JP3130238B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JP3130238B2
JP3130238B2 JP32851295A JP32851295A JP3130238B2 JP 3130238 B2 JP3130238 B2 JP 3130238B2 JP 32851295 A JP32851295 A JP 32851295A JP 32851295 A JP32851295 A JP 32851295A JP 3130238 B2 JP3130238 B2 JP 3130238B2
Authority
JP
Japan
Prior art keywords
cooling medium
temperature
sodium
heat insulating
insulating container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32851295A
Other languages
Japanese (ja)
Other versions
JPH09167631A (en
Inventor
敏幸 川口
道孝 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP32851295A priority Critical patent/JP3130238B2/en
Publication of JPH09167631A publication Critical patent/JPH09167631A/en
Application granted granted Critical
Publication of JP3130238B2 publication Critical patent/JP3130238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム−硫黄
電池に係わり、特にナトリウム−硫黄電池の温度制御と
異常対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly, to temperature control and countermeasures for abnormalities in a sodium-sulfur battery.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は、例えば特開平
6−208854号に記載されている通り、べータアル
ミナ固体電解質管の内側に陰極活物質であるナトリウム
を内蔵し、べータアルミナ固体電解質管と陽極容器との
間に陽極活物質である硫黄を含浸した陽極導電材を内蔵
した単電池からなるものである。これら多数の単電池を
断熱容器に収容し、300〜350℃の温度で放電ある
いは充電を行い、電力貯蔵用電池としての開発が試みら
れている。
2. Description of the Related Art As described in, for example, Japanese Patent Application Laid-Open No. 6-208854, a sodium-sulfur battery incorporates sodium, which is a cathode active material, inside a beta-alumina solid electrolyte tube. It is composed of a unit cell having a built-in anode conductive material impregnated with sulfur as an anode active material between the container and the container. A large number of these cells are housed in an insulated container and discharged or charged at a temperature of 300 to 350 ° C., and development as a power storage battery has been attempted.

【0003】しかし、断熱容器内に電気的に接続した多
数のナトリウム−硫黄単電池を収容したナトリウム−硫
黄電池として、例えば特開平5−251071号に記載
されているようなナトリウム−硫黄電池から放電によっ
て電力を出力する際、放電反応が発熱反応のため各単電
池の温度は上昇する。そして、断熱容器の壁面からは放
熱するため断熱容器中心部に位置する単電池は周辺部に
位置する単電池よりも高温度状態になり易い。また、一
本の単電池においてもその高さ方向で温度差を生じる。
[0003] However, as a sodium-sulfur battery containing a large number of sodium-sulfur cells electrically connected in an insulated container, for example, a sodium-sulfur battery as disclosed in JP-A-5-251071 is used. When power is output, the temperature of each unit cell rises because the discharge reaction is an exothermic reaction. And since the heat is radiated from the wall surface of the heat insulating container, the unit cell located at the center of the heat insulating container is more likely to be in a higher temperature state than the unit cell located at the peripheral part. Further, even in a single cell, a temperature difference occurs in the height direction.

【0004】そしてナトリウム−硫黄単電池の温度が3
50℃を越えると、陽極活物質による陽極容器の腐食性
が著しく増大するとの問題や、べータアルミナ固体電解
質管と絶縁リングとの接合ガラスの耐ナトリウム性が著
しく低下する等の問題があり、そのため350℃以下で
運転する必要がある。一方ナトリウム−硫黄電池は高温
度で作動させる程電池効率は高い為、出来るだけ高温度
で運転することが望まれる。従って、多数の単電池を断
熱容器内に収容したナトリウム−硫黄電池の運転をする
際、各単電池を許容される温度範囲内のできるだけ高い
温度に均一に保つことが極めて重要なことである。
When the temperature of the sodium-sulfur unit cell is 3
If the temperature exceeds 50 ° C., there is a problem that the corrosiveness of the anode container due to the anode active material is remarkably increased, and there is a problem that the sodium resistance of the bonding glass between the beta alumina solid electrolyte tube and the insulating ring is remarkably reduced. It is necessary to operate at 350 ° C. or lower. On the other hand, a sodium-sulfur battery is operated at a higher temperature, the higher the battery efficiency is. Therefore, when operating a sodium-sulfur battery in which a large number of cells are housed in an insulated container, it is extremely important to keep each cell uniformly at the highest possible temperature within an allowable temperature range.

