JP3176981B2 - Measuring method of transmitting antenna radiation characteristics using GPS - Google Patents

Measuring method of transmitting antenna radiation characteristics using GPS

Info

Publication number
JP3176981B2
JP3176981B2 JP10783592A JP10783592A JP3176981B2 JP 3176981 B2 JP3176981 B2 JP 3176981B2 JP 10783592 A JP10783592 A JP 10783592A JP 10783592 A JP10783592 A JP 10783592A JP 3176981 B2 JP3176981 B2 JP 3176981B2
Authority
JP
Japan
Prior art keywords
measuring
antenna
gps
measured
electromagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10783592A
Other languages
Japanese (ja)
Other versions
JPH05302947A (en
Inventor
凡 長
勉 熊崎
大 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Integrated Technology Inc
Original Assignee
NHK Integrated Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Integrated Technology Inc filed Critical NHK Integrated Technology Inc
Priority to JP10783592A priority Critical patent/JP3176981B2/en
Publication of JPH05302947A publication Critical patent/JPH05302947A/en
Application granted granted Critical
Publication of JP3176981B2 publication Critical patent/JP3176981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は送信空中線放射特性の
測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring transmission antenna radiation characteristics.

【0002】[0002]

【従来の技術】従来送信空中線放射特性(指向特性なら
びに利得)の測定は、工場出荷の検査、調整時にアンテ
ナを大形専用回転台車に載せ、台車を回転しながらアン
テナから電波を放射させ、電磁界強度測定器を使用して
その放射特性を測定、調整するとか、比較的測定スペー
スの広くとれる場合にはアンテナを固定させ、そのまわ
りを測定器を持って移動し、所望の特性を測定、調整し
ていた。勿論前者の場合にはアンテナ自身が回転するか
ら測定点を大幅に削減することができる。
2. Description of the Related Art Conventionally, transmission antenna radiation characteristics (directional characteristics and gain) are measured by mounting an antenna on a large-sized dedicated rotating truck during inspection and adjustment at the time of factory shipment, and radiating radio waves from the antenna while rotating the truck. Use a field strength measuring device to measure and adjust its radiation characteristics, or if the measurement space is relatively large, fix the antenna, move around with the measuring device, measure the desired characteristics, I was adjusting. Of course, in the former case, the number of measurement points can be greatly reduced because the antenna itself rotates.

【0003】これに対し現地据付後の工場データ再現時
とか経年後の劣化データの測定とかのフィールド(地
上)電測では種々の制約がある。すなわち、送信アンテ
ナ自身の回転は不可能である、一般に周辺の建物による
電波の遮蔽、反射がある、地表反射による誤差が混入す
る、などの制約があり、そのため、放射特性の一部分あ
るいは一断面しか測定できなかったり、また、誤差、時
間、労力の面で問題のあることが多かった。
On the other hand, there are various restrictions in field (ground) electrical measurement such as when factory data is reproduced after installation on the site or when deterioration data is measured after aging. In other words, there are restrictions such as the rotation of the transmitting antenna itself is not possible, shielding of radio waves by surrounding buildings, reflection in general, and errors due to surface reflection are mixed. In many cases, measurement was not possible, and there were many problems in terms of errors, time, and labor.

【0004】[0004]

