JP3160612B2 - Power system insulation deterioration detection method and apparatus - Google Patents

Power system insulation deterioration detection method and apparatus

Info

Publication number
JP3160612B2
JP3160612B2 JP14461691A JP14461691A JP3160612B2 JP 3160612 B2 JP3160612 B2 JP 3160612B2 JP 14461691 A JP14461691 A JP 14461691A JP 14461691 A JP14461691 A JP 14461691A JP 3160612 B2 JP3160612 B2 JP 3160612B2
Authority
JP
Japan
Prior art keywords
zero
phase
insulation deterioration
value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14461691A
Other languages
Japanese (ja)
Other versions
JPH04368416A (en
Inventor
実 叶井
喜代次 岩下
邦夫 平沢
博 芳賀
久信 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP14461691A priority Critical patent/JP3160612B2/en
Publication of JPH04368416A publication Critical patent/JPH04368416A/en
Application granted granted Critical
Publication of JP3160612B2 publication Critical patent/JP3160612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors

Landscapes

  • Testing Relating To Insulation (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電力系統の絶縁劣化検
出方法及び装置に係り、特に、配電系統における絶縁劣
化発生検出と発生区間の判定を高感度で行うに好適な電
力系統の絶縁劣化検出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting insulation deterioration in a power system, and more particularly to a method and apparatus for detecting insulation deterioration in a power distribution system and judging a section in which the deterioration occurs with high sensitivity. The present invention relates to a detection method and device.

【0002】[0002]

【従来の技術】一般に電力系統には、地絡や短絡などの
故障を検出して送電を停止する保護装置が設けられてい
る。このような保護装置は、例えば、配電系統の場合、
樹枝状構成になっている系統の根元の部分に設けられて
いるため、一旦故障がおこり保護装置が動作すると、広
範囲に亘る停電を招くことになる。このため、故障を未
然に防止すべく定期的な機器交換、巡回点検などが行わ
れているが、配電系統では多くの配電機材が広範囲にわ
たって配置されており、様々な環境に曝されているこ
と、機材の隠蔽化が進んでいることなどの理由により、
十分な効果を上げるに至っていない。
2. Description of the Related Art Generally, a power system is provided with a protection device for detecting a failure such as a ground fault or a short circuit and stopping power transmission. Such protection devices, for example, in the case of distribution systems,
Since it is provided at the root of the tree-shaped system, once a failure occurs and the protection device operates, a wide-area power failure will be caused. For this reason, regular equipment replacement and patrol inspections are performed to prevent failures.However, in the distribution system, many electrical distribution materials are widely distributed and exposed to various environments. , Due to the fact that equipment is being concealed,
It has not been effective enough.

【0003】実際の配電線で発生する故障の大部分は、
地絡故障であり、この種の故障は何らかの前駆現象を伴
うことが多い。そこで、この前駆現象をとらえて絶縁劣
化の発生や、その発生区間を検出することにより、重点
的に設備更新を行い、故障を未然に防止する技術が提案
されている。
Most of the failures that occur in actual distribution lines are
This is a ground fault, and this type of failure often involves some precursory phenomenon. Therefore, a technique has been proposed in which the occurrence of insulation deterioration and the section in which the deterioration is detected by detecting the precursor phenomenon are performed, so that the equipment is renewed intensively to prevent a failure before it occurs.

【0004】この従来技術としては、「配線系統の絶縁
劣化区間検出法にかんする基礎検討」(荒山、青柳、
他、平成2年電気学会電力エネルギー部門全国大会)が
挙げられる。
As this prior art, "Basic study on detection method of insulation degradation section of wiring system" (Arayama, Aoyagi,
And the National Institute of Electrical and Energy Engineers of Japan in 1991.

【0005】[0005]

【発明が解決しようとする課題】従来の技術では、残留
分やパルス性ノイズにより発生する信号と絶縁劣化によ
り発生する信号との区別が困難であり、絶縁劣化の高感
度検出が難しかった。
In the prior art, it is difficult to distinguish a signal generated due to residual components or pulsed noise from a signal generated due to insulation deterioration, and it has been difficult to detect insulation deterioration with high sensitivity.

【0006】本発明の課題は、これらの残留分やパルス
性ノイズの影響を低減し、電力系統の絶縁劣化の発生及
びその区間を高感度で検出、判定するにある。
It is an object of the present invention to reduce the influence of these residual components and pulse noise, and to detect and determine the occurrence of insulation deterioration of a power system and its section with high sensitivity.

【0007】[0007]

【課題を解決するための手段】上記の課題は、零相電
圧、及びまたは、零相電流の電源周波数の整数倍周波数
以上の高周波成分を除去した信号をトリガとして、上記
電源周波数を除く帯域での零相電圧と零相電流との位相
差スペクトルを用いて、絶縁劣化の発生が検出されるこ
とにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a signal excluding the above-mentioned power supply frequency in a band excluding the above-mentioned power supply frequency by using a signal obtained by removing a high-frequency component equal to or greater than an integral multiple of the power supply frequency of the zero-phase voltage and / or the zero-phase current as a trigger. This is achieved by detecting the occurrence of insulation deterioration using the phase difference spectrum between the zero-phase voltage and the zero-phase current.

【0008】上記の課題は、また、電源周波数とその整
数倍周波数との±10Hz、及び0〜10Hzを除き、
かつ、電源周波数の4倍周波数以下の零相電圧と零相電
流との位相差スペクトルに関する平均値を用いて、絶縁
劣化の発生が検出されることにより達成される。
[0008] The above-mentioned problems also exist except for ± 10 Hz of the power supply frequency and its integral multiple frequency, and 0 to 10 Hz.
In addition, this is achieved by detecting the occurrence of insulation deterioration using the average value of the phase difference spectrum between the zero-phase voltage and the zero-phase current having a frequency four times or less the power supply frequency.

