JP3160406B2 - Superconducting optoelectronic devices - Google Patents

Superconducting optoelectronic devices

Info

Publication number
JP3160406B2
JP3160406B2 JP01099993A JP1099993A JP3160406B2 JP 3160406 B2 JP3160406 B2 JP 3160406B2 JP 01099993 A JP01099993 A JP 01099993A JP 1099993 A JP1099993 A JP 1099993A JP 3160406 B2 JP3160406 B2 JP 3160406B2
Authority
JP
Japan
Prior art keywords
superconducting
optoelectronic device
copper oxide
photoexcited
oxide material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01099993A
Other languages
Japanese (ja)
Other versions
JPH06224480A (en
Inventor
透 田
玉樹 小林
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP01099993A priority Critical patent/JP3160406B2/en
Publication of JPH06224480A publication Critical patent/JPH06224480A/en
Application granted granted Critical
Publication of JP3160406B2 publication Critical patent/JP3160406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超伝導を利用した光セン
サー、光スイッチング素子などの光エレクトロニクスデ
バイスおよびそれらデバイスを組み込んだラインセンサ
ー、平面型センサー、分光器などのシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optoelectronic device such as an optical sensor and an optical switching device utilizing superconductivity, and a system such as a line sensor, a flat sensor, and a spectroscope incorporating the device.

【0002】[0002]

【従来の技術】現在までに応用研究がなされている超伝
導を利用したオプトエレクトロニクスデバイスは光検出
用素子に関するものが主であり、その中でも光照射に伴
う発熱を利用したボロメーターおよび光照射によって励
起された準粒子の増大に伴うエネルギーギャップの減少
を検出する素子が主である。超伝導を利用した光検出素
子は、広い波長領域における高感度および1ns以下の
高速応答性が期待されることから、注目を集めている。
2. Description of the Related Art Optoelectronic devices utilizing superconductivity, which have been studied for application to date, are mainly related to photodetection elements. Among them, a bolometer utilizing heat generated by light irradiation and a light irradiating device are known. The main element is an element that detects a decrease in the energy gap due to an increase in excited quasiparticles. Photodetectors using superconductivity have attracted attention because they are expected to have high sensitivity in a wide wavelength range and high-speed response of 1 ns or less.

【0003】ボロメーターについては、応用物理第61
巻第5号(1992)480〜483に総説が述べられ
ている。特に近年発見された銅酸化物超伝導体であるY
Ba 2 Cu3 7 (YBCO)は超伝導転移温度が90
Kと高く、この温度でのボロメーターとしての特性が発
表されている。
The bolometer is described in Applied Physics 61
Volume 5 (1992) 480-483
ing. In particular, Y which is a copper oxide superconductor recently discovered
Ba TwoCuThreeO7(YBCO) has a superconducting transition temperature of 90.
High as K, characteristics as a bolometer at this temperature
Is represented.

【0004】後者の準粒子注入型デバイスの例として
は、Japanese Journal of App
lied Physics vol.23(1984)
L333に記載のような、粒界ジョセフソン結合を利用
したものが知られている。この光検出素子は、酸化物超
伝導材料BaPb0.7 Bi0.3 3 (BPBO)の薄膜
でマイクロブリッジ型ジョセフソン接合を形成し、この
接合部に光を照射し、ジョセフソン接合の臨界電流値の
変化を検出するものである。また前記総説中には、超伝
導転移温度の高い銅酸化物超伝導材料を利用した素子に
ついても述べられている。この銅酸化物超伝導材料を利
用した素子では光応答の原理は解明されておらず、準粒
子注入型かどうかは不明である。
[0004] As an example of the latter quasi-particle injection type device, Japanese Journal of Appl.
led Physics vol. 23 (1984)
A device utilizing grain boundary Josephson bonding as described in L333 is known. The light detecting element, oxide to form a thin film microbridge type Josephson junction in a superconducting material BaPb 0.7 Bi 0.3 O 3 (BPBO ), light is irradiated to the junction of the critical current value of the Josephson junctions A change is detected. The above review also describes devices using a copper oxide superconducting material having a high superconducting transition temperature. The principle of the optical response of the device using the copper oxide superconducting material has not been elucidated, and it is unclear whether the device is of the quasiparticle injection type.

【0005】[0005]

【発明が解決しようとする課題】上記従来例のボロメー
ターでは感度はある程度あるものの、熱を利用している
ため応答速度が低く、また素子温度を常に超伝導転移温
度に維持しておく必要性があることから、利用上大きな
制限がある。
Although the conventional bolometer described above has a certain degree of sensitivity, the response speed is low due to the use of heat, and it is necessary to always maintain the element temperature at the superconducting transition temperature. Therefore, there is a great restriction on the use.

【0006】また、上記BPBO薄膜の準粒子注入型の
素子では、ある程度良好な感度および応答速度が達成さ
れてはいるものの、超伝導転移温度が13K以下と低
く、利用の際は冷却に液体ヘリウムまたは高価な冷却装
置を用いる必要があり、利用上大きな制限がある。
Although the BPBO thin-film quasiparticle-injected element achieves good sensitivity and response speed to some extent, it has a low superconducting transition temperature of 13 K or less, and requires liquid helium for cooling during use. Alternatively, an expensive cooling device needs to be used, and there is a great limitation in use.

【0007】よって、本発明の目的は、高感度、高速応
答性を有する超伝導オプトエレクトロニクスデバイスを
提供することにある。
It is therefore an object of the present invention to provide a superconducting optoelectronic device having high sensitivity and high-speed response.

【0008】さらに本発明は、冷却に液体窒素または簡
単な冷却器を利用でき、しかも厳密な温度制御を必要と
しない超伝導オプトエレクトロニクスデバイスを提供す
ることも目的とする。
It is a further object of the present invention to provide a superconducting optoelectronic device which can utilize liquid nitrogen or a simple cooler for cooling and does not require strict temperature control.

【0009】[0009]

【課題を解決するための手段】本発明は、超伝導を用い
る超伝導オプトエレクトロニクスデバイスにおいて、超
伝導体からなる電極間に、光励起超伝導性受光部を有す
ることを特徴とする超伝導オプトエレクトロニクスデバ
イスを提供する。
SUMMARY OF THE INVENTION The present invention relates to a superconducting optoelectronic device using superconductivity, characterized in that a superconducting optoelectronic device having a photo-excited superconducting light receiving portion between electrodes made of a superconductor. Provide a device.

【0010】一般に超伝導材料は、その材料に固有の温
度まで冷却した場合に超伝導転移を起こし、超伝導状態
となる。元素超伝導体、合金系超伝導体およびほとんど
の化合物超伝導体は光照射に応答して前述の準粒子注入
を起こし、超伝導性が弱まる。しかしながら、銅酸化物
超伝導体に近似の組成を有する酸化物では、光照射しな
い場合はその固有温度まで超伝導転移を起こさないが、
光照射時にはそれより高い温度で超伝導転移を起こすこ
とが明らかになった。この特性を持つ材料を光励起超伝
導材料と呼ぶ。
Generally, a superconducting material undergoes a superconducting transition when cooled to a temperature inherent to the material, and enters a superconducting state. Elemental superconductors, alloy superconductors and most compound superconductors undergo the above-described quasiparticle injection in response to light irradiation, and their superconductivity is weakened. However, in an oxide having a composition similar to that of a copper oxide superconductor, no superconducting transition occurs up to its intrinsic temperature without light irradiation,
It was found that superconducting transition occurs at higher temperatures during light irradiation. A material having this property is called a photoexcited superconducting material.

【0011】この原理を利用して、例えば超伝導体から
なる電極間に光励起超伝導性材料からなる受光部を設
け、その受光部に光照射すると、受光部の伝導性が上昇
して超伝導体電極間の抵抗が小さくなる。このとき、電
極間の電圧もしくは電流をモニターしておけば、光照射
の量を検出できる。すなわち、光照射によって抵抗が小
さくなり、一定以上の光量では抵抗ゼロの超伝導状態と
なることから、光検出を行なうことができる。この際、
電極間隔が小さければ電極間の抵抗が小さくなり、超伝
導を生じやすくなって感度が高くなる。
Utilizing this principle, for example, a light-receiving section made of a photoexcited superconductive material is provided between electrodes made of a superconductor, and when the light-receiving section is irradiated with light, the conductivity of the light-receiving section rises and the superconductivity increases. Resistance between body electrodes is reduced. At this time, the amount of light irradiation can be detected by monitoring the voltage or current between the electrodes. That is, the resistance is reduced by the light irradiation, and the light is detected in a superconducting state with zero resistance when the amount of light is more than a certain value. On this occasion,
If the distance between the electrodes is small, the resistance between the electrodes becomes small, and superconductivity is easily generated, and the sensitivity becomes high.

【0012】この素子の形状としては、プレーナー型あ
るいは超伝導層−光励起超伝導層−超伝導層のような積
層型などがあるが、さらに製造が容易で感度も良い素子
として、光励起超伝導性受光部の中にも超伝導材料を分
散した構造のものがある。
As the shape of this device, there are a planar type and a laminated type such as a superconducting layer-a photoexcited superconducting layer-a superconducting layer, and the like. Some light receiving sections have a structure in which a superconducting material is dispersed.

【0013】さらに素子の製造上、光励起超伝導性材料
と超伝導材料の選択が重要であるが、両者ができるだけ
類似の組成、構造を有するようにするのが好ましい。材
料としては、Ge,InSbなどの一般的なものも利用
できるが、特にいわゆる123構造を有する銅酸化物材
料が、感度、応答速度ともに優れている。その例とし
て、LnSrx Ba2-x Cu3 6+y で表わされる材料
の場合、酸素の比率(すなわちyの値)が大きいと超伝
導体となり、その値が小さくなると、光励起超伝導性材
料となりうるので、材料の組み合わせとして好ましい。
更に、素子の安定性をも考慮すると、空気中でも劣化し
ないLnSr2 Cu3-x x 6+y で表される材料を用
いるのが好ましい。この材料の場合、前記組成の材料と
同様yの大小で超伝導特性を制御でき、又Cuへの置換
量xが小さい場合超伝導体となり、大きくなると光励起
超伝導性材料となるので、xの大小でも特性を制御でき
る。
Further, in the manufacture of the device, it is important to select a photoexcited superconductive material and a superconductive material, but it is preferable that both have the same composition and structure as possible. As the material, general materials such as Ge and InSb can be used, but a copper oxide material having a so-called 123 structure is particularly excellent in both sensitivity and response speed. As an example, if the material represented by LnSr x Ba 2-x Cu 3 O 6 + y, the ratio of oxygen (i.e., the value of y) is large becomes superconductor, the value is reduced, excitation superconductivity Since it can be a material, it is preferable as a combination of materials.
Furthermore, if considering also the stability of the device, it is preferable to use a material represented by LnSr 2 Cu 3-x M x O 6 + y which does not deteriorate even in the air. In the case of this material, the superconductivity can be controlled by the magnitude of y as in the case of the material having the above composition, and when the amount x of substitution with Cu is small, the material becomes a superconductor. Characteristics can be controlled in both large and small.

【0014】本発明のデバイスの使用温度としてはデバ
イスの超伝導転移温度以下ならば良く、冷却には液体窒
素あるいは簡単な冷却器を用いることができる。
The operating temperature of the device of the present invention may be lower than the superconducting transition temperature of the device, and liquid nitrogen or a simple cooler can be used for cooling.

【0015】[0015]

【実施例】以下に実施例により本発明を具体的に説明す
る。実験例1(実施例1a、1b、参考例1〜5) 図1に本発明に基づく素子の一例の鳥瞰図を示す。図中
11は超伝導電極、12は光励起超伝導性受光部、13
は照射レーザー光、14はMgO基板、15は定電圧電
源、16は電流モニターである。
The present invention will be specifically described below with reference to examples. Experimental Example 1 (Examples 1a and 1b, Reference Examples 1 to 5) FIG. 1 shows a bird's-eye view of an example of an element according to the present invention. In the figure, 11 is a superconducting electrode, 12 is a photoexcited superconducting light receiving section, 13
Denotes an irradiation laser beam, 14 denotes an MgO substrate, 15 denotes a constant voltage power supply, and 16 denotes a current monitor.

【0016】先ず、銅酸化物超伝導体をマグネトロンス
パッタ法によりMgO基板14上に膜厚100nm蒸着
し、フォトリソグラフィー技術により得られた薄膜を超
伝導電極11の形状に加工した。さらにその上から各超
伝導電極間を橋渡しするようにマスクをもちいて光励起
超伝導性受光部12を成膜した。このときの2つの超伝
導電極の間隔は20μmで固定した。そして、超伝導電
極に金ワイヤーを接続し、冷却器で8Kもしくは20K
の温度に固定して定電圧電源15により一定の電圧をか
け、更に光ファイバーにより青色レーザー光13を受光
部に導き、光照射のオン、オフによる電流の変化を電流
モニター16によりモニターした。
First, a copper oxide superconductor was deposited on the MgO substrate 14 to a thickness of 100 nm by magnetron sputtering, and the thin film obtained by photolithography was processed into the shape of the superconducting electrode 11. Further, a photo-excited superconductive light receiving section 12 was formed thereon using a mask so as to bridge between the superconductive electrodes. At this time, the distance between the two superconducting electrodes was fixed at 20 μm. Then, a gold wire is connected to the superconducting electrode, and 8K or 20K
, And a constant voltage was applied by a constant voltage power supply 15, the blue laser light 13 was guided to a light receiving portion by an optical fiber, and a current change due to ON / OFF of light irradiation was monitored by a current monitor 16.

【0017】表1に超伝導部の材料と光励起超伝導受光
部の材料を変えた場合の特性の評価結果を示す。ここで
表中のNo.3、4がそれぞれ実施例1a、1bに、No.
1、2が参考例1、2に、No.5〜7が参考例3〜5
に、それぞれ相当する。
Table 1 shows the evaluation results of the characteristics when the material of the superconducting portion and the material of the photoexcited superconducting light receiving portion were changed. here
Nos. 3 and 4 in the table correspond to Examples 1a and 1b, respectively.
Nos. 1 and 2 correspond to Reference Examples 1 and 2, and Nos. 5 to 7 correspond to Reference Examples 3 to 5.
Respectively.

【0018】[0018]

【表1】 実験例2(実施例2a、2b、参考例6〜10) 図1の素子で、超伝導電極の間隔が3μmのものを用
い、温度を20Kとして、他は実施例1と同様にして、
各種材料について評価を行なった。結果は表2に示す。
ここで表中のNo.3、4がそれぞれ実施例2a、2bに、
No.1、2が参考例6、7に、No.5〜7が参考例8〜
10に、それぞれ相当する。
[Table 1] Experimental Example 2 (Examples 2a and 2b, Reference Examples 6 to 10) In the device of FIG. 1, the distance between the superconducting electrodes was 3 μm, and the temperature was 20 K.
Various materials were evaluated. The results are shown in Table 2.
Here, Nos. 3 and 4 in the table correspond to Examples 2a and 2b, respectively.
Nos. 1 and 2 correspond to Reference Examples 6 and 7, and Nos. 5 to 7 correspond to Reference Examples 8 to
10 respectively.

【0019】[0019]

【表2】 上記2実験例の結果からこれらの素子は超伝導オプトエ
レクトロニクスデバイスとして利用できることがわか
り、特に超伝導材料と光励起超伝導性材料にいわゆる1
23構造を有するLnSrxBa2-xCu36+yあるいはLn
Sr2Cu3-xx6+yを用いた場合に良好な特性が得られ
ることがわかる。実施例3 前記実施例1および2と同様にMgO基板上に超伝導体
YSr2Cu2.80.27.2をマグネトロンスパッタ法によ
り膜厚 100nm蒸着し、フォトリソグラフィー技術によ
り得られた薄膜を幅 200μmのライン状に加工した。ラ
インの両端は超伝導電極として残すため金を上に蒸着
し、電極間の部分 50μmをむき出しにした。これを酸
素 10%中 200でアニールしてむき出しになった電極
間の超伝導体の部分の酸素の一部を抜いた。そこの部分
のラインの断面の超伝導相21と非超伝導相(光励起超
伝導相22)のマッピングを図2に示した。この図から
超伝導相が光励起超伝導相に取り囲まれるように分散さ
れていることがわかる。そして、超伝導体上の金電極に
金ワイヤーを接続し、液体窒素の温度に固定して一定の
電圧をかけ、更に光ファイバーにより赤色レーザー光を
受光部に導き、光照射のオン、オフによる電流量の変化
をモニターした。その結果感度、応答速度とも前記実施
例1および2以上のデバイスが得られた。実施例4 YSr2Cu2.8Mo2.07.1の組成を有する材料を用い、
薄膜幅を 100μm、電極間距離を 10μmとし、他は実
施例3と同様にして評価を行なった結果、実施例3同様
に感度、応答速度とも実施例1および2の場合より良好
であった。実施例5 図3に本発明の積層型のデバイスの例を示す。MBE法
により、チタン酸ストロンチウム基板34上にYSr2
u2.65Fe0.357.0組成を有する超伝導膜31(膜厚 60n
m)、YSr2Cu2FeO6.8組成の受光部32(膜厚 20n
m)および上記超伝導膜31(膜厚 60nm)を順次エピタ
キシャル成膜し、フォトリソグラフィー技術により得ら
れた薄膜を図3のように加工した。そして上下の超伝導
層31に電圧を定電圧電源35からかけ、電流モニター
36で赤外光33の照射のオン、オフをモニターしたと
ころ前記実施例3および4と同様良好な結果が得られ
た。実施例6 超伝導膜31の組成および膜厚をそれぞれYSr2Cu2.6
Fe0.47.1および 40nmとし、受光部32の組成およ
び膜厚をそれぞれYSr2Cu2FeO7.0および 10nmとす
る以外は全て実施例5と同様にして、評価を実施したと
ころ、実施例5と同様の良好な結果が得られた。
[Table 2] From the results of the above two experimental examples , it was found that these elements can be used as a superconducting optoelectronic device.
LnSr x Ba 2-x Cu 3 O 6 + y or Ln having a 23 structure
It can be seen that good characteristics are obtained when Sr 2 Cu 3-x M x O 6 + y is used. Example 3 In the same manner as in Examples 1 and 2, a superconductor YSr 2 Cu 2.8 W 0.2 O 7.2 was deposited on a MgO substrate to a thickness of 100 nm by magnetron sputtering, and a thin film obtained by a photolithography technique was formed to a thickness of 200 μm. It was processed into a line. Gold was vapor-deposited on both ends of the line as a superconducting electrode to leave a 50 μm portion between the electrodes. This was annealed at 200 ° C. in 10% oxygen to remove part of the oxygen in the exposed portion of the superconductor between the electrodes. FIG. 2 shows the mapping between the superconducting phase 21 and the non-superconducting phase (photoexcited superconducting phase 22) in the cross section of the line in that portion. This figure shows that the superconducting phase is dispersed so as to be surrounded by the photoexcited superconducting phase. Then, a gold wire is connected to the gold electrode on the superconductor, the temperature is fixed to the temperature of liquid nitrogen, a constant voltage is applied, and the red laser light is guided to the light-receiving part by an optical fiber, and the current is turned on and off by light irradiation. The change in volume was monitored. As a result, devices having the same sensitivity and response speed as those of Examples 1 and 2 were obtained. Example 4 Using a material having a composition of YSr 2 Cu 2.8 Mo 2.0 O 7.1 ,
The evaluation was performed in the same manner as in Example 3 except that the width of the thin film was 100 μm and the distance between the electrodes was 10 μm. As a result, as in Example 3, both the sensitivity and the response speed were better than those of Examples 1 and 2. Embodiment 5 FIG. 3 shows an example of a laminated device of the present invention. YSr 2 C is deposited on the strontium titanate substrate 34 by MBE.
u A superconducting film 31 having a composition of 2.65 Fe 0.35 O 7.0 (film thickness 60n
m), YSr 2 Cu 2 FeO 6.8 composition light-receiving part 32 (film thickness 20n
m) and the superconducting film 31 (thickness: 60 nm) were sequentially epitaxially formed, and the thin film obtained by the photolithography technique was processed as shown in FIG. Then, a voltage was applied to the upper and lower superconducting layers 31 from the constant voltage power supply 35, and the on / off of the irradiation of the infrared light 33 was monitored by the current monitor 36. . Example 6 The composition and the film thickness of the superconducting film 31 were respectively YSr 2 Cu 2.6
Evaluation was performed in the same manner as in Example 5 except that Fe 0.4 O was 7.1 and 40 nm, and the composition and film thickness of the light receiving portion 32 were YSr 2 Cu 2 FeO 7.0 and 10 nm, respectively. Good results were obtained.

【0020】[0020]

【発明の効果】以上の結果から、本発明により、冷却に
液体窒素あるいは簡易の冷却器を使用できるだけの高温
でしかも厳密な温度制御を必要とせずに、高感度、高速
応答性を有する超伝導オプトエレクトロニクスデバイス
が得られる。
From the above results, it can be seen that, according to the present invention, superconductivity having high sensitivity and high-speed response can be obtained at a temperature high enough to use liquid nitrogen or a simple cooler for cooling and without requiring strict temperature control. An optoelectronic device is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プレーナー型素子の鳥瞰図である。FIG. 1 is a bird's-eye view of a planar element.

【図2】超伝導相分散型受光部の断面図である。FIG. 2 is a cross-sectional view of a superconducting phase dispersion type light receiving unit.

【図3】積層型素子の断面図である。FIG. 3 is a cross-sectional view of a stacked element.

【符号の説明】[Explanation of symbols]

11 超伝導電極 12 光励起超伝導性受光部 13,33 レーザー照射光 14 MgO基板 15 定電圧電源 16 電流モニター 21 超伝導相 22 光励起超伝導相 31 超伝導層 32 光励起超伝導層 34 SrTiO3 基板 35 定電圧電源 36 電流モニターDESCRIPTION OF SYMBOLS 11 Superconducting electrode 12 Photoexcited superconducting light receiving part 13,33 Laser irradiation light 14 MgO substrate 15 Constant voltage power supply 16 Current monitor 21 Superconducting phase 22 Photoexcited superconducting phase 31 Superconducting layer 32 Photoexcited superconducting layer 34 SrTiO 3 substrate 35 Constant voltage power supply 36 Current monitor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−265176(JP,A) 特開 平4−18775(JP,A) 特開 平4−129406(JP,A) 特開 平1−315177(JP,A) 特開 平4−125980(JP,A) 特開 平6−5931(JP,A) 特開 平6−177440(JP,A) 特開 平2−69981(JP,A) 特開 昭64−14976(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/22 - 39/24 H01L 39/00 H01L 31/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-265176 (JP, A) JP-A-4-18775 (JP, A) JP-A-4-129406 (JP, A) JP-A-1- 315177 (JP, A) JP-A-4-125980 (JP, A) JP-A-6-5931 (JP, A) JP-A-6-177440 (JP, A) JP-A-2-69981 (JP, A) JP-A 64-14976 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 39/22-39/24 H01L 39/00 H01L 31/10

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超伝導を用いる超伝導オプトエレクトロ
ニクスデバイスにおいて、超伝導体からなる電極間に光
励起超伝導受光部を有し、 該光励起超伝導受光部が、光励起超伝導材料中に超伝導
材料が分散した構造を有する ことを特徴とする超伝導オ
プトエレクトロニクスデバイス。
1. A superconducting optoelectronic device using a superconducting, it has a photoexcited superconducting receiving portion between electrodes made of superconductor, optical excitation superconducting light receiving portion, the superconducting during photoexcitation superconducting material
A superconducting optoelectronic device having a structure in which materials are dispersed .
【請求項2】 電極および光励起超伝導受光部が、12
3構造の銅酸化物材料からなる、請求項に記載の超伝
導オプトエレクトロニクスデバイス。
2. The method according to claim 1, wherein the electrode and the photo-excited superconducting light receiving section are 12
The superconducting optoelectronic device according to claim 1 , comprising a three-structure copper oxide material.
【請求項3】 銅酸化物材料が、組成式LnSrxBa2-x
Cu36+y(式中、LnはYまたはランタノイド元素であ
り、xおよびyはそれぞれ0≦x<1.5および0<y<2
の数字である。)の化合物である、請求項に記載の超
伝導オプトエレクトロニクスデバイス。
3. The method according to claim 1, wherein the copper oxide material has a composition formula of LnSr x Ba 2-x
Cu 3 O 6 + y (where Ln is Y or a lanthanoid element, x and y are 0 ≦ x <1.5 and 0 <y <2, respectively)
Is the number. 3. The superconducting optoelectronic device according to claim 2 , which is a compound of the formula (1).
【請求項4】 銅酸化物材料が、組成式LnSr2Cu3-x
x6+y(式中、LnはYまたはランタノイド元素、Mは
Ti,V,Fe,Co,Ga,Ge,Mo,WまたはReであり、xお
よびyはそれぞれ0<x≦1および0<y<2の数字であ
る。)の化合物である、請求項に記載の超伝導オプト
エレクトロニクスデバイス。
4. The method according to claim 1, wherein the copper oxide material has a composition formula of LnSr 2 Cu 3-x
M x O 6 + y (where Ln is Y or a lanthanoid element, M is Ti, V, Fe, Co, Ga, Ge, Mo, W or Re, x and y are each 0 <x ≦ 1 and 3. The superconducting optoelectronic device according to claim 2 , which is a compound of the following formula: 0 <y <2.
【請求項5】 電極の銅酸化物材料の方が、光励起超伝
導材料の銅酸化物材料より酸素の比率が高い組成式を有
する、請求項3または4に記載の超伝導オプトエレクト
ロニクスデバイス。
5. The superconducting optoelectronic device according to claim 3 , wherein the copper oxide material of the electrode has a composition formula in which the proportion of oxygen is higher than that of the copper oxide material of the photoexcited superconducting material.
【請求項6】 電極の銅酸化物材料の方が、光励起超伝
導材料の銅酸化物材料より銅の比率が高い組成式を有す
る、請求項に記載の超伝導オプトエレクトロニクスデ
バイス。
6. The superconducting optoelectronic device according to claim 4 , wherein the copper oxide material of the electrode has a composition formula in which the proportion of copper is higher than the copper oxide material of the photoexcited superconducting material.
【請求項7】 超伝導を用いる超伝導オプトエレクトロ
ニクスデバイスにおいて、超伝導体からなる電極間に光
励起超伝導受光部を有し、 該電極および該光励起超伝導受光部が、123構造の銅
酸化物材料からなり、 銅酸化物材料が、組成式LnSr2Cu3-xx6+y(式
中、LnはYまたはランタノイド元素、MはTi,V,Fe,
Co,Ga,Ge,Mo,WまたはReであり、xおよびyはそれ
ぞれ0<x≦1および0<y<2の数字である。)の化合
物であることを特徴とする超伝導オプトエレクトロニク
スデバイス。
7. A superconducting optoelectronic device using superconductivity.
In a Nix device, light is applied between electrodes made of a superconductor.
An excitation superconducting light receiving portion, wherein the electrode and the photoexcited superconducting light receiving portion are made of copper having a 123 structure.
An oxide material, the copper oxide material, the composition formula LnSr 2 Cu 3-x M x O 6 + y ( wherein, Ln is Y or a lanthanoid element, M is Ti, V, Fe,
Co, Ga, Ge, Mo, W or Re, and x and y are numbers of 0 <x ≦ 1 and 0 <y <2, respectively. A superconducting optoelectronic device characterized by being a compound of (1).
【請求項8】 光励起超伝導受光部が、光励起超伝導材
料中に超伝導材料が分散した構造を有する、請求項
記載の超伝導オプトエレクトロニクスデバイス。
8. The superconducting optoelectronic device according to claim 7 , wherein the photoexcited superconducting light receiving section has a structure in which the superconducting material is dispersed in the photoexcited superconducting material.
【請求項9】 電極の銅酸化物材料の方が、光励起超伝
導材料の銅酸化物材料より酸素の比率が高い組成式を有
する、請求項7または8に記載の超伝導オプトエレクト
ロニクスデバイス。
9. The superconducting optoelectronic device according to claim 7 , wherein the copper oxide material of the electrode has a composition formula in which the proportion of oxygen is higher than that of the copper oxide material of the photoexcited superconducting material.
【請求項10】 電極の銅酸化物材料の方が、光励起超
伝導材料の銅酸化物材料より銅の比率が高い組成式を有
する、請求項7または8に記載の超伝導オプトエレクト
ロニクスデバイス。
10. The superconducting optoelectronic device according to claim 7 , wherein the copper oxide material of the electrode has a composition formula in which the proportion of copper is higher than that of the copper oxide material of the photoexcited superconducting material.
JP01099993A 1993-01-26 1993-01-26 Superconducting optoelectronic devices Expired - Fee Related JP3160406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01099993A JP3160406B2 (en) 1993-01-26 1993-01-26 Superconducting optoelectronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01099993A JP3160406B2 (en) 1993-01-26 1993-01-26 Superconducting optoelectronic devices

Publications (2)

Publication Number Publication Date
JPH06224480A JPH06224480A (en) 1994-08-12
JP3160406B2 true JP3160406B2 (en) 2001-04-25

Family

ID=11765837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01099993A Expired - Fee Related JP3160406B2 (en) 1993-01-26 1993-01-26 Superconducting optoelectronic devices

Country Status (1)

Country Link
JP (1) JP3160406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521117A (en) * 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション Optical array for use with array cameras

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521117A (en) * 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション Optical array for use with array cameras

Also Published As

Publication number Publication date
JPH06224480A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
US5274249A (en) Superconducting field effect devices with thin channel layer
EP0407166B1 (en) Light detecting device and light detection method
US5162298A (en) Grain boundary junction devices using high tc superconductors
US5057485A (en) Light detecting superconducting Josephson device
JP3160406B2 (en) Superconducting optoelectronic devices
US6229154B1 (en) Photo detecting element
JPH0262082A (en) Superconductive transistor
EP0482198B1 (en) Superconducting tunnel junction element comprising a magnetic oxide material and its use
Irie et al. Fabrication of DC SQUIDs based on Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub y/intrinsic Josephson junctions
JP2829173B2 (en) Superconducting element
JP2786827B2 (en) Superconducting element
JP3026482B2 (en) Superconducting element, method of manufacturing and operating method
JP3232642B2 (en) Current modulator
JP2896788B2 (en) Photodetector
JP3221037B2 (en) Current modulator
JP3203799B2 (en) Superconducting three-terminal element
JP2849721B2 (en) Superconducting switch element
JP3016566B2 (en) Superconducting switch element
JPH03274775A (en) Superconducting element
JP3076503B2 (en) Superconducting element and method of manufacturing the same
Kawabe Application of high-temperature superconductors to SQUID and other devices
JPH0212022A (en) Superconductive photodetector element
JP2921697B2 (en) Superconducting storage element
JP2737008B2 (en) Photodetector
JPH0537030A (en) Superconductive rectifying device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees