JP3193087B2 - AlGaInP semiconductor light emitting device - Google Patents

AlGaInP semiconductor light emitting device

Info

Publication number
JP3193087B2
JP3193087B2 JP33880591A JP33880591A JP3193087B2 JP 3193087 B2 JP3193087 B2 JP 3193087B2 JP 33880591 A JP33880591 A JP 33880591A JP 33880591 A JP33880591 A JP 33880591A JP 3193087 B2 JP3193087 B2 JP 3193087B2
Authority
JP
Japan
Prior art keywords
layer
algainp
light emitting
active layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33880591A
Other languages
Japanese (ja)
Other versions
JPH05175610A (en
Inventor
康夫 菅
向星 高橋
昌宏 細田
篤勇 角田
健太郎 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP33880591A priority Critical patent/JP3193087B2/en
Publication of JPH05175610A publication Critical patent/JPH05175610A/en
Application granted granted Critical
Publication of JP3193087B2 publication Critical patent/JP3193087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はAlGaInP半導体発光装置
に関し、特に低しきい値で動作するAlGaInP系赤色半導
体レーザ装置、あるいは高発光効率の発光ダイオード装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AlGaInP semiconductor light emitting device, and more particularly to an AlGaInP red semiconductor laser device operating at a low threshold or a light emitting diode device having a high luminous efficiency.

【0002】[0002]

【従来の技術】近年、小型・高出力・定価格という利点
を有する半導体レーザ素子の実用化により、従来レーザ
光源の使用が困難であった一般産業機械や民生機械への
レーザの応用が進んでいる。中でも光ディスク装置や光
通信等の分野における進歩はめざましいものがある。今
後、半導体レーザ素子はさらに多くの分野に応用されて
いくものと考えられる。
2. Description of the Related Art In recent years, with the practical use of semiconductor laser devices having the advantages of small size, high output, and constant price, the application of lasers to general industrial machines and consumer machines, for which use of laser light sources has been difficult in the past, has been advanced. I have. Above all, there has been remarkable progress in fields such as optical disk devices and optical communication. In the future, semiconductor laser devices are expected to be applied to more fields.

【0003】AlGaInP結晶を用いた半導体発光装置は、
従来のAlGaAs結晶を用いた半導体レーザ装置より100
nm以上短波長側に発光波長帯を有する。例えば、半動体
レーザ装置の場合、光ディスク等の記録密度向上や、He
-Neレーザの代替となりうる特性をもつことから、実用
化に向けて研究が進められている。
A semiconductor light emitting device using an AlGaInP crystal is
100 more than conventional semiconductor laser device using AlGaAs crystal
It has an emission wavelength band on the shorter wavelength side than nm. For example, in the case of a semi-moving body laser device, the recording density of an optical disc or the like is improved,
Since it has characteristics that can be used as a substitute for -Ne lasers, research is proceeding toward its practical use.

【0004】図3は、従来のAlGaInP系結晶を用いた半
導体レーザ装置の一例を示す。この半導体レーザ装置は
互いに異なる2つのクラッド層33、39の間に、これ
らのクラッド層より屈折率の大きい活性層35が形成さ
れたダブルヘテロ構造を備えている。ダブルヘテロ構造
では、光導波路を構成して光を効率よく活性層35内に
閉じ込めるために、活性層35の屈折率は2つのクラッ
ド層33、39の屈折率より大きくする必要がある。
FIG. 3 shows an example of a conventional semiconductor laser device using an AlGaInP-based crystal. This semiconductor laser device has a double hetero structure in which an active layer 35 having a higher refractive index than these clad layers is formed between two different clad layers 33 and 39. In the double hetero structure, the refractive index of the active layer 35 needs to be larger than the refractive indexes of the two cladding layers 33 and 39 in order to form an optical waveguide and efficiently confine light in the active layer 35.

