JP3133392B2 - Manufacturing method of soot base material for optical fiber - Google Patents

Manufacturing method of soot base material for optical fiber

Info

Publication number
JP3133392B2
JP3133392B2 JP18406891A JP18406891A JP3133392B2 JP 3133392 B2 JP3133392 B2 JP 3133392B2 JP 18406891 A JP18406891 A JP 18406891A JP 18406891 A JP18406891 A JP 18406891A JP 3133392 B2 JP3133392 B2 JP 3133392B2
Authority
JP
Japan
Prior art keywords
soot
burner
base material
outlet
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18406891A
Other languages
Japanese (ja)
Other versions
JPH059035A (en
Inventor
保 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP18406891A priority Critical patent/JP3133392B2/en
Publication of JPH059035A publication Critical patent/JPH059035A/en
Application granted granted Critical
Publication of JP3133392B2 publication Critical patent/JP3133392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ用スート母
材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a soot preform for an optical fiber.

【0002】[0002]

【従来の技術】光ファイバ用スート母材を製造する方法
の一つにいわゆる外付け法(OVD法)がある。この方
法は、気化させた石英ガラス原料を火炎中に吹き込み、
火炎加水分解反応によってスートを生成させ、それを種
棒(通常は石英ガラス)に吹きつけてスート母材を成長
させていくものである。
2. Description of the Related Art One of the methods for manufacturing a soot preform for an optical fiber is a so-called external method (OVD method). This method blows the vaporized quartz glass raw material into the flame,
The soot is produced by a flame hydrolysis reaction and sprayed onto a seed rod (usually quartz glass) to grow the soot base material.

【0003】この方法では、種棒に付着するスート量が
増すに従ってスート母材の外径が大きくなるが、堆積ス
ートの密度を均一に保つためには、スート母材の外径の
増大に合わせて火力を増大させる必要がある。このため
従来は、燃料ガスすなわち水素と酸素のバーナーへの供
給量を徐々に増加させていた。
In this method, the outer diameter of the soot base material increases as the amount of soot adhering to the seed rod increases. However, in order to keep the density of the deposited soot uniform, the outer diameter of the soot base material must be increased. It is necessary to increase firepower. For this reason, conventionally, the supply amount of fuel gas, that is, hydrogen and oxygen to the burner has been gradually increased.

【0004】[0004]

【発明が解決しようとする課題】しかし大火力を得るに
は、バーナーの燃料ガス吹き出し口の断面積を大きくし
て、大量の燃料ガスの供給を確保しなければならない。
これは、燃料ガス吹き出し口の断面積を大きくせずに流
速を上げて大火力を得ようとすると、吹き出し口が抵抗
となって燃料ガスが流れ難くなったり、乱流状に吹き出
したりして、良好な火炎を形成することができないから
である。
However, in order to obtain a large thermal power, it is necessary to increase the sectional area of the fuel gas outlet of the burner to secure a large supply of fuel gas.
This is because, when trying to obtain large thermal power by increasing the flow rate without increasing the cross-sectional area of the fuel gas outlet, the outlet becomes resistance and the fuel gas becomes difficult to flow, or blows out in a turbulent flow This is because a good flame cannot be formed.

【0005】しかし単に燃料ガス吹き出し口の断面積を
大きくしただけでは、スート母材が細い初期の段階で火
力を絞った場合、吹き出し流速が低くなり過ぎて、火炎
にスート母材に届く勢いを持たせることができなくな
る。また燃料ガスである水素と酸素の無駄も大きくな
る。
However, if the cross-sectional area of the fuel gas outlet is simply increased, if the thermal power is reduced in the initial stage of the thin soot base material, the flow velocity of the blow-out becomes too low and the flame reaches the soot base material by the flame. You will not be able to have it. Further, waste of hydrogen and oxygen as fuel gas is increased.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
課題を解決した光ファイバ用スート母材の製造方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a soot preform for an optical fiber which solves the above-mentioned problems.