【0005】しかしながら、上記の理由により各単電池
を所定の均一な温度に保つことは極めて困難な事であ
る。そしてナトリウム−硫黄電池を300〜350℃で
運転していても、仮に一個の単電池電池が350℃以上
の状態が続いて故障した場合、電気的に接続されたこれ
ら単電池群は作動面および安全性で問題となる。特に高
出力運転の場合には各単電池が急激に温度上昇するため
問題となる。
[0005] However, it is extremely difficult to maintain each unit cell at a predetermined uniform temperature for the above reasons. And even if the sodium-sulfur battery is operated at 300 to 350 ° C., if one of the unit cells fails continuously at a temperature of 350 ° C. or more, the group of electrically connected unit cells will have an operating surface and A problem with safety. In particular, in the case of high-power operation, there is a problem because the temperature of each cell rapidly rises.

【0006】そこで、多数の単電池を断熱容器内に収容
したナトリウム−硫黄電池において、各単電池の温度上
昇をおさえるために空気を冷却媒体として隣接する各単
電池の間に流通させる発明が特開昭59−171476
号に開示されている。しかしながら、この場合において
も空気を冷却媒体としているため、単電池との熱交換効
率は低く、特に高出力運転の場合には空気では電池群の
温度分布を均一にするには不充分である。更に、特開平
5−251071号に記載されているような各単電池の
上部に電気配線を有するナトリウム−硫黄電池において
は、特開昭59−171476号に開示されているよう
なディストリビュ−タの取り付けは困難である。
Therefore, in a sodium-sulfur battery in which a large number of cells are housed in a heat-insulating container, an invention in which air is used as a cooling medium and is circulated between adjacent cells in order to suppress a rise in the temperature of each cell. Kaisho 59-171476
Issue. However, also in this case, since the air is used as the cooling medium, the heat exchange efficiency with the unit cells is low. In particular, in the case of high-power operation, air is insufficient to make the temperature distribution of the battery group uniform. Further, in a sodium-sulfur battery having an electric wiring above each unit cell as described in JP-A-5-251071, a distributor as disclosed in JP-A-59-171476 is disclosed. Installation is difficult.

【0007】また、断熱容器の内壁と最外周に位置する
単電池群との間隙において、ディストリビュ−タに設け
た開口の大きさで空気の流量を制御する方法も、間隙の
大きさが経時変化する場合には空気の流量を制御するこ
とは困難である。更に、冷却媒体に空気を用いている場
合、なんらかの原因でナトリウムが単電池の外部に漏出
した場合に空気と反応し燃えるとの問題も有している。
[0007] Further, in the method of controlling the flow rate of air in the gap between the inner wall of the heat insulating container and the unit cell group located at the outermost periphery by the size of the opening provided in the distributor, the size of the gap varies with time. If it does, it is difficult to control the flow of air. Furthermore, when air is used as the cooling medium, there is also a problem that when sodium leaks out of the cell for some reason, it reacts with air and burns.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するためになされたものであり、冷却媒体によっ
て各単電池間の温度差を小さくし、各単電池を均一な温
度に保つことによりナトリウム−硫黄電池の運転の安全
性を高めるとともに、たとえ単電池がなんらかの原因に
より異常昇温した場合であっても冷却媒体が消火剤とな
ってナトリウムの反応を抑える安全性の高いナトリウム
−硫黄電池を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and reduces the temperature difference between cells by using a cooling medium to keep the cells at a uniform temperature. This enhances the safety of the operation of the sodium-sulfur battery, and ensures that the cooling medium acts as a fire extinguishing agent and suppresses the reaction of sodium even when the temperature of the cell is abnormally high for some reason. Provide sulfur batteries.