【0005】この半導体レーザ装置は、n型AlGaInPク
ラッド層33の裏面側に、n型GaAsバッファ層32、n
型GaAs基板31、電極314が順に積層されている。ま
た、p型AlGaInPクラッド層39の表面側に、n型GaAs
電流狭搾層312、p型GaInP中間層310、p型GaAs
コンタクト層311、電極313が順に積層されてい
る。なお、p型GaInP中間層310、p型GaAsコンタク
ト層311は中央部にエッチングによって形成され、そ
の外周部にn型GaAs電流狭搾層312が積層されてい
る。
In this semiconductor laser device, an n-type GaAs buffer layer 32, n
The type GaAs substrate 31 and the electrode 314 are sequentially laminated. On the surface side of the p-type AlGaInP cladding layer 39, n-type GaAs
Current constriction layer 312, p-type GaInP intermediate layer 310, p-type GaAs
A contact layer 311 and an electrode 313 are sequentially stacked. The p-type GaInP intermediate layer 310 and the p-type GaAs contact layer 311 are formed at the center by etching, and the n-type GaAs current narrowing layer 312 is laminated on the outer periphery.

【0006】このようなダブルヘテロ構造において、半
導体レーザのしきい値上昇、あるいは信頼性の低下をも
たらす、活性層35内、及び活性層35と障壁層33、
39の界面でのキャリアの非発光消滅過程は、下記の式
で表されるキャリア(正孔)の非発光寿命τnrで定量的
にできる。即ち、τnrが短いとキャリア(正孔)は非発
光過程で多く消滅してしまい、発光に寄与しなくなる。
In such a double hetero structure, the inside of the active layer 35, and the active layer 35 and the barrier layer 33, which increase the threshold value or decrease the reliability of the semiconductor laser,
The non-emission annihilation process of the carrier at the interface 39 can be quantitatively determined by the non-emission lifetime τ nr of the carrier (hole) represented by the following formula. That is, when τ nr is short, carriers (holes) are largely eliminated in the non-light emitting process, and do not contribute to light emission.

【0007】1/τnr=1/τnra + S/d ここで、τnraは活性層35の内部でのキャリアの非発
光寿命、Sは活性層35と障壁層33、39の境界面で
のキャリアの非発光再結合消滅速度の総和、dは活性層
の厚さを表す。
1 / τ nr = 1 / τ nra + S / d where τ nra is the non-light-emitting lifetime of carriers inside the active layer 35, and S is the interface between the active layer 35 and the barrier layers 33 and 39. And d represents the thickness of the active layer.

【0008】一般に、前記の例のように、活性層35が
Alを含まない結晶材料である場合は、GaInP活性層3
5自体のキャリアの非発光消滅はきわめて小さく、1/
τnraは無視できる。従って、キャリアの非発光過程は
活性層35と障壁層33、39の界面での非発光再結合
過程に支配される。
Generally, when the active layer 35 is made of a crystalline material containing no Al, as in the above example, the GaInP active layer 3
5 itself has a very small non-radiative extinction,
τ nra can be ignored. Therefore, the non-emission process of carriers is governed by the non-emission recombination process at the interface between the active layer 35 and the barrier layers 33 and 39.

【0009】また、量子井戸活性層のようにdが非常に
小さくなると、上式から明かなように、特に界面での非
発光過程の影響は大きくなる。従って、半導体発光装置
においては、活性層35と障壁層33、39の界面を良
質にすることが、その特性向上のために重要となる。
Further, when d becomes very small as in the quantum well active layer, as apparent from the above equation, the influence of the non-light emitting process particularly at the interface becomes large. Therefore, in the semiconductor light emitting device, it is important to improve the interface between the active layer 35 and the barrier layers 33 and 39 in order to improve the characteristics.

【0010】この界面再結合を低減化する方法として
は、例えばGaInP/AlGaInPからなる超格子バッファ層3
2を裏面側の障壁層33の後に成長し、その直後に活性
層35を成長する方法が、分子線結晶成長法では知られ
ている。
As a method of reducing the interface recombination, for example, a superlattice buffer layer 3 made of GaInP / AlGaInP is used.
A method of growing the active layer 35 immediately after the barrier layer 33 on the rear surface side and growing the active layer 35 immediately after that is known in the molecular beam crystal growth method.