【発明が解決しようとする課題】従来の技術の項で述べ
てきたように、送信空中線を一旦現場に据付けてしまう
と、その後の放射特性の測定には誤差、時間、労力の面
で種々の問題点があった。そこで本発明の目的は前述の
問題点を解決し、据付け現場の空中線の直近もしくは近
傍で広範囲に、しかも、建物、地表の反射、遮蔽による
誤差が少なく、短時間に、低廉で、かつ、安全性の保証
された立体的な測定を可能とするGPSを利用した送信
空中線放射特性の測定方法を提供せんとするものであ
る。
As described in the section of the prior art, once the transmitting antenna is installed on the site, the measurement of the radiation characteristics thereafter requires various errors, time, and labor. There was a problem. Therefore, an object of the present invention is to solve the above-mentioned problems, to cover a wide area in the immediate vicinity of or near the antenna at the installation site, and to reduce errors due to reflection and shielding of buildings and the ground surface, in a short time, at low cost, and safely. It is an object of the present invention to provide a method of measuring a transmission antenna radiation characteristic using GPS which enables three-dimensional measurement with guaranteed characteristics.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明に係る測定方法は、送信空中線の放射特性を
運用状態で測定するにあたり、被測定送信空中線の直近
もしくは近傍に、少なくとも三次元位置情報と電磁界強
度を測定する装置を搭載した自動または遠隔操縦可能な
飛行体を周回させ、当該飛行体の三次元位置情報は、少
なくとも3個のGPS衛星からの電波が受信可能な飛行
体上載置の衛星電波受信機により測定され、前記飛行体
の位置での被測定送信空中線から放射された電波による
電磁界強度は、飛行体上載置の電磁界強度測定器と被測
定送信空中線に向け方向調整される受信アンテナとによ
り測定され、測定された一連の前記三次元位置情報と前
記電磁界強度とはメモリに一時記憶され、所定数の対に
なった三次元位置情報と電磁界強度の測定後、前記メモ
リに記憶されたデータを出力し、これを処理して前記送
信空中線の放射特性を算出する(例えば立体的に図示表
現する)ことを特徴とするものである。
In order to achieve this object, a measuring method according to the present invention provides a method for measuring the radiation characteristics of a transmitting antenna in an operating state, at least three-dimensionally near or near the transmitting antenna to be measured. The aircraft orbits an automatically or remotely controllable flying vehicle equipped with a device for measuring position information and electromagnetic field strength, and the three-dimensional position information of the flying vehicle is based on a flying vehicle capable of receiving radio waves from at least three GPS satellites. The electromagnetic field intensity measured by the onboard satellite radio receiver and radiated from the transmission antenna under test at the position of the flying object is measured by the electromagnetic field intensity measurement device mounted on the aircraft and the transmission antenna under measurement. A series of the measured three-dimensional position information and the measured electromagnetic field strength are temporarily stored in a memory, and a predetermined number of pairs of the three-dimensional position information are measured by the receiving antenna whose direction is adjusted. And outputting the data stored in the memory after the measurement of the electromagnetic field intensity, and processing the calculated data to calculate the radiation characteristic of the transmitting antenna (for example, three-dimensionally represented). .

【0006】[0006]

【作用】本発明測定方法によれば、格段に精度の高いG
PS(Global Positioning System, 汎地球測位システ
ム)衛星からの電波を受けて電磁界強度測定点の三次元
位置を絶対測定し、被測定送信空中線から放射される電
波の電磁界強度を、空中を回遊する遠隔操縦飛行体で受
信して自動測定するようにしているので、被測定送信空
中線の直近で広範囲に、誤差の少ない、短時間での測定
を可能とすることができる。
According to the measuring method of the present invention, G with extremely high accuracy
Receives radio waves from the PS (Global Positioning System) satellite, absolutely measures the three-dimensional position of the electromagnetic field strength measurement point, and moves the electromagnetic field strength of the radio wave radiated from the transmission antenna to be measured through the air. In this case, the measurement can be performed automatically by receiving the data by the remotely controlled flying object, and it is possible to perform the measurement in a short time with little error over a wide range in the vicinity of the transmission antenna to be measured.

【0007】[0007]

【実施例】最近、GPSという人工衛星からの電波を利
用して自己の位置を知るシステムが注目されており、こ
の原理はあらかじめ正確な軌道のわかっている3個の人
工衛星からの距離を受信電波により計算し自己の位置を
検出するシステムである。この衛星の特徴の1つは非常
に精度の高い原子時計を搭載しており、本発明の特徴の
1つはこの衛星よりの電波を電磁界強度測定点の三次元
位置算出に利用することに存する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Recently, attention has been paid to a system called GPS, which uses radio waves from artificial satellites to determine its own position. This principle is based on receiving distances from three artificial satellites whose precise orbits are known in advance. It is a system that calculates by radio waves and detects its own position. One of the features of this satellite is equipped with an extremely accurate atomic clock. One of the features of the present invention is that radio waves from this satellite are used for calculating the three-dimensional position of the electromagnetic field strength measurement point. Exist.