【0007】本発明においては、気化させた石英ガラス
原料を火炎中に吹き込み、火炎加水分解反応によってス
ートを生成させ、それを種棒に吹きつけて光ファイバ用
スート母材を製造する場合に、石英ガラス原料吹き出し
口の周囲に層状に水素と酸素とアルゴンの吹き出し口を
有する多重管バーナーを中心部に配置し、その周囲に、
環状の水素吹き出し口内に間隔をあけて多数の細管状の
酸素吹き出し口を有する環状バーナーを多重に配置した
複合バーナーを使用する。
In the present invention, when a vaporized quartz glass raw material is blown into a flame, soot is generated by a flame hydrolysis reaction, and the soot is sprayed on a seed rod to produce a soot preform for an optical fiber. A multi-tube burner having hydrogen, oxygen, and argon outlets in a layer around the quartz glass raw material outlet is arranged at the center, and around that,
A composite burner is used in which multiple annular burners having a large number of narrow tubular oxygen outlets are arranged in the annular hydrogen outlet at intervals.

【0008】そしてスート母材が細いうちは多重管バー
ナーと内側の環状バーナーによりスートを堆積させ、ス
ート母材が所定の太さに成長したところで順次外側の環
状バーナーを点火し、スート母材の成長につれ水素と酸
素の流量を徐々に増加させてスート母材の表面温度が低
下しないようにするものである。
While the soot base material is thin, soot is deposited by the multi-tube burner and the inner annular burner. When the soot base material has grown to a predetermined thickness, the outer annular burner is sequentially ignited, and the soot base material is ignited. The flow rate of hydrogen and oxygen is gradually increased during the growth so that the surface temperature of the soot base material does not decrease.

【0009】[0009]

【作用】この方法では、スート母材の太さに合わせて簡
単に火炎を強くできるばかりでなく、火炎の太さそのも
のを大きくできるので、有効なスートの堆積が可能とな
る。なぜならば、スートの堆積は熱泳動(サーモホレシ
ス)に従って進行するので、スート流を火炎で囲んでス
ート母材側の温度を相対的に低くしてスート母材に向か
うスートを多くすることが必要であり、スート母材が太
くなるにつれ火炎を太くできることは、スートの堆積効
率を高めるのに有効である。
According to this method, not only can the flame be easily intensified in accordance with the thickness of the soot base material, but also the thickness of the flame itself can be increased, so that effective soot deposition becomes possible. Because the soot deposition proceeds according to thermophoresis, it is necessary to surround the soot flow with a flame and lower the temperature on the soot base material side to increase the soot toward the soot base material. The fact that the flame can be made thicker as the soot base material becomes thicker is effective in increasing the soot deposition efficiency.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1にこの実施例に使用する複合バーナー
の吹き出し口の断面を示す。この複合バーナー11は、中
心の石英ガラス原料吹き出し口1の周囲に同心円状に環
状の水素吹き出し口2、アルゴン吹き出し口3、酸素吹
き出し口4、アルゴン吹き出し口5を順次設けた多重管
バーナー12が中心部にあり、その周囲にさらに二重に環
状バーナー13、14を設けたものである。二重の環状バー
ナー13、14はそれぞれ、環状の水素吹き出し口6、7内
に周方向に間隔をあけて多数の細管状の酸素吹き出し口
8、9を設けた構造である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a cross section of the outlet of the composite burner used in this embodiment. The composite burner 11 includes a multi-tube burner 12 provided with a concentric annular hydrogen outlet 2, an argon outlet 3, an oxygen outlet 4, and an argon outlet 5 around the center quartz glass raw material outlet 1 in that order. It is located at the center, and is further provided with double annular burners 13 and 14 around the center. The double annular burners 13 and 14 have a structure in which a number of narrow tubular oxygen outlets 8 and 9 are provided in the annular hydrogen outlets 6 and 7 at circumferential intervals.

【0011】なお環状バーナー13、14から吹き出される
酸素がバーナー端面より例えば20cmの位置で焦点を結ぶ
ようにしておけば、その位置で最も効率よくターゲット
(スート母材) を加熱することができるので好ましい。
If the oxygen blown from the annular burners 13 and 14 is focused at a position, for example, 20 cm from the burner end face, the target is most efficiently at that position.
(Soot base material) is preferred because it can be heated.