【0011】[0011]

【発明が解決しようとする課題】前記のように、超格子
バッファ層32を、例えば分子線結晶成長法で成長する
場合は、頻繁にセルシャッタを開閉する必要があり、結
晶成長装置の故障の要因となり得る。
As described above, when the superlattice buffer layer 32 is grown by, for example, a molecular beam crystal growth method, it is necessary to frequently open and close the cell shutter, which causes a failure of the crystal growth apparatus. Can be a factor.

【0012】また、AlGaAs系材料で良質なAlGaAs結晶を
成長する方法として知られている高温での結晶成長は、
AlGaInP結晶の成長において、高温でのP、Ga、In
の再蒸発が起り、この結晶系では成長温度等の成長条件
をきわめて精度よく制御する必要がある。
A high-temperature crystal growth, which is known as a method of growing a high-quality AlGaAs crystal using an AlGaAs-based material, is as follows.
In growing AlGaInP crystals, P, Ga, In
Re-evaporation occurs, and in this crystal system, it is necessary to control the growth conditions such as the growth temperature with extremely high precision.

【0013】本発明は、このような従来技術の欠点を解
決するためになされたものであり、その目的は、GaInP
活性層と障壁層との界面の品質を向上させ、AlGaInP系
半導体発光装置の信頼性を向上させることにある。
The present invention has been made in order to solve such disadvantages of the prior art, and has as its object the purpose of GaInP.
An object of the present invention is to improve the quality of the interface between the active layer and the barrier layer and improve the reliability of the AlGaInP-based semiconductor light emitting device.

【0014】[0014]

【課題を解決するための手段】本発明のAlGaInP
半導体発光装置は、GaxIn1-xPからなる活性層を、
Gaの混晶比が活性層より大きくx<yの条件を満足す
るGayIn1-yPからなる障壁層で挟み込むとともに、
活性層を挟みこんだ障壁層を、AlGaInPにて構成
されたクラッド層にて挟みこんだダブルヘテロ構造を有
することを特徴とする
The AlGaInP of the present invention
The semiconductor light emitting device includes an active layer made of Ga x In 1-x P,
Ga is interposed between barrier layers made of Ga y In 1-y P which have a mixed crystal ratio of Ga larger than that of the active layer and satisfy the condition of x <y .
The barrier layer sandwiching the active layer is composed of AlGaInP
Double heterostructure sandwiched between the clad layers
It is characterized by doing .

【0015】好ましくは、前記活性層をGaAs基板に格子
整合する組成比のGaInPで形成する。また、通常GaAsを
基板とし、これに格子整合させたGaInP結晶はx=0.
51となる。そして、上記のごとくx=0.75以上の
混晶比のGaxIn1-xP結晶で活性層を挟み込むことに
よって、キャリア閉じ込めの可能なダブルヘテロ接合を
形成できる。x>0.51のGaInP結晶では、格子定数
が前記活性層(x=0.51)のそれより小さい。x=
0.75のGaInPでは、Ga0.51In0.49Pとの格子不
整合率が1.5%程度になる。
Preferably, the active layer is formed of GaInP having a composition ratio lattice-matched to a GaAs substrate. Further, a GaInP crystal which is usually made of GaAs and lattice-matched to the substrate is x = 0.
It becomes 51. As described above, by sandwiching the active layer with Ga x In 1-x P crystals having a mixed crystal ratio of x = 0.75 or more, a double hetero junction capable of confining carriers can be formed. In a GaInP crystal with x> 0.51, the lattice constant is smaller than that of the active layer (x = 0.51). x =
With 0.75 GaInP, the lattice mismatch rate with Ga 0.51 In 0.49 P becomes about 1.5%.