【0009】上記の課題は、また、三相電力系統の絶縁
劣化を検出する装置に、送電線に間隔をおいて装着され
て該送電線に流れる電力の零相電圧及びまたは零相電流
の値を検出する複数のセンサ装置と、該センサ装置夫々
に対応して設けられ対応するセンサ装置が検出した前記
零相電圧及びまたは零相電流の値から電源周波数及びそ
の整数倍周波数を除く帯域での零相電圧と零相電流の発
生レベルの大きさを算出し、該発生レベルの大きさを予
め設定された値と比較してその結果を出力する演算手段
と、該複数の演算手段に接続して設けられ該複数の演算
手段の出力を入力されて絶縁劣化の発生の有無を判定す
る判定手段とを備えることによっても達成される。
[0009] The above-mentioned problem also exists in a device for detecting insulation deterioration of a three-phase power system, the value of the zero-phase voltage and / or the zero-phase current of power flowing through the power transmission line when the power transmission line is mounted at an interval. And a plurality of sensor devices that detect the power supply frequency and an integer multiple thereof from the value of the zero-phase voltage and / or the zero-phase current detected by the corresponding sensor devices provided for each of the sensor devices. Calculating means for calculating the magnitude of the generation level of the zero-phase voltage and the zero-phase current, comparing the magnitude of the generation level with a preset value, and outputting the result; and It is also attained by providing a determination means for determining whether or not insulation deterioration has occurred by inputting the outputs of the plurality of calculation means.

【0010】上記の課題は、また、三相電力系統の絶縁
劣化を検出する装置において、送電線に間隔をおいて装
着されて該送電線に流れる電力の零相電圧及びまたは零
相電流の値を検出する複数のセンサ装置と、該センサ装
置夫々に対応して設けられ対応するセンサ装置が検出し
た前記零相電圧及びまたは零相電流の値から電源周波数
及びその整数倍周波数を除く帯域での零相電圧と零相電
流の発生レベルの大きさを算出し、該発生レベルの大き
さを予め設定された値と比較して両者のいずれが小さい
かを出力する演算手段と、該複数の演算手段に接続して
設けられ該複数の演算手段の出力を入力されて前記あら
かじめ設定された値が小さいとき絶縁劣化の発生を判定
する判定手段とを含んでなり、前記演算手段は、入力さ
れた零相電圧と零相電流の値から零相電圧と零相電流の
位相差スペクトルパタ−ンを算出し、該位相差スペクト
ルパタ−ンから少なくとも電源周波数及びその整数倍周
波数を除く帯域での位相差平均値を算出するとともに該
位相差平均値と隣接する演算手段が算出した位相差平均
値との和差を算出し、該和差に基づいて絶縁劣化発生区
間を判定するものである電力系統の絶縁劣化検出装置に
よっても達成される。
[0010] The above-mentioned problems also exist in the insulation of a three-phase power system.
In a device that detects deterioration, equip
And the zero-phase voltage and / or zero of the power flowing through the transmission line.
A plurality of sensor devices for detecting the value of the phase current;
The corresponding sensor device is provided for each
From the value of the zero-phase voltage and / or zero-phase current
-Phase voltage and zero-phase voltage in the band excluding frequency
The magnitude of the flow generation level is calculated, and the magnitude of the generation level is calculated.
Which is smaller than the preset value
Calculating means for outputting the data, and connecting to the plurality of calculating means
The output of the plurality of arithmetic means is provided and the
Judgment of insulation deterioration occurs when preset value is small
The calculating means calculates a phase difference spectrum pattern of the zero-phase voltage and the zero-phase current from the input values of the zero-phase voltage and the zero-phase current, and calculates the phase difference spectrum pattern. Calculate a phase difference average value in a band excluding at least a power supply frequency and an integral multiple of the power supply frequency from the negative frequency and calculate a sum difference between the phase difference average value and a phase difference average value calculated by an adjacent calculating means. The present invention is also achieved by an insulation deterioration detection device for a power system , which determines an insulation deterioration occurrence section based on a sum difference.

【0011】上記の課題は、さらに、判定手段が、複数
の演算手段が出力する絶縁劣化発生区間を収集し、収集
した結果を総合的に判断して絶縁劣化発生区間を決定す
るものである前項に記載の電力系統の絶縁劣化検出装置
によっても達成される。
[0011] The above problem is further determining means is for determining the overall judgment to insulation degradation occurs interval results in which a plurality of operation means collects insulation deterioration occurs section outputting were collected preceding This is also achieved by the power system insulation deterioration detecting device described in (1).

【0012】[0012]

【作用】配電系統において絶縁劣化を示す兆候は、単発
かつ間欠的な放電現象として現れることが多い。このこ
とについて、碍子の亀裂発生を例にとり説明する。ま
ず、碍子に亀裂発生しただけでは絶縁上何ら異常が発生
しないが、亀裂部に塩水などがしみ込むと、絶縁耐力の
低下を招き地絡放電に至り放電々流が流れる。しかし、
放電がある程度持続すると、その部分が温度上昇するた
め水分が蒸発してしまい一時的に正常な状態に戻る。こ
のような瞬時地絡はその継続時間が短かいことから保護
装置も動作しないため、亀裂の発生はわからないままで
ある。その結果、単発的な放電を再び繰り返しながら、
ついには永久故障に至ってしまう。この途中では、放電
の継続時間が比較的長く、そのために保護装置が動作す
る場合もあり得るが、この場合でも再送電時には水分が
蒸発しており原因探索は困難を極めることになる。
The signs of insulation deterioration in the distribution system often appear as single and intermittent discharge phenomena. This will be described with reference to the example of cracking of the insulator. First, even if a crack is generated only in the insulator, no abnormality occurs on the insulation. However, if salt water or the like permeates the crack, the dielectric strength decreases, leading to a ground fault discharge, and a discharge current flows. But,
When the discharge continues to some extent, the temperature rises in that part, and the moisture evaporates, and the state returns to a normal state temporarily. Since such a short-to-ground fault has a short duration, the protection device does not operate, so that the occurrence of a crack remains unknown. As a result, while repeating the sporadic discharge again,
Eventually, it will be a permanent failure. During this time, the duration of the discharge is relatively long, so that the protection device may operate. However, even in this case, when the power is retransmitted, the moisture evaporates, making it extremely difficult to find the cause.