【0009】[0009]

【課題を解決するための手段】上記の問題点は、断熱容
器内に互いに隣接する多数の円筒状のナトリウム−硫黄
単電池を収容し、300℃〜350℃の温度範囲で運転
されるナトリウム−硫黄電池において、上記各単電池が
頂部において電気的に接続された状態で棚板上に載置さ
れ、棚板に設けられた上記隣接する各単電池間の空間に
対応する位置の貫通孔を通じて、上記棚板の下部に設け
られた密閉空間からフッ素系不燃性液体であるパーフル
オロホスフィンからなる冷却媒体が上記温度範囲で運転
される各単電池間の空間に流入し上記各単電池の上部に
流出するよう構成され、かつ上部に流出した冷却媒体を
断熱容器の外部に取り出し、途中に設けられた熱交換器
によって所定温度に冷却媒体を冷却したうえ再び断熱容
器の上記密閉空間内に流入させる循環流路が設けられた
ことを特徴とするナトリウム−硫黄電池によって解決す
ることができる。
SUMMARY OF THE INVENTION The above-mentioned problem is caused by the fact that a large number of cylindrical sodium-sulfur cells adjacent to each other are housed in an insulated container and operated in a temperature range of 300.degree.
In the sodium-sulfur battery described above, each of the unit cells is placed on a shelf plate in a state of being electrically connected at the top, and a position corresponding to a space between the adjacent unit cells provided on the shelf plate. through the through-hole, a fluorine-based non-flammable liquid from a sealed space provided at a lower portion of the shelf plate Pafuru
Orophosphine cooling medium operates in the above temperature range
The cooling medium flowing out of the heat insulating container is taken out of the heat insulating container, and is cooled to a predetermined temperature by a heat exchanger provided on the way. And a circulation channel for cooling the cooling medium and flowing the cooling medium into the closed space of the heat insulating container again.

【0010】[0010]

【発明の実施の形態】本発明は、各単電池が直接棚板上
に載置され、かつ棚板には隣接する各単電池間の空間に
対応した貫通孔が設けられ、棚板下部の密閉空間から
ーフルオロホスフィンからなる液体の冷却媒体が所定の
温度と所定の流速で流入するため、高出力運転であって
も各単電池は均一な温度に維持できる。また、仮に不測
な事故でナトリウムが単電池から漏出しても冷却媒体と
の反応が極めて低く、冷却媒体が消火剤として働くため
電池の過熱化を防止できる。更に各単電池群をそれらの
頂部で容易に電気的に接続でき、電池の組立も容易に出
来る。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, each cell is directly mounted on a shelf, and the shelf is provided with a through hole corresponding to the space between adjacent cells, and path from the closed space
Since the liquid cooling medium composed of -fluorophosphine flows at a predetermined temperature and a predetermined flow rate, each cell can be maintained at a uniform temperature even in a high-power operation. Also, even if sodium leaks from the unit cell in an unexpected accident, the reaction with the cooling medium is extremely low, and the cooling medium works as a fire extinguishing agent, so that overheating of the battery can be prevented. Further, each unit cell group can be easily electrically connected at the top thereof, and the battery can be easily assembled.