【0012】図2に上記複合バーナー11を用いたスート
母材の製造方法と複合バーナー11へのガス供給系を模式
的に示す。石英ガラスよりなる種棒15を旋盤にセット
し、軸線を中心として回転させながら軸線方向に往復動
させる。この場合は複合バーナー11は固定であるが、種
棒15を往復動させずに複合バーナー11を往復動させるよ
うにしてもよい。バーナーを点火し、SiCl4 を吹き込む
と、スート(SiO2 の粉)が生じ、これが種棒15に付着し
てスート母材16が成長する。
FIG. 2 schematically shows a method of manufacturing a soot base material using the composite burner 11 and a gas supply system to the composite burner 11. The seed rod 15 made of quartz glass is set on a lathe and reciprocated in the axial direction while rotating about the axis. In this case, the composite burner 11 is fixed, but the composite burner 11 may be reciprocated without reciprocating the seed bar 15. When the burner is ignited and SiCl 4 is blown, soot (SiO 2 powder) is generated, which adheres to the seed rod 15 and the soot base material 16 grows.

【0013】原料発生器17に液体のSiCl4 (四塩化ケイ
素)を入れ、加熱して一定温度に保ち、アルゴンガスを
流すと、蒸気圧に比例してガス状のSiCl4 が得られる。
バーナー中心の石英ガラス原料吹き出し口1には、この
SiCl4 がアルゴンガスと共に供給される。その流量は流
量制御器Ar-1により制御される。
When liquid SiCl 4 (silicon tetrachloride) is charged into the raw material generator 17, heated and maintained at a constant temperature, and argon gas is flowed, gaseous SiCl 4 is obtained in proportion to the vapor pressure.
The quartz glass material outlet 1 at the center of the burner
SiCl 4 is supplied with argon gas. The flow rate is controlled by a flow controller Ar-1.

【0014】多重管バーナー12の水素吹き出し口2には
流量制御器H2 −2で制御された水素が、アルゴン吹き
出し口3には流量制御器Ar-3で制御されたアルゴンが、
酸素吹き出し口4には流量制御器O2−4で制御された
酸素が、アルゴン吹き出し口5には流量制御器Ar-5で制
御されたアルゴンがそれぞれ供給される。
[0014] Hydrogen is a hydrogen outlet 2 of the multi-tube burner 12 which is controlled by the flow controller H 2 -2 is argon argon outlet 3 which is controlled by the flow controller Ar-3 is,
Oxygen controlled by the flow controller O 2 -4 is supplied to the oxygen outlet 4, and argon controlled by the flow controller Ar-5 is supplied to the argon outlet 5.

【0015】また内側の環状バーナー13の水素吹き出し
口6には流量制御器H2 −6で制御された水素が、酸素
吹き出し口8には流量制御器O2 −8で制御された酸素
がそれぞれ供給される。同様に外側の環状バーナー14の
水素吹き出し口7には流量制御器H2 −7で制御された
水素が、酸素吹き出し口9には流量制御器O2 −9で制
御された酸素がそれぞれ供給される。
The hydrogen controlled by the flow controller H 2 -6 is supplied to the hydrogen outlet 6 of the inner annular burner 13, and the oxygen controlled by the flow controller O 2 -8 is supplied to the oxygen outlet 8. Supplied. Similarly, hydrogen controlled by the flow controller H 2 -7 is supplied to the hydrogen outlet 7 of the outer annular burner 14, and oxygen controlled by the flow controller O 2 -9 is supplied to the oxygen outlet 9. You.

【0016】この複合バーナー11は、多重管バーナー12
と内側の環状バーナー13がメインのバーナーを構成して
おり、外側の環状バーナー14はスート母材16が所定の太
さに成長したときに点火される補助的なバーナーであ
る。
The composite burner 11 comprises a multi-tube burner 12
The inner annular burner 13 constitutes a main burner, and the outer annular burner 14 is an auxiliary burner that is ignited when the soot base material 16 has grown to a predetermined thickness.

【0017】次に合成条件を説明する。原料発生器17を
55℃に保ち、アルゴンガスを1.5 SLM(標準状態における
リットル/分)流して、SiCl4 ガスを中心の石英ガラス
原料吹き出し口1に供給した。多重管バーナー12の水素
吹き出し口2には水素を20 SLM、酸素吹き出し口4には
酸素を22 SLM流し、アルゴン吹き出し口3、5にはそれ
ぞれアルゴンを2 SLM 、5 SLM 流した。また内側の環状
バーナー13の水素吹き出し口6には水素を20 SLM、酸素
吹き出し口8には酸素を7.5 SLM 流した。
Next, the synthesis conditions will be described. Raw material generator 17
While maintaining the temperature at 55 ° C., argon gas was supplied at a flow rate of 1.5 SLM (liter / minute in a standard state), and SiCl 4 gas was supplied to the quartz glass raw material outlet 1 at the center. 20 SLM of hydrogen was supplied to the hydrogen outlet 2 of the multi-tube burner 12, 22 SLM of oxygen was supplied to the oxygen outlet 4, and 2 SLM and 5 SLM of argon were supplied to the argon outlets 3 and 5, respectively. Further, hydrogen was supplied to the hydrogen outlet 6 of the inner annular burner 13 at 20 SLM, and oxygen was supplied to the oxygen outlet 8 at 7.5 SLM.