【0013】そこで、瞬時地絡をとらえて絶縁劣化の発
生を検出し、その区間を標定できれば永久故障に至る前
に、計画的に機器を交換することができる。しかし、前
述したように、実際の配電系統では、瞬時地絡信号の他
に、比較的大きい残留分や多くのパルス性ノイズが発生
しており、これらの現象と瞬時地絡信号を区別すること
が困難であった。
Therefore, if the occurrence of insulation deterioration is detected by capturing an instantaneous ground fault and the section can be located, the equipment can be systematically replaced before a permanent failure occurs. However, as described above, in the actual distribution system, in addition to the instantaneous ground fault signal, a relatively large residue and a lot of pulse noise are generated, and it is necessary to distinguish these phenomena from the instantaneous ground fault signal. Was difficult.

【0014】発明者らは、瞬時地絡信号のスペクトル
が、残留分やパルス性ノイズのスペクトルと異なる特徴
をもつことを発見し、該特徴を利用して瞬時地絡を高感
度で検出してその区間を標定することができた。この特
徴は、瞬時地絡のような不連続現象に伴う零相電圧、零
相電流のスペクトルは、電源周波数とその整数倍周波数
以外にも多くの分数調波成分を含み、特に零相電圧のス
ペクトルは低周波数成分ほど大きくなる傾向を示す点に
ある。一方、残留分は、電源周波数とその整数倍周波数
でのみ発生する。また、パルス性ノイズにより発生する
分数調波成分は零相電流には発生するが、零相電圧では
ほとんど発生せず、低周波数ほど大きくなるという特徴
もないことがわかった。
The inventors have found that the spectrum of the instantaneous ground fault signal has a characteristic different from that of the residual or pulse noise, and the instantaneous ground fault is detected with high sensitivity by using the characteristic. The section could be located. This feature is that the spectrum of zero-sequence voltage and zero-sequence current due to a discontinuous phenomenon such as instantaneous ground fault contains many subharmonic components in addition to the power supply frequency and its integral multiple frequency. The spectrum has a tendency to increase as the frequency component decreases. On the other hand, the residual portion occurs only at the power supply frequency and its integral multiple frequency. It was also found that the subharmonic component generated by the pulse noise occurs in the zero-phase current, but hardly occurs in the zero-phase voltage, and that there is no characteristic that the frequency increases as the frequency decreases.

【0015】本発明では、まず、電源周波数とその整数
倍周波数を除いた帯域での零相電圧およびまたは零相電
流の発生レベルにより劣化の発生が検出される。また、
前記帯域での零相電流と零相電圧のスペクトルパターン
が劣化発生地点と検出点の相対位置関係により変化する
ことを利用して劣化発生区間が標定される。
In the present invention, first, the occurrence of deterioration is detected based on the generation level of the zero-phase voltage and / or the zero-phase current in a band excluding the power supply frequency and an integer multiple thereof. Also,
The degradation occurrence section is located by utilizing the fact that the spectral pattern of the zero-phase current and the zero-phase voltage in the band changes according to the relative positional relationship between the degradation occurrence point and the detection point.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、三相の配電系統に本発明に係る絶縁劣
化検出装置が装着された状態を示す。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a state in which an insulation deterioration detecting device according to the present invention is mounted on a three-phase distribution system.

【0017】図に示す配電系統は、上位の高電圧系統か
ら供給される電力を配電電圧に変圧する変圧器1と、該
変圧器1に接続され図示されていない保護装置の遮断指
令により動作する遮断器2と、該遮断器2に接続された
三相母線3と、該三相母線3に遮断器7,8,9を介し
て接続された複数の送電線である三相フィーダ(ここで
は3フィーダとした)4,5,6を含んで形成されてい
る。この配電系統に装着された絶縁劣化検出装置は、前
記三相フィーダ4,5,6に所定の間隔をおいて装着さ
れたセンサ装置10A〜10C,11A〜11C,12
A〜12Cと、これらセンサ装置にそれぞれ接続され該
センサ装置の出力信号を受信する演算手段である子局1
3A〜13C,14A〜14C,15A〜15Cと、同
一フィーダ上の隣接する子局を相互に接続する通信線1
6,17,18と、前記各フィーダの遮断器7,8,9
に最も接近して配置された子局13A,14A,15A
に接続して配置された判定手段である親局19とを含ん
で構成されている。
The distribution system shown in FIG. 1 operates according to a transformer 1 for transforming power supplied from a higher-level high-voltage system into a distribution voltage, and a cutoff command of a protection device (not shown) connected to the transformer 1. A circuit breaker 2, a three-phase bus 3 connected to the circuit breaker 2, and a three-phase feeder (here, a plurality of transmission lines connected to the three-phase bus 3 via circuit breakers 7, 8, and 9). (Including three feeders). The insulation deterioration detecting device mounted on the distribution system includes sensor devices 10A to 10C, 11A to 11C, 12 mounted on the three-phase feeders 4, 5, and 6 at predetermined intervals.
A to 12C and slave stations 1 which are arithmetic means connected to these sensor devices and receiving output signals of the sensor devices, respectively.
Communication line 1 for interconnecting 3A to 13C, 14A to 14C, 15A to 15C and adjacent slave stations on the same feeder
6, 17, 18 and the circuit breakers 7, 8, 9 of the respective feeders.
Stations 13A, 14A, 15A located closest to
And a master station 19 which is a judging means arranged and connected to the main station.

【0018】次に、センサ装置及び子局の機能と構成
を、前記センサ装置10A及び子局13Aを例に取っ
て、図2及び図3を参照して説明する。センサ装置10
A〜10C,11A〜11C,12A〜12Cは全て同
一構成であり、子局13A〜13C,14A〜14C,
15A〜15Cも全て同一構成である。
Next, the functions and configurations of the sensor device and the slave station will be described with reference to FIGS. 2 and 3, taking the sensor device 10A and the slave station 13A as examples. Sensor device 10
A to 10C, 11A to 11C, 12A to 12C all have the same configuration, and slave stations 13A to 13C, 14A to 14C,
15A to 15C all have the same configuration.