【0011】また、パーフルオロホスフィンであるフッ
素系不燃性冷却媒体を用いるので、高温における電気絶
縁性に優れ、かつ、単電池との熱交換効率に優れかつ高
温におけるナトリウムとの反応性も極めて低く消火剤と
しての性能が優れているので好ましい。各単電池の底部
に流入する冷却媒体の温度を260℃以上の所定の温度
とし、各単電池の頂部を流出する冷却媒体の温度を35
0℃以下の所定の温度になるように単電池の底部および
単電池の頂部または断熱容器の入口および出口近傍にお
いて冷却媒体の温度を測定した温度計からの信号に基づ
いて循環流路に設けた熱交換器による熱交換温度および
流量制御ポンプによる流速を制御した場合は各単電池は
高さ方向において均一にかつ高温度に維持されるため、
高出力運転が可能となり、単位空間当たりの出力を高く
出来、かつ電池を故障させることなく安全に運転出来る
ため好ましい。
[0011] Runode using a fluorine-based nonflammable coolant perfluoro phosphine, excellent electrical insulation properties at high temperatures, and the reactivity of the sodium in the excellent and high temperature heat exchange efficiency of the unit cell is extremely It is preferable because of its low performance as a fire extinguisher. The temperature of the cooling medium flowing into the bottom of each cell is a predetermined temperature of 260 ° C. or more, and the temperature of the cooling medium flowing out of the top of each cell is 35 ° C.
Provided in the circulation channel based on a signal from a thermometer measuring the temperature of the cooling medium at the bottom of the unit cell and at the top of the unit cell or near the inlet and outlet of the heat insulating container so as to have a predetermined temperature of 0 ° C. or less. When the heat exchange temperature by the heat exchanger and the flow rate by the flow control pump are controlled, each cell is maintained uniformly and at a high temperature in the height direction.
This is preferable because high-output operation can be performed, the output per unit space can be increased, and safe operation can be performed without causing a battery failure.

【0012】[0012]

【実施例】図1に記載した実施例に基づいて本願発明を
説明する。図1は、断熱容器1内の棚板2上に、約85
mmφ×350mmHのナトリウム−硫黄単電池3が13
列、一列あたり26本合計338本隣接して載置された
集合電池の断面概念図である。尚、この場合各単電池3
と棚板2とはマイカーを介して電気的に絶縁されてい
る。棚板2にセラミックを用いた場合はマイカ−を介在
させる必要はない。この棚板2には隣接する各単電池
3、3間の空間4および断熱容器1の内壁と最外周に位
置する各単電池群との空間4に対応する位置に貫通孔5
が設けられている。棚板2はその周辺部において断熱容
器1の内壁に溶接されている。大型の電池の場合は溶接
せず密着状態でもよい。貫通孔5の形状および大きさは
上記各空間断面と同一であることが望ましいが、上記各
空間断面とほぼ等しい大きさの円形や多角形も望まし
い。所定の形状の穴のあいたパンチングメタルが使用で
きる。棚板2は図示しない支柱で適宜撓まないよう補強
されている。各単電池3の陽極容器が側部の最外周面で
ある場合は互いに接触しない程度に近接して配置され
る。また、側部にマイカ−等の電気絶縁材を設けた場合
は各単電池3は接触状態で隣接して配置される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on the embodiment shown in FIG. FIG. 1 shows that about 85
13 sodium-sulfur single cells 3 of mmφ × 350 mmH
FIG. 5 is a conceptual cross-sectional view of the assembled batteries placed adjacent to each other, with a total of 338 adjacent rows. In this case, each cell 3
And the shelf board 2 are electrically insulated through a private car. When ceramic is used for the shelf 2, it is not necessary to interpose mica. The shelf plate 2 has a through hole 5 at a position corresponding to the space 4 between the adjacent cells 3 and the space 4 between the inner wall of the heat insulating container 1 and each cell group located at the outermost periphery.
Is provided. The shelf 2 is welded to the inner wall of the heat insulating container 1 at the periphery. In the case of a large battery, it may be in a close contact state without welding. The shape and size of the through hole 5 are desirably the same as those of the above-mentioned space cross sections, but it is also desirable that the shape and size of the through holes 5 be circular or polygonal having a size substantially equal to the above-mentioned space cross sections. A punched metal having a hole of a predetermined shape can be used. The shelf 2 is reinforced by a support (not shown) so as not to bend appropriately. When the anode container of each unit cell 3 is the outermost peripheral surface of the side part, it is arranged so close that it does not contact each other. When an electric insulating material such as mica is provided on the side, the cells 3 are arranged adjacent to each other in a contact state.

【0013】また、棚板2の数カ所には図2の通り、単
電池3をほぼ密着状態でかつ電気的に絶縁された状態で
挿入できるリング状の止め部6が溶接されている。各単
電池3の動きを拘束する止め部6を少なくとも一個棚板
2上に設けた場合は、各単電池3、3間の空間4とそれ
に対応する棚板2に設けた貫通孔5の位置づれの発生が
長期にわたって防止できるため好ましい。棚板2と断熱
容器1の底部との間に形成される密閉空間7には冷却媒
体を断熱容器1の外部から流入できる導入管8が設けら
れている。図3の通りこの導入管8の密閉空間7への導
入部には、多数の孔を設けた枝付き分散管9が取り付け
られている。また導入管8と断熱容器1とは高温におい
ても液状の冷却媒体が漏れないように密封されている。
枝付き分散管9はなくてもよいが、取り付けたほうが密
閉空間7に流入した冷却媒体が棚板2の各貫通孔5に均
一に流入するよう作用するため好ましい。
As shown in FIG. 2, ring-shaped stoppers 6 into which the cells 3 can be inserted in a substantially adhered state and in an electrically insulated state are welded to the shelf 2 at several places. When at least one stop 6 for restraining the movement of each cell 3 is provided on the shelf 2, the space 4 between the cells 3 and 3 and the position of the corresponding through hole 5 provided in the shelf 2 are provided. This is preferable because the occurrence of misalignment can be prevented over a long period. In a closed space 7 formed between the shelf 2 and the bottom of the heat insulating container 1, there is provided an inlet pipe 8 through which a cooling medium can flow in from the outside of the heat insulating container 1. As shown in FIG. 3, a branching dispersion pipe 9 having a large number of holes is attached to an introduction portion of the introduction pipe 8 into the closed space 7. The introduction pipe 8 and the heat insulating container 1 are sealed so that the liquid cooling medium does not leak even at a high temperature.
The branching dispersion pipe 9 may not be provided, but it is preferable to attach the branching pipe 9 because the cooling medium flowing into the closed space 7 acts so as to uniformly flow into each through hole 5 of the shelf 2.

【0014】各単電池3の頂部は電気的に接続(図示せ
ず)されており、断熱容器1の外部の電気系統と主極取
り出し口10を通じて接続されている。この主極取り出
し口10は断熱容器1内の冷却媒体が外部に漏れないよ
うに密封されている。図4の通り冷却媒体を断熱容器1
の外部に取り出す流路や断熱容器1に流入する流路を主
極取り出しに兼用すれば、断熱容器1の冷却媒体の漏出
防止の密封箇所が少なく出来、断熱容器1の構造が簡単
になるため好ましい。
The top of each unit cell 3 is electrically connected (not shown), and is connected to an electric system outside the heat insulating container 1 through a main electrode outlet 10. The main pole outlet 10 is sealed so that the cooling medium in the heat insulating container 1 does not leak outside. As shown in FIG.
If the flow path taken out of the container and the flow path flowing into the heat insulating container 1 are also used for taking out the main electrode, the number of sealed locations for preventing leakage of the cooling medium in the heat insulating container 1 can be reduced, and the structure of the heat insulating container 1 becomes simple. preferable.

【0015】300℃〜350℃の温度範囲で運転され
各単電池3、3間の空間をパーフルオロホスフィンか
らなるフッ素系不燃性冷却媒体が放電時の各単電池3か
ら熱を奪いつつ上昇し、各単電池3の頂部に流出する。
この加熱された冷却媒体を断熱容器1の外部に流出さ
せ、再び断熱容器1内の密閉空間に戻す循環流路11に
は出口温度計12、流量計13、熱交換器14、ポンプ
15、入口温度計16が設けられていて、入口温度及び
出口温度からの信号に基づいて熱交換器14と流量を制
御し、入口温度と出口温度が所定の温度に維持されるよ
うにする集中制御器17が設けられている。また断熱容
器1からの流出口を複数設け、それぞれに流量制御バル
ブを設け、各単電池3の頂部近傍で測定した温度信号に
基づいて各流出口からの流速を制御すれば、ナトリウム
−硫黄電池を均一な温度に維持することができる。
Operating in a temperature range of 300 ° C. to 350 ° C.
The space between each cell 3,3 or perfluoro phosphine that
The non-combustible fluorine-based cooling medium rises while removing heat from each of the cells 3 at the time of discharge, and flows out to the top of each of the cells 3.
The heated cooling medium flows out of the heat insulating container 1 and returns to the closed space in the heat insulating container 1 again. The circulation flow path 11 has an outlet thermometer 12, a flow meter 13, a heat exchanger 14, a pump 15, an inlet A thermometer 16 is provided to control the heat exchanger 14 and the flow rate based on signals from the inlet temperature and the outlet temperature, and a central controller 17 for maintaining the inlet temperature and the outlet temperature at predetermined temperatures. Is provided. In addition, if a plurality of outlets from the heat insulating container 1 are provided, a flow control valve is provided for each, and the flow rate from each outlet is controlled based on a temperature signal measured near the top of each unit cell 3, the sodium-sulfur battery Can be maintained at a uniform temperature.