【0008】以下添付図面を参照し実施例により本発明
を詳細に説明する。図1に本発明測定方法を概略理解す
るための説明図を、図2に本発明の目的を達成するため
に移動飛行体に搭載される装置の一実施例構成図を示
す。図1で数符号1,2,3はそれぞれ放射特性を求め
ようとする被測定送信空中線、電磁界強度を測定するた
めにラジコン3でその飛行が制御される飛行体、飛行体
の飛行を制御するラジコンである。飛行体2は無人のラ
ジコン操縦の例えばヘリコプタまたはバルーンであって
よい。また飛行体が無人の係留バルーンの場合には係留
を人的に下から操作して送信空中線のまわりを回遊させ
ることができる。この飛行体に搭載される図2図示の装
置構成の一例においては、GPS衛星電波受信機24はま
ず少なくとも3個のGPS衛星からの電波を受信し、飛
行体2の三次元位置を算出するためのデータとして取込
む。GPS衛星は非常に精度の高い原子時計を設置して
いるから、地上でもこれに匹敵する高精度の時計を有
し、この地上の時計を衛星の時計で較正しなくてもよい
場合は、3個のGPS衛星からの電波のみを受信するの
みで飛行体2の三次元位置は精度高く求まるが、そうで
ない場合は地上の時計較正のためにもう1個のGPS衛
星からの電波を受信する必要がある。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an explanatory view for schematically understanding the measuring method of the present invention, and FIG. 2 is a configuration diagram of an embodiment of a device mounted on a mobile flying object to achieve the object of the present invention. In FIG. 1, numerals 1, 2, and 3 respectively indicate a transmitting antenna to be measured for which radiation characteristics are to be obtained, a flying object whose flight is controlled by a radio control 3 for measuring electromagnetic field strength, and a flight of the flying object. Radio control. The vehicle 2 may be an unmanned radio controlled pilot, for example a helicopter or a balloon. In the case where the flying object is an unmanned mooring balloon, the mooring can be manually operated from below to move around the transmitting antenna. In the example of the device configuration shown in FIG. 2 mounted on this flying object, the GPS satellite radio wave receiver 24 first receives radio waves from at least three GPS satellites and calculates the three-dimensional position of the flying object 2. Import as data of Since GPS satellites have extremely high precision atomic clocks, they have comparable high precision clocks on the ground, and if it is not necessary to calibrate this ground clock with the satellite clock, 3 The three-dimensional position of the flying object 2 can be determined with high accuracy only by receiving the radio waves from two GPS satellites, but if not, it is necessary to receive the radio waves from another GPS satellite to calibrate the clock on the ground There is.

【0009】また、この汎地球測位システムはいかに精
度が高いといえども、通常時に利用可能な衛星からのデ
ータを用いるかぎり、地球上で30米から百米程度の測定
誤差があるから、この固有誤差を相殺するため、被測定
送信空中線設置付近の地上にも飛行体上載置のGPS衛
星電波受信機24と同じ受信機を設け、ここで測定される
地上の特定点の位置情報をその目的に使用するのは有効
である。飛行体のその位置での送信空中線1の放射電波
の電磁界強度は、受信アンテナ21より受信された電波を
電磁界強度測定器23に取込んでその目的を達成するが、
この時受信アンテナ21が送信空中線の方に正確に方向付
けられていることが必要で、この制御には飛行体が載置
するコンパスが使用され、これで方向調整器22を駆動さ
せて受信アンテナ21の姿勢も含めた制御をする。受信ア
ンテナの姿勢も含めて方向付けの安定度が思うにまかせ
ぬ時は、逆に受信アンテナ21を受信電波の偏波面内で一
定周期で回転させ、時間的に離散した測定データから正
対した瞬間のデータを推定してもよい。ラジコン受信機
25は勿論地上からのラジコン電波を受けて飛行体2の回
遊を制御するもので、この時コンパス26のデータととも
に情報処理装置28を介して操縦装置29におくられて飛行
体2の位置および姿勢を制御する。この時飛行計画27に
予め定められた飛行コースを記録しておき、ここに記録
されたコースに基づき飛行体を自動操縦することができ
る。なお、ここで、周回する飛行コースについては、例
えば、指向特性を求めるための放射電磁界強度の測定を
行うときは、通例、3波長以上の一定した距離を保つよ
うな位置・コースが望ましいが、後の計算・補正手法に
より、最終的な指向特性が算出されるので、特に一定に
保つことは要しない。
[0009] Even though this global positioning system has high accuracy, as long as data from satellites that can be used at normal times are used, there is a measurement error of about 30 to 100 US on the earth. In order to cancel the error, the same receiver as the GPS satellite radio receiver 24 mounted on the flying object is also provided on the ground near the transmission antenna to be measured, and the position information of the specific point on the ground measured here is used for that purpose. It is effective to use. The electromagnetic field strength of the radiated radio wave of the transmitting antenna 1 at that position of the flying object achieves its purpose by taking the radio wave received from the receiving antenna 21 into the electromagnetic field strength measuring device 23,
At this time, it is necessary that the receiving antenna 21 is correctly oriented toward the transmitting antenna, and a compass on which the flying object is mounted is used for this control. Control including 21 postures. When the stability of the orientation, including the attitude of the receiving antenna, is not enough, the receiving antenna 21 is rotated at a fixed cycle in the plane of polarization of the received radio wave, and the measurement data is separated from the measurement data. Instantaneous data may be estimated. Radio control receiver
25 controls the movement of the flying object 2 by receiving radio control radio waves from the ground. At this time, the data and the compass 26 are sent to the control device 29 via the information processing device 28, and the position and the attitude of the flying object 2 are controlled. Control. At this time, a predetermined flight course is recorded in the flight plan 27, and the flying object can be automatically controlled based on the recorded course. Note that, for the orbiting flight course, for example, when measuring the intensity of the radiated electromagnetic field for obtaining the directional characteristics, it is usually desirable that the position and the course maintain a constant distance of three wavelengths or more. Since the final directional characteristics are calculated by the later calculation / correction method, it is not necessary to keep the characteristics constant.

【0010】次に受信機24、測定器23により測定された
三次元位置データ、電磁界強度データは一旦飛行体に載
置された一時メモリに記録され、これらデータが所定数
になると、メモリよりこれらデータを放出し、あらかじ
め定められた計算手法および補正手法を使用して演算装
置などにより図3(a) 水平指向特性、(b) 垂直指向特性
などを求める。また、必要により、さらに画像情報処理
装置を用い、水平、垂直両特性を合わせ、立体的な図示
表現による指向特性図を求めてもよい。この時前記一時
メモリは飛行体中に載置してもよいし、地上に設置して
飛行体からデータを地上へ向けて電波送信してもよい。
また前記演算装置なども飛行体に載置してもよいが、飛
行体の重量を削減する目的でメモリとともに地上に置い
てもよい。また飛行体が無人の係留バルーンである場合
は、この時用いる係留索を利用して位置情報と電磁界強
度データを地上系にとりこみその後のメモリ、演算処理
を地上系で実行してもよい。また本発明測定方法の特徴
の1つである電磁界強度の測定点が空中にあるという利
点をいかして、前記受信アンテナ21の下部を電波吸収体
で遮蔽し、地表からの電波の反射を吸収して測定誤差を
軽減することができる。あるいは、前記計算手法・補正
手法において、地表からの反射波を無視する簡易演算に
より、容易に指向特性を求めることができる。
Next, the three-dimensional position data and the electromagnetic field intensity data measured by the receiver 24 and the measuring device 23 are temporarily recorded in a temporary memory mounted on the flying object. These data are emitted, and a horizontal directional characteristic, FIG. 3B, a vertical directional characteristic, and the like are obtained by an arithmetic unit or the like using a predetermined calculation method and correction method. If necessary, an image information processing apparatus may be used to combine the horizontal and vertical characteristics to obtain a directional characteristic diagram by a three-dimensional representation. At this time, the temporary memory may be placed in the flying object, or may be installed on the ground, and data may be transmitted from the flying object to the ground by radio waves.
The arithmetic unit and the like may be placed on the flying object, but may be placed on the ground together with the memory for the purpose of reducing the weight of the flying object. If the flying object is an unmanned mooring balloon, the mooring line used at this time may be used to fetch position information and electromagnetic field strength data into the ground system, and then execute the subsequent memory and arithmetic processing on the ground system. Also, taking advantage of the fact that the measurement point of the electromagnetic field strength, which is one of the features of the measurement method of the present invention, is in the air, the lower part of the receiving antenna 21 is shielded with a radio wave absorber to absorb the reflection of radio waves from the ground surface. As a result, measurement errors can be reduced. Alternatively, in the calculation method and the correction method, the directivity can be easily obtained by a simple calculation that ignores the reflected wave from the ground surface.