【0016】従って、この層をバリア層として、GaAs層
との格子整合系の結晶層に挿入する場合には、歪み破壊
によるミスフイット転移が生じないように層厚は臨界膜
厚以下とする必要がある。例えば、x=0.75のGaIn
P層の場合には10nm程度以下にする必要があると考え
られる。この際、バリア層の厚さが薄くなると、いわゆ
るトンネリング現象によってキャリアはバリア層を突き
抜け、活性層から逃げだしてしまう。トンネリング確率
の解析結果より10nm程度のバリア層があればトンネリ
ングは防ぐことが出来る。
Therefore, when this layer is inserted as a barrier layer into a crystal layer of a lattice matching system with the GaAs layer, the layer thickness must be equal to or less than the critical film thickness so that misfit transition due to strain breakdown does not occur. is there. For example, GaIn of x = 0.75
In the case of a P layer, it is considered necessary to set the thickness to about 10 nm or less. At this time, if the thickness of the barrier layer is reduced, carriers penetrate the barrier layer due to a so-called tunneling phenomenon and escape from the active layer. According to the analysis result of the tunneling probability, tunneling can be prevented if there is a barrier layer of about 10 nm.

【0017】[0017]

【作用】本発明のAlGaInP半導体発光装置では、活性層
とAlGaInP障壁層との間にAlを含まないGaInP結晶を挿
入することによって、活性層とAlGaInP障壁層との界面
の品質が向上する。それゆえ、AlGaInP系半導体発光装
置の信頼性は高くなり、高効率となる。
In the AlGaInP semiconductor light emitting device of the present invention, the quality of the interface between the active layer and the AlGaInP barrier layer is improved by inserting a GaInP crystal containing no Al between the active layer and the AlGaInP barrier layer. Therefore, the reliability of the AlGaInP-based semiconductor light emitting device becomes higher, and the efficiency becomes higher.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0019】図1は、本発明AlGaInP半導体発光装置の
一実施例を示す。このAlGaInP半導体発光装置は、図に
示すようなダブルヘテロ構造を有する。このダブルヘテ
ロ構造は、ほぼ中央に位置するGa0.51In0.49P 活
性層15(厚さ80nm)と、その裏面側に積層されたn
型Ga0.75In0.25P障壁層14(厚さ10nm)と、そ
の表面側に積層されたp型Ga0.75In0.25P障壁層1
6(厚さ10nm)と、で構成されている。GaInP障壁層
であるn型Ga0.75In0.25P障壁層14及びp型Ga
0.75In0.25P障壁層16のGaの混晶比は、GaInP活
性層であるGa0.51In0.49P 活性層15のGaの混
晶比より大きい。即ち、x<yの条件を満足する。ダブ
ルヘテロ構造では、光導波路を構成して光を効率よく活
性層内に閉じ込めるには、屈折率はクラッド層より活性
層の方が大きくなければならないので、活性層の禁制帯
幅はクラッド層のそれより小さい必要がある。
FIG. 1 shows an embodiment of an AlGaInP semiconductor light emitting device according to the present invention. This AlGaInP semiconductor light emitting device has a double hetero structure as shown in the figure. This double hetero structure has a Ga 0.51 In 0.49 P active layer 15 (80 nm thick) located substantially at the center and an n layer laminated on the back side thereof.
-Type Ga 0.75 In 0.25 P barrier layer 14 (10 nm thick) and p-type Ga 0.75 In 0.25 P barrier layer 1 laminated on the surface side
6 (10 nm thick). N-type Ga 0.75 In 0.25 P barrier layer 14 as a GaInP barrier layer and p-type Ga
The mixed crystal ratio of Ga in the 0.75 In 0.25 P barrier layer 16 is larger than the mixed crystal ratio of Ga in the Ga 0.51 In 0.49 P active layer 15 which is the GaInP active layer. That is, the condition x <y is satisfied. In the double hetero structure, the refractive index of the active layer must be larger than that of the cladding layer in order to form an optical waveguide and efficiently confine the light in the active layer. It needs to be smaller.

【0020】更に、n型Ga0.75In0.25P障壁層14
の裏面側には、n型(Al0.7Ga0.30.51In0.49
クラッド層13(厚さ1.0μm)、n型GaAsバッファ
層12、n型GaAs基板11、Au-Ge-Ni電極114を順に
積層している。
Further, an n-type Ga 0.75 In 0.25 P barrier layer 14
N-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P
A cladding layer 13 (1.0 μm thick), an n-type GaAs buffer layer 12, an n-type GaAs substrate 11, and an Au-Ge-Ni electrode 114 are sequentially stacked.