【0019】図2は、センサ装置10Aと子局13Aの
機能を示すブロック図である。零相電圧検出ブロック2
0で検出点における送電線4の零相電圧が検出され、零
相電流検出ブロック21で該検出点における零相電流が
検出される。検出された零相電圧から電源周波数成分及
びその整数倍周波数成分が、不要周波数成分として不要
周波数成分除去ブロック23Aで除去される。同様に、
零相電流検出ブロック21で検出された零相電流から
も、不要周波数成分除去ブロック23Bで電源周波数成
分及びその整数倍周波数成分が除去される。前記不要周
波数成分が除去された零相電圧及び零相電流(すなわち
分数調波成分及び非整数倍高調波成分)は、位相差スペ
クトル変換ブロック30で位相差スペクトルに変換され
る。次に、位相差比較ブロック31で、変換して得られ
た当該検出点における前記位相差スペクトルと他の検出
点での零相電圧,零相電流に基づいて同様に変換された
位相差スペクトルとが比較される。この比較結果に基づ
いて劣化判定ブロック32で劣化の判定が行われる。
FIG. 2 is a block diagram showing the functions of the sensor device 10A and the slave station 13A. Zero-phase voltage detection block 2
At 0, the zero-phase voltage of the transmission line 4 at the detection point is detected, and the zero-phase current at the detection point is detected by the zero-phase current detection block 21. The power supply frequency component and its integral multiple frequency component are removed from the detected zero-phase voltage as unnecessary frequency components by the unnecessary frequency component removal block 23A. Similarly,
The unnecessary frequency component removal block 23B also removes the power supply frequency component and its integral multiple frequency component from the zero-phase current detected by the zero-phase current detection block 21. The zero-sequence voltage and zero-sequence current from which the unnecessary frequency components have been removed (ie, subharmonic components and non-integer multiple harmonic components) are converted into a phase difference spectrum by a phase difference spectrum conversion block 30. Next, in the phase difference comparison block 31, the phase difference spectrum at the detection point obtained by the conversion and the phase difference spectrum similarly converted based on the zero-phase voltage and the zero-phase current at the other detection points are calculated. Are compared. Deterioration determination is performed in the deterioration determination block 32 based on the comparison result.

【0020】センサ装置10Aは、三相フィーダ4に接
続された零相電圧センサ20と、同じく三相フィーダ4
に結合された零相電流センサ21とを含んで構成されて
いる。子局13Aは、前記零相電圧センサ20の出力v
0(t)と零相電流センサ21の出力i0(t)を入力と
するアンプ22と、該アンプ22の出力側にそれぞれ接
続された2チャンネルのフィルタ23及びAD変換器2
4と、該AD変換器24の出力側に接続されたメモリ2
5と、前記フィルタ23の出力側に接続された比較回路
26と、該比較回路26の出力側に接続され、その出力
側が前記メモリ25に接続されたアンド回路27と、前
記メモリ25の出力側に接続された処理装置28と、該
処理装置28の出力側に接続された通信端末29とを含
んで構成されている。通信端末29は、親局19と同一
フィーダ上の隣接子局13Bに通信線16を介して接続
されている。
The sensor device 10A includes a zero-phase voltage sensor 20 connected to the three-phase feeder 4 and a three-phase feeder 4
And a zero-phase current sensor 21 coupled to The slave station 13A outputs the output v of the zero-phase voltage sensor 20.
0 (t) and an output i 0 (t) of the zero-phase current sensor 21, a two-channel filter 23 and an AD converter 2 connected to the output side of the amplifier 22, respectively.
4 and a memory 2 connected to the output side of the AD converter 24.
5, a comparison circuit 26 connected to the output side of the filter 23, an AND circuit 27 connected to the output side of the comparison circuit 26, the output side of which is connected to the memory 25, and the output side of the memory 25. , And a communication terminal 29 connected to the output side of the processing device 28. The communication terminal 29 is connected to the adjacent slave station 13B on the same feeder as the master station 19 via the communication line 16.

【0021】上記構成のセンサ装置及び子局は、次のよ
うに動作する。零相電圧センサ20の出力v0(t)及
び零相電流センサ21の出力i0(t)は、アンプ22
に入力されて信号処理に適当な電圧信号に変換され出力
される。アンプ22の出力信号は、2チャンネルのフィ
ルタ23とAD変換器24にそれぞれ入力される。AD
変換器24に入力されたv0(t),i0(t)のアナロ
グ信号はディジタル信号v0(t)d,i0(t)dに変換
され、その出力はメモリ25に書き込まれる。
The above-configured sensor device and slave station operate as follows. The output v 0 (t) of the zero-phase voltage sensor 20 and the output i 0 (t) of the zero-phase current sensor 21 are
And converted into a voltage signal suitable for signal processing and output. The output signal of the amplifier 22 is input to a two-channel filter 23 and an AD converter 24, respectively. AD
The analog signals of v 0 (t) and i 0 (t) input to the converter 24 are converted into digital signals v 0 (t) d and i 0 (t) d, and the output is written to the memory 25.

【0022】一方、フィルタ23に入力された信号v
0(t),i0(t)は該フィルタ23により、それぞれ電
源周波数の整数倍周波数成分(好ましくは2倍の周波
数)以上の高周波成分が除去された後v0′(t),
0′(t)として比較回路26に入力される。比較回路
26では入力されたv0′(t),i0′(t)がそれぞれ
あらかじめ設定された閾値と比較され、v0′(t),i
0′(t)が、閾値を越えていれば信号がアンド回路27
に出力される。ここでv0′(t),i0′(t)の双方共
に閾値を越えていればアンド回路27への入力が双方共
にオンとなり、アンド回路27からメモリ25へ信号が
出力され、メモリ25の内容がホールドされる。ホール
ドされたメモリの内容は、処理装置28に転送され、後
に述べるアルゴリズムに従って処理された後、処理結果
が通信端末29を介して、通信線16により、他の子局
あるいは親局19に伝送される。
On the other hand, the signal v input to the filter 23
0 (t) and i 0 (t) are removed by the filter 23 after removing high frequency components equal to or higher than an integral multiple frequency component (preferably twice the frequency) of the power supply frequency, respectively, and v 0 ′ (t),
It is input to the comparison circuit 26 as i 0 ′ (t). In the comparison circuit 26, the input v 0 ′ (t) and i 0 ′ (t) are respectively compared with preset threshold values, and v 0 ′ (t), i
If 0 '(t) exceeds the threshold, the signal is
Is output to Here, if both v 0 ′ (t) and i 0 ′ (t) exceed the threshold, both inputs to the AND circuit 27 are turned on, and a signal is output from the AND circuit 27 to the memory 25, and Is held. The contents of the held memory are transferred to the processing device 28 and processed in accordance with the algorithm described later. Then, the processing result is transmitted to another slave station or master station 19 via the communication terminal 16 via the communication terminal 29. You.