【0016】また、別の実施例として、図5と図6に示
した通り、棚板2を断熱容器1の内壁に溶接せずに枠体
18にのせるか溶接して棚板下部に密閉空間19を設
け、更に、各単電池群の最外周面に隣接する様に棚板2
上に仕切り板20を設けた場合は、例え断熱容器1の内
壁と最外周に位置する単電池群との間隙が経時変化して
も、最外周に位置する各単電池3の側壁に流れる冷却媒
体流量は変化せず、温度制御が確実に出来るので好まし
い。大型電池の場合は電池の昇降温による熱応力により
棚板2が大きな熱歪みを受けるためこの様に断熱容器1
と棚板2とは溶接しないほうが好ましい。複数の枠体1
8によって棚板2を支えることもできる。本発明はナト
リウム−硫黄電池の組立後作動温度に立ち上げる際に冷
却媒体を熱交換器によって徐々に加熱し、電池の作動温
度にすることもできる。
As another embodiment, as shown in FIGS. 5 and 6, the shelf 2 is not welded to the inner wall of the heat insulating container 1 but is mounted on or welded to the frame 18 and hermetically sealed under the shelf. A space 19 is provided, and the shelf board 2 is positioned adjacent to the outermost peripheral surface of each cell group.
When the partition plate 20 is provided on the upper side, even if the gap between the inner wall of the heat insulating container 1 and the cell group located at the outermost periphery changes with time, cooling flowing to the side wall of each cell 3 located at the outermost periphery. This is preferable because the medium flow rate does not change and the temperature can be controlled reliably. In the case of a large battery, the shelf board 2 receives a large thermal strain due to the thermal stress caused by the temperature rise and fall of the battery.
It is preferable not to weld the shelf plate 2 with the shelf plate 2. Multiple frames 1
8 can also support the shelf 2. In the present invention, the cooling medium can be gradually heated by the heat exchanger to the operating temperature of the battery when the operating temperature is raised after the assembly of the sodium-sulfur battery.

【0017】[0017]

【発明の効果】以上のように、本発明によれば、高出力
運転が可能であって、かつ電池の効率が高く、かつ安全
に運転でき、仮になんらかの原因により単電池からナト
リウムが単電池外に漏出しても冷却媒体が消火剤として
作用しナトリウムの反応を抑えるため、信頼性の高いナ
トリウム−硫黄電池を得ることが出来る。
As described above, according to the present invention, high output operation is possible, the efficiency of the battery is high, and the operation can be performed safely. Even if it leaks, the cooling medium acts as a fire extinguishing agent and suppresses the reaction of sodium, so that a highly reliable sodium-sulfur battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】単電池の止め部の斜視図である。FIG. 2 is a perspective view of a stopper of the unit cell.

【図3】枝付き分散管の平面図である。FIG. 3 is a plan view of a branching dispersion tube.

【図4】冷却媒体の流路を主極取り出しに兼用した例を
示す断面図である。
FIG. 4 is a cross-sectional view showing an example in which a cooling medium flow path is also used for taking out a main pole.

【図5】他の実施例の棚板を示す平面図である。FIG. 5 is a plan view showing a shelf board of another embodiment.

【図6】他の実施例を示す断面図である。FIG. 6 is a sectional view showing another embodiment.

【符号の説明】[Explanation of symbols]

1 断熱容器、2 棚板、3 単電池、4 空間、5
貫通孔、6 止め部、7 密閉空間、8 導入管、9
枝付き分散管、10 主極取り出し口、11循環流路、
12 出口温度計、13 流量計、14 熱交換器、1
5 ポンプ、16 入口温度計、17 集中制御器、1
8 枠体、19 密閉空間、20 仕切り板
1 Insulated container, 2 shelves, 3 cells, 4 spaces, 5
Through hole, 6 Stop, 7 Sealed space, 8 Inlet pipe, 9
Dispersion tube with branches, 10 main electrode outlet, 11 circulation channels,
12 outlet thermometer, 13 flow meter, 14 heat exchanger, 1
5 pump, 16 inlet thermometer, 17 centralized controller, 1
8 frame, 19 closed space, 20 partition plate

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 H01M 10/50 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/39 H01M 10/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】断熱容器内に互いに隣接する多数の円筒状
のナトリウム−硫黄単電池を収容し、300℃〜350
℃の温度範囲で運転されるナトリウム−硫黄電池におい
て、上記各単電池が頂部において電気的に接続された状
態で棚板上に載置され、棚板に設けられた上記隣接する
各単電池間の空間に対応する位置の貫通孔を通じて、上
記棚板の下部に設けられた密閉空間からフッ素系不燃性
液体であるパーフルオロホスフィンからなる冷却媒体が
上記温度範囲で運転される各単電池間の空間に流入し上
記各単電池の上部に流出するよう構成され、かつ上部に
流出した冷却媒体を断熱容器の外部に取り出し、途中に
設けられた熱交換器によって所定温度に冷却媒体を冷却
したうえ再び断熱容器の上記密閉空間内に流入させる循
環流路が設けられたことを特徴とするナトリウム−硫黄
電池。
A plurality of cylindrical sodium-sulfur single cells adjacent to each other are housed in an insulated container.
In a sodium-sulfur battery operated in a temperature range of ° C., each of the above-mentioned single cells is placed on a shelf plate in a state of being electrically connected at the top, and between each of the above-mentioned adjacent single cells provided on the shelf plate. Through a through hole at a position corresponding to the space, a cooling medium made of a perfluorophosphine, which is a fluorine-based noncombustible liquid, is operated from the closed space provided at the lower part of the shelf plate between the cells operated in the above temperature range . The cooling medium is configured to flow into the space and flow out to the upper part of each of the unit cells, and the cooling medium flowing out to the upper part is taken out of the heat insulating container, and the cooling medium is cooled to a predetermined temperature by a heat exchanger provided on the way. A sodium-sulfur battery, provided with a circulation flow path that flows into the closed space of the heat insulating container again.
【請求項2】 密閉空間に流入する冷却媒体の温度を26
0℃以上にし、断熱容器の外部に取り出す冷却媒体の温
度が350℃以下となるように制御する手段を設けた請
求項1記載のナトリウム−硫黄電池。
2. The temperature of the cooling medium flowing into the closed space is set to 26.
The sodium-sulfur battery according to claim 1, further comprising means for controlling the temperature of the cooling medium to be 0 ° C or higher and the temperature of the cooling medium taken out of the heat insulating container to be 350 ° C or lower.
JP32851295A 1995-12-18 1995-12-18 Sodium-sulfur battery Expired - Fee Related JP3130238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32851295A JP3130238B2 (en) 1995-12-18 1995-12-18 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32851295A JP3130238B2 (en) 1995-12-18 1995-12-18 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH09167631A JPH09167631A (en) 1997-06-24
JP3130238B2 true JP3130238B2 (en) 2001-01-31