【0018】種棒15は外径15mmφの GeO2 ドープ石英ガ
ラスであり、これを100rpmで回転させると共に、200mm/
分で往復動させた。バーナー先端と種棒15の距離は200
mmとした。
The seed rod 15 is a GeO 2 -doped quartz glass having an outer diameter of 15 mmφ.
Reciprocated in minutes. The distance between the burner tip and seed rod 15 is 200
mm.

【0019】以上の条件で種棒15の外周にスートを付着
させ、スートの外径が40mmになったところで、外側の環
状バーナー14を点火した。点火時の水素と酸素の流量
は、水素=20SLM 、酸素=7.5 SLM とし、1往復毎に流
量を増した。水素と酸素の流量比は水素/酸素=1/0.
375 を保ち、最終的には水素=80SLM 、酸素=30SLM ま
で増加させた。最終段階でのスート外径は120 mmであっ
た。
Under the above conditions, soot was attached to the outer periphery of the seed rod 15, and when the outer diameter of the soot became 40 mm, the outer annular burner 14 was ignited. The flow rates of hydrogen and oxygen at the time of ignition were set to 20 SLM for hydrogen and 7.5 SLM for oxygen, and the flow rates were increased every reciprocation. The flow ratio of hydrogen and oxygen is hydrogen / oxygen = 1/0.
It was maintained at 375 and eventually increased to 80 SLM for hydrogen and 30 SLM for oxygen. The outer diameter of the soot at the final stage was 120 mm.

【0020】このようにして得られたスート母材をヘリ
ウムと塩素の雰囲気下で1600℃に加熱して、透明な光フ
ァイバ用ガラス母材を得、さらにこれを外径125 μm に
線引して光ファイバを得た。この光ファイバは所定の伝
送特性を有するものであった。
The soot base material thus obtained was heated to 1600 ° C. in an atmosphere of helium and chlorine to obtain a transparent glass base material for optical fibers, which was further drawn to an outer diameter of 125 μm. To obtain an optical fiber. This optical fiber had a predetermined transmission characteristic.

【0021】次に比較のため、多重管バーナー12は前記
実施例と同じとし、内側環状バーナー13と外側環状バー
ナー14の間の仕切をなくした、つまり燃料ガス吹き出し
口の断面積を単純に大きくしたバーナーを用いてスート
母材を製造した。この方法では、環状バーナーの水素と
酸素の流量を、水素40SLM 以下、酸素15SLM 以下にする
と、火炎が弱まってしまい、種棒を十分加熱するだけの
火炎流を得ることが出来なかった。
Next, for comparison, the multi-tube burner 12 is the same as that of the above embodiment, and the partition between the inner annular burner 13 and the outer annular burner 14 is eliminated, that is, the sectional area of the fuel gas outlet is simply increased. A soot base material was manufactured using the burner. With this method, when the flow rates of hydrogen and oxygen in the annular burner were set to 40 SLM or less for hydrogen and 15 SLM or less for oxygen, the flame was weakened, and it was not possible to obtain a flame flow sufficient to sufficiently heat the seed rod.

【0022】このため初期の段階から環状バーナーは水
素40 SLM以上、酸素15 SLM以上の流量にする必要がある
が、このような流量にすると、安定して吹き出す火炎は
得られるものの、種棒の加熱が強くなりすぎる。その結
果、種棒付近のスート層の密度が高くなりすぎ、スート
母材を透明化するときに塩素ガスによる脱水反応が十分
に行われず、得られた光ファイバの伝送特性は通常得ら
れる値より低いものであった。また初期の段階から水素
および酸素の流量が大きいため、燃料ガスの無駄が大き
い。
For this reason, from the initial stage, the annular burner needs to have a flow rate of 40 SLM or more of hydrogen and 15 SLM or more of oxygen. Heating is too strong. As a result, the density of the soot layer near the seed rod becomes too high, the dehydration reaction with chlorine gas is not sufficiently performed when the soot base material is made transparent, and the transmission characteristics of the obtained optical fiber are higher than those normally obtained. It was low. Further, since the flow rates of hydrogen and oxygen are large from the initial stage, waste of fuel gas is large.