【0023】上述の子局の動作を、図4を参照してアル
ゴリズムを含めて詳述する。図4においてS1(ステッ
プ1)〜S3(ステップ3)の動作は零相電圧v
0(t)、零相電流i0(t)がメモリ25にホールドさ
れる経過を示し、S4以降の動作が処理装置28におけ
る処理内容である。
The operation of the above-mentioned slave station will be described in detail including an algorithm with reference to FIG. In FIG. 4, the operation of S1 (step 1) to S3 (step 3) is the zero-phase voltage v
0 (t), the progress of holding the zero-phase current i 0 (t) in the memory 25, and the operation after S4 is the processing content in the processing device 28.

【0024】まず、S1では零相電圧、零相電流のディ
ジタル信号v0(t)d,i0(t)dがメモリ25へ書き
込まれる。S2では既に述べたように、メモリ25のメ
モリ内容をホールドするかどうかの判断がなされ、ホー
ルドの必要がなければS1に戻って新しいデータがメモ
リ25に重ね書きされる。S2でフィルタ23の出力v
0′(t),i0′(t)が共に閾値を越えている場合に
は、劣化発生の可能性が強いと判定され、S3に示され
るように、閾値を越えた時間を中心とする前後のv
0(t)d,i0(t)dデータのメモリ内容がホールドされ
る。本実施例では、閾値として、健全時のv0′(t),
0′(t)の3倍の値が設定された。
First, in S 1, digital signals v 0 (t) d and i 0 (t) d of zero-phase voltage and zero-phase current are written in the memory 25. At S2, as described above, it is determined whether or not to hold the memory contents of the memory 25, and if there is no need to hold, the process returns to S1 and new data is overwritten on the memory 25. The output v of the filter 23 in S2
If both 0 ′ (t) and i 0 ′ (t) exceed the threshold value, it is determined that the possibility of occurrence of deterioration is strong, and as shown in S3, the time when the threshold value is exceeded is centered. Before and after v
0 (t) d, the memory contents of the i 0 (t) d data is held. In the present embodiment, as the threshold value, v 0 ′ (t),
A value three times i 0 '(t) was set.

【0025】ここでは、v0(t),i0(t)データが
共に閾値を越えている場合にメモリ25の内容がホール
ドされるが、どちらか、一方のデータが閾値を越えた場
合に劣化発生の可能性大と判定してもよく、更に、v0
(t),i0(t)のうちの一方のデータのみで判定す
るようにしてもよい。
Here, the contents of the memory 25 are held when both v 0 (t) and i 0 (t) data exceed the threshold value, but when either one of the data exceeds the threshold value, may be determined that the degradation occurs in highly likely, further, v 0
The determination may be made based on only one of the data of (t) and i 0 (t).

【0026】S4では、メモリ25の内容が処理装置2
8に転送された後、v0(t)d,i0(t)dに対してフー
リエ分析が行われ、その結果がV0(f),I0(f)に
格納される。ここで、V0(f),I0(f)は絶対値と
位相からなる複素量である。S5では、V0(f),I0
(f)の位相を用いて、それらの位相差θ1が各周波数
毎に計算される。
At S4, the contents of the memory 25 are
After being transferred to 8, the Fourier analysis is performed on v 0 (t) d and i 0 (t) d, and the result is stored in V 0 (f) and I 0 (f). Here, V 0 (f) and I 0 (f) are complex quantities composed of an absolute value and a phase. In S5, V 0 (f), I 0
Using the phase of (f), their phase difference θ 1 is calculated for each frequency.

【0027】図5から〜図7は実際に配電機器を劣化さ
せ、S5までの処理で得られた結果の一例を示す。電源
周波数は50Hzである。図5は、零相電圧|V0(f)
|の値を、周波数Hzの関数としてdBで表し、図6
は、零相電流|I0(f)|の値を、同じく周波数Hzの
関数としてdBで表している。図5、図6において、5
0Hzとその整数倍、特に奇数倍の周波数で発生してい
るピークは、健全時にもほぼ同じレベルで発生してお
り、いわゆる残留分が支配的な|V0(f)|,|I0(f)
|である。図5、図6の場合、前述の残留分にまじって
多くの分数調波成分すなわち、電源周波数以下及び電源
周波数とその整数倍周波数成分間に多くの周波数成分が
発生しており、さらに零相電圧のスペクトルが低い周波
数成分ほど大きくなる傾向を示している。既に述べたよ
うに、これらの特徴は間欠的な瞬時地絡信号に見られる
共通なものであり、本発明は、この特徴に着目してなさ
れたものである。
FIGS. 5 to 7 show examples of the results obtained by actually deteriorating the distribution equipment and performing the processing up to S5. The power supply frequency is 50 Hz. FIG. 5 shows the zero-phase voltage | V 0 (f)
| Are expressed in dB as a function of frequency Hz, and FIG.
Represents the value of the zero-phase current | I 0 (f) | in dB as a function of the frequency Hz. 5 and 6, 5
The peaks that occur at 0 Hz and its integer multiples, especially odd multiples of the frequency, occur at almost the same level even when sound, and so-called residuals are dominant | V 0 (f) |, | I 0 ( f)
|. In the case of FIG. 5 and FIG. 6, many subharmonic components, ie, many frequency components below the power supply frequency and between the power supply frequency and its integral multiple frequency components, occur in addition to the above-mentioned residual components. The spectrum of the voltage tends to increase as the frequency component decreases. As described above, these features are common in intermittent instantaneous ground fault signals, and the present invention has been made by paying attention to these features.