【0011】[0011]

【発明の効果】以上詳細に説明してきたように本発明測
定方法によれば、既設の送信空中線の放射特性を運用状
態で、誤差、時間、労力の面で従来方法にない利点を備
えて実施することができる。より具体的には、送信空中
線設置現場の直近で広範囲に、しかも、建物、地表の反
射、遮蔽による誤差が少なく、短時間に、低廉で、か
つ、安全性の保証された空中線放射特性の立体的な測定
方法を提供することができる。その結果、送信空中線放
射特性の据付現場における工場データの再現試験や、経
年運用後の空中線の劣化・故障等に関して、詳細な診断
を可能とする技術保全業務における種々のデータ測定が
極めて容易となり、空中線新設工事の現地最終検査およ
び設置後の定期点検時あるいは改修工事後の特性確認検
査において、その効果は、量り知れないものがある。
As described above in detail, according to the measuring method of the present invention, the radiation characteristics of an existing transmitting antenna can be implemented in an operational state with advantages not found in the conventional method in terms of error, time and labor. can do. More specifically, a three-dimensional antenna with a wide range of antennas close to the transmitting antenna installation site, with little errors due to reflection and occlusion of the building and the ground, and in a short time, at low cost, and whose safety is guaranteed. A simple measuring method can be provided. As a result, it becomes extremely easy to perform various data measurements in the technical maintenance work that enables detailed diagnosis of factory data at the installation site of transmission antenna radiation characteristics at the installation site and detailed diagnosis of antenna deterioration and failure after aging operation, etc. The effects of the final inspection on the new construction of the antenna and the periodic inspection after the installation or the characteristic confirmation inspection after the rehabilitation work are enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明測定方法の概要を説明するための図。FIG. 1 is a diagram for explaining the outline of a measurement method of the present invention.

【図2】本発明の目的を達成するため飛行体に搭載され
る装置の一実施例構成図。
FIG. 2 is a configuration diagram of an embodiment of a device mounted on a flying object to achieve the object of the present invention.

【図3】測定算定される指向特性の例。(a) は送信空中
線の水平指向特性、(b) はその垂直指向特性。 1 被測定送信空中線 2 移動飛行体 3 ラジコン送信機 21 電磁界強度測定用受信アンテナ 22 方向調整器 23 電磁界強度測定器 24 GPS 衛星電波受信機 25 ラジコン受信機 26 コンパス 27 飛行計画 28 情報処理装置 29 操縦装置 30 測定値の記録/送信
FIG. 3 shows examples of directional characteristics measured and calculated. (a) is the horizontal directivity of the transmitting antenna, and (b) is its vertical directivity. 1 Transmitted antenna under test 2 Mobile flying object 3 Radio control transmitter 21 Receiving antenna for electromagnetic field strength measurement 22 Direction adjuster 23 Electromagnetic field strength measuring instrument 24 GPS satellite radio receiver 25 Radio control receiver 26 Compass 27 Flight plan 28 Information processing device 29 Pilot control 30 Recording / transmission of measured values

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−282470(JP,A) 実開 平4−90978(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01R 29/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-282470 (JP, A) JP-A-4-90978 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 29/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 送信空中線の放射特性を運用状態で測定
するにあたり、被測定送信空中線の直近もしくは近傍
に、少なくとも三次元位置情報と電磁界強度を測定する
装置を搭載した自動または遠隔操縦可能な飛行体を周回
させ、当該飛行体の三次元位置情報は、少なくとも3個
のGPS衛星からの電波が受信可能な飛行体上載置の衛
星電波受信機により測定され、前記飛行体の位置での被
測定送信空中線から放射された電波による電磁界強度
は、飛行体上載置の電磁界強度測定器と被測定送信空中
線に向け方向調整される受信アンテナとにより測定さ
れ、測定された一連の前記三次元位置情報と前記電磁界
強度とはメモリに一時記憶され、所定数の対になった三
次元位置情報と電磁界強度の測定後、前記メモリに記憶
されたデータを出力し、これを処理して前記送信空中線
の放射特性を算出することを特徴とするGPSを利用し
た送信空中線放射特性の測定方法。
When measuring the radiation characteristics of a transmitting antenna in an operation state, an automatic or remote controllable device equipped with a device for measuring at least three-dimensional position information and electromagnetic field intensity is provided in the vicinity of or near the transmitting antenna to be measured. The aircraft is made to orbit, and the three-dimensional position information of the aircraft is measured by a satellite radio receiver mounted on the aircraft capable of receiving radio waves from at least three GPS satellites. The electromagnetic field intensity due to the radio wave radiated from the measurement transmission antenna is measured by an electromagnetic field intensity measurement device mounted on the flying object and a reception antenna adjusted in the direction toward the transmission antenna to be measured, and a series of the three-dimensional measurement is measured. The position information and the electromagnetic field strength are temporarily stored in a memory, and after measuring a predetermined number of pairs of three-dimensional position information and the electromagnetic field strength, the data stored in the memory is output. Processing method for calculating the radiation characteristics of the transmitting antenna, wherein the measuring method of the transmitting antenna radiation characteristics using GPS is performed.
【請求項2】 請求項1記載の測定方法において、前記
被測定送信空中線設置付近の地上にも前記GPS衛星電
波受信機と同じ性能の他のGPS衛星電波受信機をさら
に設置し、その設置位置の測定される特定点の位置情報
をも使用して、前記GPS衛星からの固有誤差を相殺す
るようにしたことを特徴とするGPSを利用した送信空
中線放射特性の測定方法。
2. The measuring method according to claim 1, wherein another GPS satellite radio receiver having the same performance as that of the GPS satellite radio receiver is further installed on the ground near the transmission antenna under test. A method for measuring a transmission antenna radiation characteristic using a GPS, wherein the inherent error from the GPS satellite is canceled by using also the position information of the specific point measured.
【請求項3】 請求項1または2記載の測定方法におい
て、前記受信アンテナを受信電波の偏波面内で一定周期
で回転させ、時間的に離散した前記電磁界強度の測定さ
れたデータから、正対した瞬間のデータを推定するよう
にしたことを特徴とするGPSを利用した送信空中線放
射特性の測定方法。
3. The measuring method according to claim 1, wherein the receiving antenna is rotated at a constant period within a plane of polarization of the received radio wave, and a positive value is obtained from the time-discrete measured data of the electromagnetic field intensity. A method of measuring a radiation characteristic of a transmitting antenna using GPS, wherein data at the moment of the transmission is estimated.
【請求項4】 請求項1から3いずれかに記載の測定方
法において、前記受信アンテナを電波吸収体で一部囲
み、地表からの電波の反射に起因する測定誤差を軽減す
るようにしたことを特徴とするGPSを利用した送信空
中線放射特性の測定方法。
4. The measuring method according to claim 1, wherein said receiving antenna is partially surrounded by a radio wave absorber to reduce a measurement error caused by reflection of radio waves from the ground. A method for measuring the transmission antenna radiation characteristics using the characteristic GPS.
JP10783592A 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS Expired - Fee Related JP3176981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10783592A JP3176981B2 (en) 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10783592A JP3176981B2 (en) 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS

Publications (2)

Publication Number Publication Date
JPH05302947A JPH05302947A (en) 1993-11-16
JP3176981B2 true JP3176981B2 (en) 2001-06-18

Family

ID=14469253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10783592A Expired - Fee Related JP3176981B2 (en) 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS

Country Status (1)

Country Link
JP (1) JP3176981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993715B1 (en) * 2017-09-21 2019-06-27 이형영 Toothbrush sterilizer having ability to hold the cup upside down