【0021】また、p型Ga0.75In0.25P障壁層16
の表面側には、p型(Al0.7Ga0.30.51In0.49
クラッド層17(厚さ0.3nm)、Ga0.51In0.49
エッチングストップ層18(厚さ8nm)、p型(Al
0.7Ga0.30.51In0.49Pクラッド層19(厚さ0.
5μm)、p型Ga0.51In0.49P中間層110(厚さ
50nm)、p型GaAsコンタクト層111、n型GaAs電流
狭搾層112、Au-Zn電極113を順に積層している。
The p-type Ga 0.75 In 0.25 P barrier layer 16
P-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P
Cladding layer 17 (thickness 0.3 nm), Ga 0.51 In 0.49 P
Etching stop layer 18 (8 nm thick), p-type (Al
0.7 Ga 0.3 ) 0.51 In 0.49 P cladding layer 19 (thickness: 0.7 Ga 0.3 )
5 μm), a p-type Ga 0.51 In 0.49 P intermediate layer 110 (thickness: 50 nm), a p-type GaAs contact layer 111, an n-type GaAs current constriction layer 112, and an Au-Zn electrode 113.

【0022】なお、p型(Al0.7Ga0.30.51In
0.49Pクラッド層19、p型Ga0.51In0.49P中間層
110、p型GaAsコンタクト層111は中央部にエッチ
ングによって形成され、その外周部にn型GaAs電流狭搾
層112が積層されている。
Incidentally, p-type (Al 0.7 Ga 0.3 ) 0.51 In
The 0.49 P cladding layer 19, the p-type Ga 0.51 In 0.49 P intermediate layer 110, and the p-type GaAs contact layer 111 are formed in the center by etching, and the n-type GaAs current constriction layer 112 is laminated on the outer periphery.

【0023】以上の各結晶層は、例えば分子線結晶成長
法で形成される。成長ウエハの表面には、酸化シリコン
膜がスパッタリングで形成された後、これをマスクとし
て上部の19、110、111の各層がエッチングで除
去される。この上にn型GaAs電流狭搾層112を、例え
ば分子線結晶成長法によって再成長し、その後メサ上部
に成長したn型GaAs電流狭搾層112を酸化シリコン膜
とともに除去する。最後に、表面にAu-Zn電極113、
裏面にAu-Ge-Ni電極114を形成すれば、屈折率導波型
AlGaInP系半導体レーザ装置を作製できる。
Each of the above crystal layers is formed, for example, by a molecular beam crystal growth method. After a silicon oxide film is formed on the surface of the growth wafer by sputtering, the upper layers 19, 110, and 111 are removed by etching using the silicon oxide film as a mask. The n-type GaAs current constriction layer 112 is regrown thereon by, for example, a molecular beam crystal growth method, and then the n-type GaAs current constriction layer 112 grown on the mesa is removed together with the silicon oxide film. Finally, Au-Zn electrode 113 on the surface,
If the Au-Ge-Ni electrode 114 is formed on the back surface,
An AlGaInP-based semiconductor laser device can be manufactured.

【0024】成長したウエハの表面、断面を電子顕微鏡
観察及びX線解析で測定することによって、転移欠陥の
ない良好な結晶膜が成長されていることが確認された。
また、半導体レーザの特性も従来と遜色なく特に低しき
い値の改善が得られた。
By measuring the surface and cross section of the grown wafer by electron microscopic observation and X-ray analysis, it was confirmed that a good crystal film free from dislocation defects was grown.
In addition, the characteristics of the semiconductor laser were particularly improved at a low threshold value as well as the conventional one.

【0025】図2は、本発明AlGaInP半導体発光装置の
他の実施例を示す。このAlGaInP半導体発光装置は、端
面発光型発光ダイオード装置の一例であって、第1実施
例と同様にダブルヘテロ構造を有する。このダブルヘテ
ロ構造は、ほぼ中央に位置するGa0.45In0.55P活性
層25(厚さ10nm)と、その裏面側に積層されたn型
Ga0.75In0.25P障壁層24(厚さ10nm)と、その
表面側に積層されたp型Ga0.75In0.25P障壁層26
(厚さ10nm)と、で構成されている。このダブルヘテ
ロ構造では、GaInP障壁層であるn型Ga0.75In0.25
P障壁層24及びp型Ga0.75In0.25P障壁層26の
Gaの混晶比は、GaInP活性層であるGa0.45In0.55
P活性層25のGaの混晶比より大きい。
FIG. 2 shows another embodiment of the AlGaInP semiconductor light emitting device of the present invention. This AlGaInP semiconductor light emitting device is an example of an edge-emitting light emitting diode device, and has a double hetero structure as in the first embodiment. This double hetero structure has a Ga 0.45 In 0.55 P active layer 25 (thickness 10 nm) located substantially at the center, an n-type Ga 0.75 In 0.25 P barrier layer 24 (10 nm thick) laminated on the back side thereof, A p-type Ga 0.75 In 0.25 P barrier layer 26 laminated on the surface side
(Thickness: 10 nm). In this double hetero structure, n-type Ga 0.75 In 0.25 which is a GaInP barrier layer
The mixed crystal ratio of Ga in the P barrier layer 24 and the p-type Ga 0.75 In 0.25 P barrier layer 26 is Ga 0.45 In 0.55 which is a GaInP active layer.
It is larger than the Ga mixed crystal ratio of the P active layer 25.

【0026】更に、Ga0.75In0.25P障壁層24の裏
面側には、n型(Al0.7Ga0.30.51In0.49Pクラ
ッド層23(厚さ1.0μm)、n型GaAs基板21、Au-
Ge-Ni電極214を順に積層している。
Further, on the back side of the Ga 0.75 In 0.25 P barrier layer 24, an n-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P cladding layer 23 (1.0 μm in thickness), an n-type GaAs substrate 21, and an Au-
Ge-Ni electrodes 214 are sequentially stacked.

【0027】また、Ga0.75In0.25P障壁層26の表
面側には、p型(Al0.7Ga0.30.51In0.49Pクラ
ッド層29(厚さ1.0μm)、Ga0.51In0.49P中
間層210(厚さ50nm)、p型GaAsコンタクト層21
1、Au-Zn電極213を順に積層している。
On the surface side of the Ga 0.75 In 0.25 P barrier layer 26, a p-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P cladding layer 29 (1.0 μm in thickness) and a Ga 0.51 In 0.49 P intermediate layer 210 are provided. (Thickness: 50 nm), p-type GaAs contact layer 21
1. Au-Zn electrodes 213 are sequentially stacked.

【0028】Ga0.45In0.55P活性層25は、格子不
整合系のx組成を選び、x<0.51としたもので、主
にバンドギャップエネルギーの縮小の効果により発光波
長は680nm程度と、格子整合したGa0.45In0.55
活性層25よりも長くなっている。
The Ga 0.45 In 0.55 P active layer 25 has an x composition of a lattice mismatching system, where x <0.51. The emission wavelength is about 680 nm mainly due to the effect of reduction of band gap energy. Lattice-matched Ga 0.45 In 0.55 P
It is longer than the active layer 25.

【0029】以上の実施例においては、結晶成長の方法
として分子線結晶成長法を用いた場合について説明した
が、本発明のAlGaInP半導体発光装置が結晶成長の方法
によらないことはもちろんである。また、例えば、Ga
0.45In0.55P活性層25が量子井戸で、それを挟むキ
ャリア閉じ込め層から構成される分離閉じ込めヘテロ構
造において、分離閉じ込め層の一部として活性層の両側
に本発明のGa0.45In0.55P活性層25を用いても同
様の効果を期待できる。
In the above embodiment, the case where the molecular beam crystal growth method is used as the crystal growth method has been described. However, it goes without saying that the AlGaInP semiconductor light emitting device of the present invention does not depend on the crystal growth method. Also, for example, Ga
In 0.45 an In 0.55 P active layer 25 is a quantum well, in separate confinement heterostructure composed of carrier confinement layers sandwiching the, Ga 0.45 In 0.55 P active layer of the present invention on both sides of the active layer as part of a separate confinement layer The same effect can be expected even if 25 is used.

【0030】[0030]

【発明の効果】本発明のAlGaInP半導体発光装置では、
GaxIn1-xPからなる活性層を、Gaの混晶比が活性
層より大きいGayIn1-yPからなる障壁層で挟み込ん
だダブルヘテロ構造を有する。この活性層とAlGaInP障
壁層との間にAlを含まないGaInP結晶を挿入すること
によって、活性層とAlGaInP障壁層との界面の品質が向
上する。これにより、信頼性の高い、高効率あるいは低
しきい値のAlGaInP系半導体発光装置を提供できる。
According to the AlGaInP semiconductor light emitting device of the present invention,
It has a double hetero structure in which an active layer made of Ga x In 1-x P is sandwiched between barrier layers made of Ga y In 1-y P having a mixed crystal ratio of Ga larger than that of the active layer. By inserting a GaInP crystal containing no Al between the active layer and the AlGaInP barrier layer, the quality of the interface between the active layer and the AlGaInP barrier layer is improved. Thereby, a highly reliable, highly efficient or low threshold AlGaInP-based semiconductor light emitting device can be provided.

【0031】請求項2に記載のものは、活性層がGaAs基
板に格子整合する組成比のGaInPで構成されているの
で、比較的厚い活性層を有する半導体発光装置に於いて
も、歪による品質劣化を招くことなく本発明を適用でき
る。
According to the second aspect of the present invention, since the active layer is made of GaInP having a composition ratio lattice-matched to the GaAs substrate, even in a semiconductor light emitting device having a relatively thick active layer, the quality due to strain can be improved. The present invention can be applied without causing deterioration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるAlGaInP系半導体レー
ザ装置の断面図。
FIG. 1 is a sectional view of an AlGaInP-based semiconductor laser device according to one embodiment of the present invention.

【図2】AlGaInP系半導体レーザ装置の他の実施例を示
す断面図。
FIG. 2 is a sectional view showing another embodiment of the AlGaInP-based semiconductor laser device.

【図3】従来のAlGaInP系結晶を用いた半導体レーザ装
置の一例を示す断面図。
FIG. 3 is a cross-sectional view showing an example of a conventional semiconductor laser device using an AlGaInP-based crystal.

【符号の説明】[Explanation of symbols]