Family

ID=18211115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32851295A Expired - Fee Related JP3130238B2 (en) 1995-12-18 1995-12-18 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3130238B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146237A (en) * 2002-10-25 2004-05-20 Denso Corp Battery temperature control device
JP4997758B2 (en) * 2005-12-21 2012-08-08 マックス株式会社 Battery pack cooling structure
JP2007179872A (en) * 2005-12-28 2007-07-12 Showa Aircraft Ind Co Ltd Battery
JP2008204762A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Power source device
JP4396716B2 (en) * 2007-03-02 2010-01-13 トヨタ自動車株式会社 Temperature control mechanism and vehicle
JP5061753B2 (en) * 2007-06-29 2012-10-31 トヨタ自動車株式会社 Power storage device
JP2009054297A (en) * 2007-08-23 2009-03-12 Toshiba Corp Battery pack
JP4325721B2 (en) * 2008-01-18 2009-09-02 トヨタ自動車株式会社 Temperature control mechanism
US8426050B2 (en) * 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
WO2011126047A1 (en) 2010-04-06 2011-10-13 住友電気工業株式会社 Method for producing separator, method for manufacturing molten salt battery, separator, and molten salt battery
CN102859782A (en) * 2010-04-22 2013-01-02 住友电气工业株式会社 Molten salt battery device and temperature control method for molten salt battery
CN103503222A (en) * 2011-04-18 2014-01-08 住友电气工业株式会社 Molten-salt electrolyte battery device
KR101318391B1 (en) * 2011-12-26 2013-10-15 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
DE102013214138A1 (en) * 2013-07-18 2015-01-22 Siemens Aktiengesellschaft System arrangement with high-temperature battery with separate fluid circuits
DK3058605T3 (en) 2013-10-16 2024-03-04 Ambri Inc SEALS FOR DEVICES OF REACTIVE HIGH TEMPERATURE MATERIAL
WO2015062949A1 (en) * 2013-10-30 2015-05-07 Siemens Aktiengesellschaft Heat storage system comprising a high-temperature battery
EP3063825A4 (en) * 2013-11-01 2017-06-28 Ambri Inc. Thermal management of liquid metal batteries
WO2015169566A1 (en) * 2014-05-07 2015-11-12 Siemens Aktiengesellschaft System arrangement with a sodium nickel chloride battery and a heat supply system
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
CN110731027A (en) 2017-04-07 2020-01-24 安保瑞公司 Molten salt battery with solid metal cathode
CN209843903U (en) * 2019-06-21 2019-12-24 深圳市英维克科技股份有限公司 Liquid cooling temperature control cabinet and system
CN113793997B (en) * 2021-08-02 2023-03-21 岚图汽车科技有限公司 Power battery box body, fire extinguishing system and fire extinguishing method

Also Published As

Publication number Publication date
JPH09167631A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
JP3130238B2 (en) Sodium-sulfur battery
CN110199406B (en) Battery system
US11742540B2 (en) Methods and systems for battery pack thermal management
JP4814405B2 (en) Battery module
EP4350864A2 (en) Battery pack, vehicle, and energy storage device
JP5422596B2 (en) Secondary battery module and secondary battery pack
EP3176851B1 (en) Electrical energy storage device
US20210288379A1 (en) High density battery module with thermal isolation
EP3979396A1 (en) Battery module including heat insulating member, and battery pack comprising same
US20220328901A1 (en) Battery and electric device
JP6817375B2 (en) Battery system architecture tolerating single cell anomalies
JP2011253747A (en) Storage battery module
CN112713344A (en) Battery assembly and electric vehicle
EP4325628A1 (en) Battery pack and thermal runaway protection method
CN112582731B (en) Battery module
KR20220163454A (en) Battery box body, battery, electric device, battery manufacturing method and device
KR20230025892A (en) Battery, electric device, battery manufacturing method and device
US11631913B2 (en) Assembly of battery cells, and aircraft comprising such an assembly
CN218586094U (en) Battery package and vehicle
CN218867211U (en) Group battery, battery package and vehicle
CN218586206U (en) Battery pack, battery pack and vehicle
CN220420695U (en) Battery pack, battery pack and electric equipment
CN114464918B (en) Battery pack
CN217485567U (en) Battery box, power battery package and vehicle
CN220021359U (en) Immersed cooling battery pack and energy storage device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

LAPS Cancellation because of no payment of annual fees