【0028】図7は、V0(f)とI0(f)の位相差θ1
示す。図に示されるように、位相差θ1のスペクトルパ
ターンは、数百Hz以下の帯域で90度付近に分布する
傾向を示す。このパターンは劣化点とセンサー位置によ
りさまざまに変化するものであり、S6以降の手順で
は、このようなパターンの特徴を使用して劣化発生区間
が判定される。
FIG. 7 shows the phase difference θ 1 between V 0 (f) and I 0 (f). As shown, the spectral pattern of the phase difference theta 1 shows a tendency to be distributed in the vicinity of 90 degrees in the following band several hundred Hz. This pattern changes variously depending on the deterioration point and the sensor position. In the procedure after S6, the deterioration occurrence section is determined using the characteristics of such a pattern.

【0029】S6では、電源周波数とその整数倍周波数
の±10Hz及び0〜10Hzを除く電源周波数の4倍
周波数(電源周波数が50Hzのときには200Hz)
以下の位相差スペクトルθ1の総和を求め、その平均値
《θ1》が算出される。ここで、平均値を使用する理由
は、位相差を算出するためのデータにノイズが含まれて
いる場合でも、ノイズによる位相差は零度付近に分布す
るため、その平均値は零に近くなりノイズの影響を低減
できるためである。また、周波数帯域として、0〜10
Hz及び電源周波数やその整数倍周波数の±10Hzを
除く理由は、それぞれ位相測定精度が、残留分によって
支配される帯域であるためである。さらに、200Hz
以下の帯域に限って平均をとる理由は、この帯域に零相
電圧が主に分布し、この帯域以上ではSN比が悪化する
ためである。
In step S6, the power supply frequency and a quadruple frequency of the power supply frequency excluding ± 10 Hz and 0 to 10 Hz of its integral multiple frequency (200 Hz when the power supply frequency is 50 Hz)
The sum of the following phase difference spectra θ 1 is obtained, and the average value << θ 1 >> is calculated. Here, the reason for using the average value is that even if the data for calculating the phase difference contains noise, the phase difference due to the noise is distributed near zero degrees, so the average value is close to zero and the noise This is because the effect of the above can be reduced. Further, as a frequency band, 0 to 10
The reason for excluding Hz and the power supply frequency and ± 10 Hz of its integral multiple frequency is that the phase measurement accuracy is a band governed by the residual. In addition, 200Hz
The reason for taking the average only in the following bands is that the zero-phase voltage is mainly distributed in this band, and the S / N ratio deteriorates above this band.

【0030】S7では、自局の電源側(上流側)に子局
があれば、自局の位相差平均値《θ1》を電源側の隣接
子局に伝送する。また、負荷側(下流側)の隣接子局か
ら同様な計算により得られた位相差平均値《θ2》を受
信し処理装置28に取り込む。ここで、もっとも電源側
に位置する子局の場合には、負荷側の隣接子局のデータ
《θ2》を受信するだけで、自局の算出した《θ1》を親
局に送信することはしない。 S8では、処理装置28
に取込まれた位相差平均値《θ1》,《θ2》を用いて劣
化判定処理を実施する。この処理内容について、図8、
図9をもとに説明する。
In S7, if there is a slave station on the power supply side (upstream side) of the own station, the average phase difference value << θ 1 >> of the own station is transmitted to the adjacent slave station on the power supply side. In addition, the average phase difference value << θ 2 >> obtained by the same calculation from the adjacent slave station on the load side (downstream side) is received and taken into the processing device 28. Here, in the case of the slave station located closest to the power supply side, it is necessary to transmit the calculated << θ 1 >> to the master station only by receiving the data << θ 2 >> of the adjacent slave station on the load side. Do not. In S8, the processing device 28
Deterioration determination processing is performed using the phase difference average values << θ 1 >> and << θ 2 >> taken in. This processing is described in FIG.
This will be described with reference to FIG.

【0031】図8は図1において、フィーダ4のセンサ
装置10Aと10Bの間の区間で劣化が発生した時に、
各子局で得られた位相差平均値《θ1》を示す。図8に
示されるように、劣化点より電源側のセンサ装置10A
の出力信号により子局13Aで得られた位相差平均値
《θ1》のみが−90度付近の値を示すほかは、他の全
ての子局の値は90度付近の値となっている。この理由
は、一般の抵抗性劣化では、零相電圧に対して−90度
の位相を持つ洩れ電流が大地に流れる結果として、劣化
点より電源側の地点では零相電流が零相電圧に対して−
90度の位相差を持ち、劣化点より負荷側の地点では、
零相電流が零相電圧に対して90度の進み位相となるた
めである。
FIG. 8 is a diagram showing a case where deterioration occurs in a section between the sensor devices 10A and 10B of the feeder 4 in FIG.
The average phase difference << θ 1 >> obtained in each slave station is shown. As shown in FIG. 8, the sensor device 10A on the power supply side from the deterioration point
In addition to the fact that only the phase difference average value << θ 1 >> obtained at the slave station 13A by the output signal of the above shows a value near -90 degrees, the values of all other slave stations are values near 90 degrees. . The reason for this is that in general resistance degradation, as a result of leakage current having a phase of -90 degrees with respect to the zero-sequence voltage flowing to the ground, the zero-sequence current at the point closer to the power supply than the degradation point is less than the zero-sequence voltage. T
It has a phase difference of 90 degrees and at the point on the load side from the degradation point,
This is because the zero-phase current has a 90-degree leading phase with respect to the zero-phase voltage.

【0032】以上のように、零相電圧に対する零相電流
の位相は、劣化点をはさんで約180度異なり、電源側
では約−90度、負荷側及び他フィーダでは約90度と
なる。 そこで、図4のS8の判定アルゴリズムとして
は、図9に示すように、まず、S8−1で、《θ1》と
《θ2》の和αと差βが求められる。S8−2では、β
の絶対値が90度以上か否かが判断され、90度以上で
あれば《θ2》を発信した子局、すなわち「負荷側隣接
子局と自局の間で劣化発生」と判定してS9へ進む。も
し、βの絶対値が90度以下ならば、S8−3に進む。
S8−3では、αの絶対値が90度以下ならば、αはノ
イズによって発生しているものと判定してS9へ進み、
αの絶対値が90度以上ならば、他区間(負荷側隣接子
局と自局との間の区間以外の区間)で劣化発生と判定
し、S8−4に進む。S8−4では、αの符号の正負が
調べられ、αの値が正であれば「電源側区間または他フ
ィーダで劣化発生」と判定してS9へ進み、αの値が負
であれば、「負荷側他区間で劣化発生」と判定してS9
へ進む。
As described above, the phase of the zero-sequence current with respect to the zero-sequence voltage differs by about 180 degrees across the degradation point, and becomes about -90 degrees on the power supply side and about 90 degrees on the load side and other feeders. Therefore, as a determination algorithm of S8 in FIG. 4, as shown in FIG. 9, first, in S8-1, the sum α and difference β of << θ 1 >> and << θ 2 >> are obtained. In S8-2, β
It is determined whether or not the absolute value of is greater than or equal to 90 degrees. If the absolute value is greater than or equal to 90 degrees, it is determined that the slave station that transmitted << θ 2 >>, that is, "deterioration has occurred between the load-side adjacent slave station and its own station" Proceed to S9. If the absolute value of β is 90 degrees or less, the process proceeds to S8-3.
In S8-3, if the absolute value of α is 90 degrees or less, it is determined that α is caused by noise, and the process proceeds to S9.
If the absolute value of α is 90 degrees or more, it is determined that deterioration has occurred in another section (a section other than the section between the load side adjacent child station and the own station), and the process proceeds to S8-4. In S8-4, the sign of the sign of α is checked. If the value of α is positive, it is determined that “deterioration has occurred in the power supply section or another feeder” and the process proceeds to S9. If the value of α is negative, It is determined that “deterioration has occurred in another section on the load side” and S9
Proceed to.

【0033】S9では、判定結果が通信端末29及び通
信線16を介して親局19へ伝送される。親局19は各
子局から伝送される判定結果を収集し、全子局の判定結
果を総合的に見て「劣化発生の有無」及び「劣化発生区
間」を判定するとともに、劣化発生回数の累計値などを
もとに、劣化警報信号のランク付など保守上の参考デー
タを出力する。
In S9, the result of the determination is transmitted to the master station 19 via the communication terminal 29 and the communication line 16. The master station 19 collects the determination results transmitted from each of the slave stations, comprehensively checks the determination results of all the slave stations, determines “whether or not deterioration has occurred” and “deterioration occurrence section”, and determines the number of times of deterioration occurrence. It outputs reference data for maintenance such as ranking of deterioration alarm signal based on the accumulated value.

【0034】本発明の上記一実施例によれば、残留分や
パルス性ノイズの影響を低減でき、絶縁劣化の発生及び
その区間を高感度で検出できる他、各子局で算出された
位相差平均値、及び判定結果が伝送されるだけなので伝
送量が少なくてすむなどの効果がある。
According to the above embodiment of the present invention, the influence of residual noise and pulse noise can be reduced, the occurrence of insulation deterioration and its section can be detected with high sensitivity, and the phase difference calculated by each slave station can be detected. Since only the average value and the determination result are transmitted, there is an effect that the amount of transmission is small.

【0035】上記、一実施例では劣化判定に演算の結果
得られた値があらかじめ設定されたある値より大きいか
否かという2値的な判断法が採用されているが、この判
定法としてはファジー的なすなわち劣化の度合を連続量
で示す方法でも良い。
In the above-described embodiment, a binary decision method of determining whether the value obtained as a result of the calculation is larger than a predetermined value is used for the deterioration decision. A method of indicating the degree of fuzzy, that is, the degree of deterioration by a continuous amount may be used.

【0036】また、位相差の平均値を求める帯域を20
0Hz以下としたが、この帯域は任意に変化して良く例
えば90Hz以下の場合には、電源周波数付近の帯域の
データを除去するだけでも良い。
The band for obtaining the average value of the phase difference is set to 20.
Although the frequency is set to 0 Hz or less, this band may be arbitrarily changed. For example, when the frequency is 90 Hz or less, data in a band near the power supply frequency may be simply removed.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
電力系統から検出される零相電流及びまたは零相電圧に
おける残留分やパルス性ノイズの影響が低減されるの
で、該電力系統の絶縁劣化の発生及びその発生区間の検
出、判定が高感度で行われる効果がある。
As described above, according to the present invention,
Since the influence of residual components and pulse noise on the zero-phase current and / or zero-phase voltage detected from the power system is reduced, the occurrence of insulation deterioration of the power system and the detection and determination of the generation section can be performed with high sensitivity. Has the effect

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例が配電系統に適用された状態
を示す回路図である。
FIG. 1 is a circuit diagram showing a state in which an embodiment of the present invention is applied to a distribution system.

【図2】図1に示す実施例の機能ブロック図である。FIG. 2 is a functional block diagram of the embodiment shown in FIG. 1;

【図3】図2に示された機能を実現する装置の例の詳細
を示す回路図である。
FIG. 3 is a circuit diagram showing details of an example of an apparatus for realizing the functions shown in FIG. 2;

【図4】本発明の実施例である手順図である。FIG. 4 is a flowchart showing an embodiment of the present invention.

【図5】図4による処理の途中結果を示すグラフであ
る。
FIG. 5 is a graph showing an intermediate result of the processing according to FIG. 4;

【図6】図4による処理の途中結果を示すグラフであ
る。
FIG. 6 is a graph showing an intermediate result of the processing according to FIG. 4;

【図7】図4による処理の途中結果を示すグラフであ
る。
FIG. 7 is a graph showing an intermediate result of the processing according to FIG. 4;

【図8】図1に示す実施例で得られたデータの例を示す
図である。
FIG. 8 is a diagram showing an example of data obtained in the embodiment shown in FIG.

【図9】図4に示された手順の部分の詳細を示す手順図
である。
FIG. 9 is a procedure diagram showing details of a part of the procedure shown in FIG. 4;

【符号の説明】[Explanation of symbols]

4,5,6 送電線(三相フィーダ) 10A〜10C,11A〜11C,12A〜12C セ
ンサ装置 13A〜13C,14A〜14C,15A〜15C 演
算手段(子局) 19 判定手段(親局)
4, 5, 6 Transmission line (three-phase feeder) 10A to 10C, 11A to 11C, 12A to 12C Sensor device 13A to 13C, 14A to 14C, 15A to 15C Operation means (slave station) 19 Determination means (master station)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平沢 邦夫 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 芳賀 博 茨城県日立市国分町1丁目1番1号 株 式会社 日立製作所 国分工場内 (72)発明者 鳥居 久信 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (56)参考文献 特開 平2−111217(JP,A) 実開 平2−136435(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02H 3/00 G01R 31/12 H02H 7/26 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Kunio Hirasawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Hiroshi Haga 1-1-1 Kokubuncho, Hitachi City, Ibaraki Stock Company Hitachi, Ltd. Kokubu Plant (72) Inventor Hisashinobu Torii 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company Technical Research Institute (56) References JP-A-2-111217 (JP, A) 2-136435 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H02H 3/00 G01R 31/12 H02H 7/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三相電力系統の絶縁劣化を検出する装置
において、送電線に間隔をおいて装着されて該送電線に
流れる電力の零相電圧及びまたは零相電流の値を検出す
る複数のセンサ装置と、該センサ装置夫々に対応して設
けられ対応するセンサ装置が検出した前記零相電圧及び
または零相電流の値から電源周波数及びその整数倍周波
数を除く帯域での零相電圧と零相電流の発生レベルの大
きさを算出し、該発生レベルの大きさを予め設定された
値と比較して両者のいずれが小さいかを出力する演算手
段と、該複数の演算手段に接続して設けられ該複数の演
算手段の出力を入力されて前記あらかじめ設定された値
が小さいとき絶縁劣化の発生を判定する判定手段とを含
んでなり、前記演算手段は、入力された零相電圧と零相
電流の値から零相電圧と零相電流の位相差スペクトルパ
タ−ンを算出し、該位相差スペクトルパタ−ンから少な
くとも電源周波数及びその整数倍周波数を除く帯域での
位相差平均値を算出するとともに該位相差平均値と隣接
する演算手段が算出した位相差平均値との和差を算出
し、該和差に基づいて絶縁劣化発生区間を判定するもの
であることを特徴とする電力系統の絶縁劣化検出装置
An apparatus for detecting insulation deterioration of a three-phase power system.
In the above, it is attached to the transmission line at intervals, and
Detects zero-phase voltage and / or zero-phase current value of flowing power
And a plurality of sensor devices corresponding to the respective sensor devices.
The zero-phase voltage detected by the corresponding sensor device and
Or the power supply frequency and its integral multiple frequency from the zero-phase current value
Large generation level of zero-sequence voltage and zero-sequence current
Calculated, and the magnitude of the occurrence level is set in advance.
Operator that outputs which of the two is smaller than the value
And a plurality of stages provided in connection with the plurality of arithmetic means.
The output of the calculating means is input and the preset value
Judgment means for judging occurrence of insulation deterioration when
The computing means calculates the input zero-phase voltage and the zero-phase voltage
From the current value, the phase difference spectrum
Calculate the pattern and calculate a small number from the phase difference spectrum pattern.
At least in the band excluding the power supply frequency and its integral multiple frequency
Calculate the average phase difference value and calculate the average
Calculating the sum difference with the phase difference average value calculated by the calculating means
And determining an insulation deterioration occurrence section based on the sum difference.
An insulation deterioration detection device for a power system, characterized in that:
【請求項2】 判定手段は、複数の演算手段が出力する
絶縁劣化発生区間を収集し、収集した結果を総合的に判
断して絶縁劣化発生区間を決定するものであることを特
徴とする請求項1に記載の電力系統の絶縁劣化検出装
2. The method according to claim 1, wherein the determining means outputs a plurality of arithmetic means.
Collect insulation degradation sections and comprehensively judge the collected results.
To determine the insulation deterioration section.
2. The apparatus for detecting insulation deterioration of a power system according to claim 1, wherein
Place .
JP14461691A 1991-06-17 1991-06-17 Power system insulation deterioration detection method and apparatus Expired - Fee Related JP3160612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14461691A JP3160612B2 (en) 1991-06-17 1991-06-17 Power system insulation deterioration detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14461691A JP3160612B2 (en) 1991-06-17 1991-06-17 Power system insulation deterioration detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH04368416A JPH04368416A (en) 1992-12-21
JP3160612B2 true JP3160612B2 (en) 2001-04-25

Family

ID=15366179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14461691A Expired - Fee Related JP3160612B2 (en) 1991-06-17 1991-06-17 Power system insulation deterioration detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3160612B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109633B2 (en) * 1993-05-25 2000-11-20 株式会社日立製作所 Insulation degradation detector
EP0990916A4 (en) * 1998-04-14 2002-01-30 Furukawa Electric Co Ltd Method of diagnosing deterioration of electric power cable
JP3693149B2 (en) 1999-01-11 2005-09-07 住友電装株式会社 connector

Also Published As

Publication number Publication date
JPH04368416A (en) 1992-12-21

Similar Documents

Publication Publication Date Title
US5659453A (en) Arc burst pattern analysis fault detection system
US7180300B2 (en) System and method of locating ground fault in electrical power distribution system
JP5561831B2 (en) Transformer internal failure detection device
JP3808624B2 (en) System protection relay device
JPH10104304A (en) Device and method for detecting defective insulation of device connected to power transmission or distribution network
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
JP3532182B2 (en) Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method
JP2773377B2 (en) Continuous monitoring circuit for analog input circuit
JP4921246B2 (en) Ground fault distance relay
JPH0382326A (en) Method and apparatus for determining deterioration of power line
JPH05122829A (en) Method and device for detecting deterioration of insulation in power system
US8228103B2 (en) Circuit breaker
JP2702961B2 (en) Ground fault line selection device
JPH06209518A (en) Insulation-degradation diagnostic apparatus
JPH0398418A (en) Monitor for digital protective relay
JP2728422B2 (en) Abnormal location system for gas insulation equipment
JPH0560617A (en) Monitoring device of abnormality of electric apparatus
JPH0643196A (en) Insulation monitor device in low voltage electric circuit
JP2866767B2 (en) AC feeder circuit failure selection relay for railways
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
JPS5857059B2 (en) Distribution line short circuit protection method
JP3210810B2 (en) Protective relay device and its analog part failure determination method
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
JPH10307163A (en) Residual current detector
US20030098694A1 (en) Insulation diagnosis device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees