FL、12RR、12RL 車輪速セン
サ 100 流体伝動手段 101 駆動輪 102 駆動力抑制手段 103 スリップ率演算手段 104 下限値設定手段 105 駆動力下限値規制手段 106 路面摩擦係数演算手段 107 目標駆動力演算手段 108 選択手段 109 スリップ判定手段
DESCRIPTION OF SYMBOLS 1 TCS controller 2 Engine controller 3 Transmission controller 4 Engine 5 Torque converter 6 Transmission 7 Accelerator 8 First throttle 9 Actuator 10 Second throttle 11 Throttle opening sensor 12FR, 12FL, 12RR, 12RL Wheel speed sensor 100 Fluid transmission means 101 Driving wheel 102 Driving force suppressing means 103 Slip ratio calculating means 104 Lower limit value setting means 105 Driving force lower limit value controlling means 106 Road surface friction coefficient calculating means 107 Target driving force calculating means 108 Selecting means 109 Slip determining means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−285629(JP,A) 特開 平3−202646(JP,A) 特開 平6−66169(JP,A) 特開 平1−178036(JP,A) 特開 昭63−31862(JP,A) 特開 平7−125561(JP,A) 特開 平1−114523(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 29/00 - 29/06 F02D 41/00 - 45/00 395 B60T 8/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-285629 (JP, A) JP-A-3-202646 (JP, A) JP-A-6-66169 (JP, A) JP-A-1- 178036 (JP, A) JP-A-63-31862 (JP, A) JP-A-7-125561 (JP, A) JP-A-1-114523 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 29/00-29/06 F02D 41/00-45/00 395 B60T 8/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体伝動手段を介して原動機に連結され
た駆動輪と、この駆動輪の路面に対するスリップ率が所
定値を超えたときに駆動輪の空転を判定するスリップ判
定手段と、前記スリップ判定手段が駆動輪の空転を判定
したときに前記駆動輪の駆動力を低減する駆動力抑制手
段とを備えた車両用駆動力制御装置において、前記流体
伝動手段のスリップ率を演算するスリップ率演算手段
と、このスリップ率に基づいて駆動力の下限値を演算す
る下限値設定手段と、前記スリップ判定手段が駆動輪の
空転を判定したときに、前記駆動力抑制手段で低減され
る駆動力を前記下限値以上に規制する駆動力下限値規制
手段とを備えたことを特徴とする車両用駆動力制御装
置。
A drive wheel connected to a prime mover via a fluid transmission means; slip determination means for determining idle rotation of the drive wheel when a slip ratio of the drive wheel to a road surface exceeds a predetermined value; A driving force control device for reducing the driving force of the driving wheel when the judging device judges that the driving wheel is spinning, wherein a slip ratio calculation for calculating a slip ratio of the fluid transmission device is provided. Means, a lower limit value setting means for calculating a lower limit value of the driving force based on the slip ratio, and a driving force reduced by the driving force suppressing means when the slip judging means judges idling of the driving wheel. A driving force control device for a vehicle, comprising: a driving force lower limit value restricting means for restricting the driving force to a value not less than the lower limit value.
【請求項2】 前記下限値設定手段は、流体伝動手段の
スリップ率に基づいて路面摩擦係数を演算する路面摩擦
係数演算手段を備え、この路面摩擦係数に応じて駆動力
の下限値を設定することを特徴とする請求項1に記載の
車両用駆動力制御装置。
2. The lower limit value setting means includes a road surface friction coefficient calculating means for calculating a road surface friction coefficient based on a slip ratio of the fluid transmission means, and sets a lower limit value of the driving force according to the road surface friction coefficient. The vehicle driving force control device according to claim 1, wherein:
【請求項3】 前記下限値設定手段は、前記駆動輪の空
転が判定されたときの駆動力の下限値を所定時間保持す
ることを特徴とする請求項1に記載の車両用駆動力制御
装置。
3. The driving force control device for a vehicle according to claim 1, wherein the lower limit value setting means holds a lower limit value of the driving force when the idling of the driving wheel is determined for a predetermined time. .
【請求項4】 前記駆動力下限値規制手段は、車両に発
生する前後加速度に基づいて目標駆動力を演算する目標
駆動力演算手段と、この目標駆動力と前記駆動力の下限
値のうちの大きい方を駆動力の下限値として設定する選
択手段とを備えたことを特徴とする請求項1に記載の車
両用駆動力制御装置。
4. The driving force lower limit value restricting means includes a target driving force calculating means for calculating a target driving force based on a longitudinal acceleration generated in a vehicle, and a target driving force and a lower limit value of the driving force. 2. The driving force control device for a vehicle according to claim 1, further comprising: selection means for setting a larger one as a lower limit value of the driving force.
JP9256796A 1996-04-15 1996-04-15 Vehicle driving force control device Expired - Lifetime JP3204079B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9256796A JP3204079B2 (en) 1996-04-15 1996-04-15 Vehicle driving force control device
KR1019970014366A KR100222152B1 (en) 1996-04-15 1997-04-15 Vehicle drive torque controller
US08/834,280 US5957991A (en) 1996-04-15 1997-04-15 Vehicle drive torque controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9256796A JP3204079B2 (en) 1996-04-15 1996-04-15 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JPH09280080A JPH09280080A (en) 1997-10-28
JP3204079B2 true JP3204079B2 (en) 2001-09-04

Family

ID=14058012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9256796A Expired - Lifetime JP3204079B2 (en) 1996-04-15 1996-04-15 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP3204079B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949220B4 (en) * 1999-10-13 2010-04-08 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle
JP3594010B2 (en) * 2001-11-29 2004-11-24 日産自動車株式会社 Vehicle driving force control method and its control device
JP5476721B2 (en) * 2009-01-20 2014-04-23 日産自動車株式会社 Control device for hybrid vehicle
JP4917127B2 (en) * 2009-05-12 2012-04-18 本田技研工業株式会社 Device for controlling engine output during in-gear

Also Published As

Publication number Publication date
JPH09280080A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3284852B2 (en) Transmission control device for continuously variable transmission
US6002979A (en) Traction control system for automotive vehicles
US5957991A (en) Vehicle drive torque controller
JPH08119002A (en) Clutch control device for vehicle
US6199005B1 (en) Vehicle drive force control device
JP2519960B2 (en) Vehicle traction control method
KR100262696B1 (en) Drive Power Control Method for Vehicle
JP3536523B2 (en) Driving force control device for vehicles
US5459661A (en) Traction control apparatus in which a driving force is increased when a stalling condition is detected
JP3204079B2 (en) Vehicle driving force control device
JP2949832B2 (en) Acceleration slip control device
JPH09236137A (en) Torque estimating method, torque calculation data correcting method, and torque estimating device
JP3077007B2 (en) Transmission control device for continuously variable transmission
JP3230422B2 (en) Transmission control device for continuously variable transmission
JP3228094B2 (en) Transmission control device for continuously variable transmission
JP3147741B2 (en) Transmission control device for continuously variable transmission
JPS61129432A (en) Control device of acceleration slip in vehicle
JP3319278B2 (en) Vehicle driving force control device
JP3564862B2 (en) Driving force control device for vehicles
JP3575223B2 (en) Driving force control device for vehicles
JP2780390B2 (en) Automatic transmission control device for vehicle equipped with traction control device
JPH03103660A (en) Change gear ratio control device for continuously variable transmission for vehicle
JP3428363B2 (en) Vehicle driving force control device
JPS61220938A (en) Control of continuously variable transmission for car
JP3257357B2 (en) Control device for automatic transmission for vehicles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 13

EXPY Cancellation because of completion of term