【0023】なお前記実施例では環状バーナー部が二重
の場合について説明したが、これは三重以上にしてもよ
い。三重以上の場合もスート母材の外径が大きくなるに
従い、内側の環状バーナーから順次外側の環状バーナー
へと点火していけばよい。また図3は外側の環状バーナ
ー14の外側形状を矩形にしたものを示している。この場
合、もしこの複合バーナーをOVD法に使用するなら、
この図のように酸素吹き出し口9は環状バーナー14の図
で見て上下に設ければよいし、VAD法に使用するな
ら、酸素吹き出し口9は左右にも同様の間隔で、かつ同
数設ける等すればよい。このように環状バーナーという
言葉は、多重管バーナーを周方向に包囲しているバーナ
ーであることを意味し、図1のような円形状だけでなく
図3のような矩形状のものも含むものである。それ故、
内側の環状バーナー13についても同様に外側形状が矩形
状の環状バーナーとすることもできる。
In the above embodiment, the case where the annular burner portion is double has been described, but this may be triple or more. Even in the case of triple or more, it is only necessary to ignite sequentially from the inner annular burner to the outer annular burner as the outer diameter of the soot base material increases. FIG. 3 shows the outer annular burner 14 having a rectangular outer shape. In this case, if this composite burner is used for the OVD method,
As shown in this figure, the oxygen outlets 9 may be provided vertically above and below the annular burner 14, and if used in the VAD method, the oxygen outlets 9 are provided on the left and right at the same intervals and in the same number. do it. Thus, the term annular burner means a burner that surrounds the multi-tube burner in the circumferential direction, and includes not only a circular shape as in FIG. 1 but also a rectangular shape as in FIG. . Therefore,
Similarly, the inner annular burner 13 may be an annular burner whose outer shape is rectangular.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、初
期の段階では多重管バーナーと内側の環状バーナーとか
らなるメインのバーナーでスートを堆積させ、スート母
材が所定の太さに成長したところで順次外側の環状バー
ナーを点火してスート母材の成長に合わせて水素と酸素
の流量を徐々に増加させていくので、スートの堆積効率
がよく、大径のスート母材を効率よく製造できると共
に、燃料ガスの使用量も少なくて済む利点がある。
As described above, according to the present invention, at the initial stage, soot is deposited by the main burner including the multi-tube burner and the inner annular burner, and the soot base material grows to a predetermined thickness. Then, the outer annular burners are sequentially ignited and the flow rates of hydrogen and oxygen are gradually increased in accordance with the growth of the soot base material, so that the soot deposition efficiency is good and a large-diameter soot base material is efficiently produced. There is an advantage that the amount of fuel gas used can be reduced as well as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に使用される複合バーナー
の吹き出し口の断面図。
FIG. 1 is a sectional view of an outlet of a composite burner used in one embodiment of the present invention.

【図2】 本発明に係る光ファイバ用スート母材の製造
方法の一実施例を示す説明図。
FIG. 2 is an explanatory view showing one embodiment of a method of manufacturing a soot preform for an optical fiber according to the present invention.

【図3】 本発明の他の実施例に使用される複合バーナ
ーの吹き出し口の断面図。
FIG. 3 is a sectional view of an outlet of a composite burner used in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:石英ガラス原料吹き出し口 2:水素吹き出し口 3:アルゴン吹き出し口 4:酸素吹き出し口
5:アルゴン吹き出し口 6:水素吹き出し口 7:水素吹き出し口 8:酸
素吹き出し口 9:酸素吹き出し口 11:複合バーナー 12:多重
管バーナー 13:内側の環状バーナー 14:外側の環状バーナー
15:種棒 16:スート母材 17:原料発生器
1: Quartz glass material outlet 2: Hydrogen outlet 3: Argon outlet 4: Oxygen outlet
5: Argon outlet 6: Hydrogen outlet 7: Hydrogen outlet 8: Oxygen outlet 9: Oxygen outlet 11: Composite burner 12: Multiple tube burner 13: Inner annular burner 14: Outer annular burner
15: Seed stick 16: Soot base material 17: Raw material generator

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気化させた石英ガラス原料を火炎中に吹
き込み、火炎加水分解反応によってスートを生成させ、
それを種棒に吹きつけて光ファイバ用スート母材を製造
する方法において、石英ガラス原料吹き出し口の周囲に
層状に水素と酸素とアルゴンの吹き出し口を有する多重
管バーナーを中心部に配置し、その周囲に、環状の水素
吹き出し口内に間隔をあけて多数の細管状の酸素吹き出
し口を有する環状バーナーを多重に配置した複合バーナ
ーを使用し、スート母材が細いうちは多重管バーナーと
内側の環状バーナーによりスートを堆積させ、スート母
材が所定の太さに成長したところで順次外側の環状バー
ナーを点火し、スート母材の成長につれスート母材の表
面温度が低下しないように水素と酸素の流量を徐々に増
加させていくことを特徴とする光ファイバ用スート母材
の製造方法。
Claims 1. A quartz glass raw material that has been vaporized is blown into a flame, soot is generated by a flame hydrolysis reaction,
In a method of manufacturing a soot preform for an optical fiber by spraying it on a seed rod, a multi-tube burner having hydrogen, oxygen, and argon outlets in a layer around a quartz glass raw material outlet is arranged at the center, Around it, a composite burner is used in which multiple annular burners having a large number of narrow tubular oxygen outlets are arranged at intervals in the annular hydrogen outlet, and while the soot base material is thin, a multi-tube burner and an inner burner are used. The soot is deposited by the annular burner, and when the soot base material has grown to a predetermined thickness, the outer annular burner is sequentially ignited, so that the surface temperature of the soot base material does not decrease as the soot base material grows. A method for producing a soot preform for optical fibers, characterized by gradually increasing the flow rate.
JP18406891A 1991-06-28 1991-06-28 Manufacturing method of soot base material for optical fiber Expired - Lifetime JP3133392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18406891A JP3133392B2 (en) 1991-06-28 1991-06-28 Manufacturing method of soot base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18406891A JP3133392B2 (en) 1991-06-28 1991-06-28 Manufacturing method of soot base material for optical fiber

Publications (2)

Publication Number Publication Date
JPH059035A JPH059035A (en) 1993-01-19
JP3133392B2 true JP3133392B2 (en) 2001-02-05

Family

ID=16146823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18406891A Expired - Lifetime JP3133392B2 (en) 1991-06-28 1991-06-28 Manufacturing method of soot base material for optical fiber

Country Status (1)

Country Link
JP (1) JP3133392B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567574B2 (en) * 1995-12-26 2004-09-22 住友電気工業株式会社 Burner for synthesis of porous glass base material
TW564242B (en) 1998-07-29 2003-12-01 Shinetsu Chemical Co Porous optical fiber base materials, optical fiber base materials and methods for producing them
WO2000017115A1 (en) * 1998-09-22 2000-03-30 Corning Incorporated Burners for producing boules of fused silica glass
JP6623201B2 (en) * 2017-10-13 2019-12-18 信越化学工業株式会社 Burner for synthesis

Also Published As

Publication number Publication date
JPH059035A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US4406684A (en) Core torch for fabricating single-mode optical fiber preforms
EP0185106B1 (en) Method of producing a rod containing fluorine
US4367085A (en) Method of fabricating multi-mode optical fiber preforms
US4627867A (en) Method for producing highly pure glass preform for optical fiber
GB2128982A (en) Fabrication method of optical fiber preforms
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
EP0072069B1 (en) Method of producing preforms for drawing optical fibres and apparatus for the continuous production of optical fibres
JP2612941B2 (en) Method for producing porous optical fiber preform
US4781740A (en) Method for producing glass preform for optical fiber
JPS59174538A (en) Manufacture of base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPH10330129A (en) Production of porous glass body for optical fiber
JPH03112820A (en) Production of porous glass preform
JPS6041627B2 (en) Manufacturing method of optical fiber base material
JPS62162637A (en) Production of optical fiber preform
JPS62108748A (en) Preparation of glass fiber base material
JPH0460930B2 (en)
JPH0331657B2 (en)
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH01100034A (en) Apparatus for producing optical fiber preform
JPH02124736A (en) Production of optical fiber preform
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPS60221335A (en) Preparation of parent material for optical fiber
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JPH02164734A (en) Production of quartz glass soot

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11