11、21 n型GaAs基板 12 n型GaAsバッファ層 13、23 n型(Al0.7Ga0.30.51In0.49
Pクラッド層 14、24 n型Ga0.75In0.25P障壁層 15、25 Ga0.45In0.55P活性層 16、26 Ga0.75In0.25P障壁層 17 p型(Al0.7Ga0.30.51In0.49
Pクラッド層 18 Ga0.51In0.49Pエッチングストッ
プ層 19、29 p型(Al0.7Ga0.30.51In0.49
Pクラッド層 110、210 p型Ga0.51In0.49P中間層 111、211 p型GaAsコンタクト層 112、 n型GaAs電流狭搾層 113、213 Au-Zn電極 114、214 Au-Ge-Ni電極
11, 21 n-type GaAs substrate 12 n-type GaAs buffer layer 13, 23 n-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49
P cladding layer 14, 24 n-type Ga 0.75 In 0.25 P barrier layer 15, 25 Ga 0.45 In 0.55 P active layer 16, 26 Ga 0.75 In 0.25 P barrier layer 17 p-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49
P cladding layer 18 Ga 0.51 In 0.49 P etching stop layer 19, 29 p-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49
P cladding layer 110, 210 p-type Ga 0.51 In 0.49 P intermediate layer 111, 211 p-type GaAs contact layer 112, n-type GaAs current constriction layer 113, 213 Au-Zn electrode 114, 214 Au-Ge-Ni electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 篤勇 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 谷 健太郎 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平3−265183(JP,A) 特開 平2−310985(JP,A) 特開 昭61−271888(JP,A) 特開 平5−63291(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 33/00 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Atsushi Tsunoda 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Kentaro Tani 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Sharp shares In-company (56) References JP-A-3-265183 (JP, A) JP-A-2-310985 (JP, A) JP-A-61-271888 (JP, A) JP-A-5-63291 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 33/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaxIn1-xPからなる活性層を、Ga
の混晶比が活性層より大きくx<yの条件を満足するG
yIn1-yPからなる障壁層で挟み込むとともに、活性
層を挟みこんだ障壁層を、AlGaInPにて構成され
たクラッド層にて挟みこんだダブルヘテロ構造を有する
ことを特徴とするAlGaInP半導体発光装置。
1. An active layer comprising Ga x In 1-x P is formed by
Is larger than that of the active layer and satisfies the condition of x <y.
with sandwiched by barrier layers formed of a y In 1-y P, activity
The barrier layer sandwiching the layer is made of AlGaInP.
Has a double hetero structure sandwiched between clad layers
An AlGaInP semiconductor light emitting device, comprising:
【請求項2】 前記活性層が、GaAs基板に格子整合
する組成比のGaInPで形成されている請求項1に記
載のAlGaInP半導体発光装置。
2. The AlGaInP semiconductor light emitting device according to claim 1, wherein said active layer is formed of GaInP having a composition ratio lattice-matched to a GaAs substrate.
【請求項3】 前記障壁層のGa y In 1-y Pが、0.6
<y<1を満足する請求項1に記載のAlGaInP半
導体発光装置。
3. The barrier layer according to claim 1, wherein Ga y In 1-y P is 0.6.
The AlGaInP half according to claim 1, which satisfies <y <1.
Conductive light emitting device.
【請求項4】(4) 前記障壁層の厚さは、結晶破壊の生じるThe thickness of the barrier layer causes crystal breakage
臨界膜厚以下で、トンネリングを防止することができるTunneling can be prevented below the critical film thickness
厚さ以上である請求項1に記載のAlGaInP半導体2. The AlGaInP semiconductor according to claim 1, which is not less than a thickness.
発光装置。Light emitting device.
JP33880591A 1991-12-20 1991-12-20 AlGaInP semiconductor light emitting device Expired - Fee Related JP3193087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33880591A JP3193087B2 (en) 1991-12-20 1991-12-20 AlGaInP semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33880591A JP3193087B2 (en) 1991-12-20 1991-12-20 AlGaInP semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH05175610A JPH05175610A (en) 1993-07-13
JP3193087B2 true JP3193087B2 (en) 2001-07-30

Family

ID=18321638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33880591A Expired - Fee Related JP3193087B2 (en) 1991-12-20 1991-12-20 AlGaInP semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3193087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801542B2 (en) 2010-07-13 2015-10-28 昭和電工株式会社 Light emitting diode and light emitting diode lamp

Also Published As

Publication number Publication date
JPH05175610A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
US7613220B2 (en) Two-wavelength semiconductor laser device and method for fabricating the same
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JPH11274635A (en) Semiconductor light emitting device
US5556804A (en) Method of manufacturing semiconductor laser
JP2001053389A (en) Semiconductor device
US5345463A (en) Semiconductor laser with improved oscillation wavelength reproducibility
JPH11186665A (en) Semiconductor light emitting element
JP3217490B2 (en) Semiconductor light emitting device
JPH07202340A (en) Visible-light semiconductor laser
JP4136272B2 (en) Semiconductor light emitting device
JP3128788B2 (en) Semiconductor laser
JP2009302582A (en) Two wavelength semiconductor laser apparatus
JP3193087B2 (en) AlGaInP semiconductor light emitting device
JP3197042B2 (en) Semiconductor light emitting device
JP2000277856A (en) Self oscillation semiconductor laser system
US6414977B1 (en) Semiconductor laser device
JP3219871B2 (en) Semiconductor laser device
JP3115006B2 (en) Semiconductor laser device
JP3078553B2 (en) Semiconductor laser device and method of manufacturing the same
JP3138503B2 (en) Semiconductor laser device
JP2000277865A (en) Semiconductor light emitting device
JPH06268331A (en) Semiconductor light emitting device
JP3206573B2 (en) Semiconductor laser and manufacturing method thereof
JP2682906B2 (en) AlGaInP-based semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010511

LAPS Cancellation because of no payment of annual fees