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257928A (en) * 1996-03-18 1997-10-03 Mitsubishi Electric Corp Weather radar equipment
DE50004529D1 (en) * 1999-12-30 2003-12-24 Eads Deutschland Gmbh MOBILE ARRANGEMENT AND METHOD FOR LARGE AND ACCURATE CHARACTERIZATION OF RADIATION FIELDS OUTSIDE
KR100923160B1 (en) * 2006-12-05 2009-10-23 한국전자통신연구원 Method and Device for measuring electromagnetic wave field strength using remote controlled aircraft
DE102009051969A1 (en) * 2009-11-04 2011-05-05 Astrium Gmbh Method and device for measuring a radiation field
FR3000552B1 (en) * 2012-12-28 2015-01-09 Thales Sa METHOD AND SYSTEM FOR CALIBRATING AN ANTENNA
US20180115065A1 (en) * 2016-10-26 2018-04-26 International Business Machines Corporation In-field millimeter-wave phased array radiation pattern estimation and validation
JP6801402B2 (en) * 2016-11-29 2020-12-16 沖電気工業株式会社 Antenna orientation adjustment system
JP6856372B2 (en) * 2016-12-16 2021-04-07 株式会社Nttドコモ Radiated power measurement system
JP6996729B2 (en) * 2017-02-23 2022-01-17 株式会社国際電気通信基礎技術研究所 Electromagnetic field data acquisition system, flying object, terminal device, and program
JP2018155710A (en) * 2017-03-21 2018-10-04 株式会社アローセブン Radio wave measurement device, unmanned aircraft, and radio wave measurement device management system
CN115097217A (en) * 2017-05-29 2022-09-23 三菱电机株式会社 Radio wave measurement system
EP3798647A1 (en) 2017-05-29 2021-03-31 Mitsubishi Electric Corporation Wireless power transmission device and power transmission system to aerial moving body
JP2019101024A (en) * 2017-12-01 2019-06-24 三菱電機株式会社 Measurement system, measurement control device, measurement device, measurement method, and program
CN110095657B (en) * 2018-01-29 2024-01-26 深圳市新益技术有限公司 Large-scale outfield antenna test system and test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993715B1 (en) * 2017-09-21 2019-06-27 이형영 Toothbrush sterilizer having ability to hold the cup upside down

Also Published As

Publication number Publication date
JPH05302947A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
JP3176981B2 (en) Measuring method of transmitting antenna radiation characteristics using GPS
EP3548913B1 (en) System for testing the accuracy of the automatic positioning means of a signal tracking antenna
US6377211B1 (en) Apparatus and method for pointing a directional device from a moving vehicle toward a spacecraft
US5880693A (en) Method and apparatus for the wireless exchange of information between stations
US8089402B2 (en) System and method for correcting global navigation satellite system carrier phase measurements in receivers having controlled reception pattern antennas
US6825806B2 (en) Satellite methods and structures for improved antenna pointing and wide field-of-view attitude acquisition
EP0731523B1 (en) System and method for spacecraft antenna pointing error correction
US20200003817A1 (en) Airborne systems and method for the characterisation and measurement of radiating systems or antennas
JP4812904B1 (en) Radar test equipment
EP1606643A1 (en) System and method for global positioning system repeater
CN110058204B (en) Satellite-borne antenna beam center calibration method based on directional diagram matching
US6031498A (en) Antenna pattern measurement method and device
CA1146244A (en) Satellite antenna orientation control method and detector configuration applying said method
CN111948465A (en) Airborne ultrashort wave antenna directional diagram UAV auxiliary test system
CN107024625A (en) High precision measurement method
US20230313938A1 (en) Gimbal stabilisation system
Zhang et al. Beam measurements of the Tianlai dish radio telescope using an unmanned aerial vehicle [antenna applications corner]
CN111624414A (en) Method for assisting in testing antenna directional diagram in large-maneuvering flight state by unmanned aerial vehicle
KR20190107772A (en) System for analyzing DME signal using drone
EP1924029A1 (en) Method for controlling beam-forming at a base station, and a base station
JP3524944B2 (en) Antenna direction adjustment device
US20190086460A1 (en) Far-field radiation pattern measurements of high-frequency antennas with unmanned aerial systems
RU2818996C1 (en) Method and system of antenna measurements using an unmanned tethered balloon
JPH11183582A (en) Method and apparatus for tracking satellite by small antenna for satellite communication
US11994602B2 (en) Method for calibrating an airborne goniometry apparatus for low frequencies

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees