JP3126059B2 - Alumina-based composite sintered body - Google Patents

Alumina-based composite sintered body

Info

Publication number
JP3126059B2
JP3126059B2 JP04031500A JP3150092A JP3126059B2 JP 3126059 B2 JP3126059 B2 JP 3126059B2 JP 04031500 A JP04031500 A JP 04031500A JP 3150092 A JP3150092 A JP 3150092A JP 3126059 B2 JP3126059 B2 JP 3126059B2
Authority
JP
Japan
Prior art keywords
alumina
particles
silicon carbide
sintered body
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04031500A
Other languages
Japanese (ja)
Other versions
JPH05194023A (en
Inventor
雅元 石塚
ます美 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP04031500A priority Critical patent/JP3126059B2/en
Publication of JPH05194023A publication Critical patent/JPH05194023A/en
Application granted granted Critical
Publication of JP3126059B2 publication Critical patent/JP3126059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルミナ基複合焼結体に
関し、さらに詳しくは、緻密な構造と高い硬度、強度及
び破壊靱性値を有するアルミナ基複合焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-based composite sintered body, and more particularly to an alumina-based composite sintered body having a dense structure and high hardness, strength and fracture toughness.

【0002】[0002]

【従来の技術】一般に、アルミナセラミックスは、多く
のセラミックスの中でも特に熱的、化学的に安定であ
り、しかも比較的高い硬度及び機械的性質を有している
ため、近年その用途は拡がりつつある。例えば、電子回
路の基板やパッケージ、粉体機器等のような耐摩耗部
品、あるいは切削工具等に使われている。しかしなが
ら、強度、破壊靱性値においては、部分安定化ジルコニ
アセラミックスに比べて低い、また硬度においても、ほ
う化物や炭化物セラミックスに比べて低く、機械部品と
しての利用が制限されている。
2. Description of the Related Art In general, alumina ceramics are particularly thermally and chemically stable among many ceramics and have relatively high hardness and mechanical properties. . For example, it is used for wear-resistant parts such as electronic circuit boards and packages, powder equipment, and cutting tools. However, the strength and fracture toughness are lower than those of partially stabilized zirconia ceramics, and the hardness is lower than that of boride or carbide ceramics.

【0003】アルミナセラミックスの強度の改善を目的
として炭化珪素をアルミナ粒内に分散することが最近行
われている。この方法は、約0.1〜0.5μmの粒子
径をもった炭化珪素を加えて、ホットプレスを用いてア
ルミナ粒子を加圧焼結するものであり、硬度、強度の改
善は見られるが、破壊靱性値の充分な改善には至ってい
ない。また、加圧焼結であるため複雑な形状の製品が焼
結できず、従って、複雑な形状をもつ製品は単純な形状
の焼結体から切削加工などによって作製せざるを得ない
ためその製造コストが高く、工業的には有利な方法では
ない。
[0003] For the purpose of improving the strength of alumina ceramics, silicon carbide has recently been dispersed in alumina grains. According to this method, silicon carbide having a particle diameter of about 0.1 to 0.5 μm is added, and alumina particles are pressure-sintered using a hot press. However, the fracture toughness has not been sufficiently improved. In addition, because of pressure sintering, products with complicated shapes cannot be sintered, and therefore products with complex shapes have to be manufactured from simple shaped sintered bodies by cutting, etc. It is expensive and is not an industrially advantageous method.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記事情に
鑑みてなされたもので、その目的とするところは、充分
に緻密な構造と高い硬度、強度及び破壊靱性値を有する
アルミナ基複合焼結体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an alumina-based composite firing having a sufficiently dense structure and high hardness, strength and fracture toughness. In providing unity.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究をした結果、主としてアルミ
ナの粒子内部に炭化珪素の微細粒子を分散させるととも
に、炭化珪素の粒子の間に線状に伸びる並んだ欠陥であ
って、アルミナ粒子の外部とはつながっていない欠陥の
ネットワークを形成せる常圧焼結体が有用なことを見い
だし、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, it has been found that fine particles of silicon carbide are mainly dispersed inside the particles of alumina and that the particles of silicon carbide are dispersed. It has been found that a normal-pressure sintered body that forms a network of defects that are linearly extended and that are not connected to the outside of the alumina particles is useful, and completed the present invention.

【0006】すなわち、本発明のアルミナ基複合焼結体
では、80〜97体積%のアルミナ粒子と3〜20体積
%の炭化珪素粒子から本質的になる常圧焼結体であっ
て、前記アルミナ粒子の粒径が1.0〜10.0μm、
前記炭化珪素の粒径が0.3μm以下であるとともに、
前記アルミナ粒子の内部及び粒界に前記炭化珪素粒子が
分散せしめられ、焼結時の昇温速度を400℃/hr以
上とし降温速度を約1,000℃/hrとすることによ
って前記アルミナ粒子内部の前記炭化珪素粒子の間を線
状に並んだ欠陥が、前記アルミナ粒子内部でネットワー
クを形成しており、かつ全体として気孔率が2%以下で
あることを前記課題の解決手段とした。
That is, the alumina-based composite sintered body of the present invention is a normal-pressure sintered body consisting essentially of 80 to 97% by volume of alumina particles and 3 to 20% by volume of silicon carbide particles. The particle size is 1.0 to 10.0 μm,
The particle size of the silicon carbide is 0.3 μm or less,
The silicon carbide particles are dispersed inside the alumina particles and at the grain boundaries, and the temperature rising rate during sintering is set to 400 ° C./hr or more and the temperature drop rate is set to about 1,000 ° C./hr, whereby the inside of the alumina particles is reduced. The above-mentioned means for solving the above-mentioned problem is that the defects arranged in a line between the silicon carbide particles form a network inside the alumina particles, and the porosity is 2% or less as a whole.

【0007】以下、本発明のアルミナ基複合焼結体を詳
しく説明する。本発明のアルミナ基複合焼結体は、粒径
が1.0〜10.0μmのアルミナ粒子と該アルミナ粒
子の内部および粒界に分散せしめられた粒径が0.3μ
m以下の炭化珪素微粒子から本質的になるものである。
ここで、「本質的になる」とは本発明のアルミナ基複合
焼結体が実質的にアルミナ粒子と炭化珪素微粒子のみか
らなることを意味する。すなわち、代表的な態様では、
そのようなアルミナ粒子と炭化珪素微粒子のみからなる
が、発明の効果が損われない限り第3成分が少割合で混
在してもよいことを意味する。
Hereinafter, the alumina-based composite sintered body of the present invention will be described in detail. The alumina-based composite sintered body of the present invention has an alumina particle having a particle diameter of 1.0 to 10.0 μm and a particle diameter of 0.3 μm dispersed inside and at the grain boundary of the alumina particle.
m or less of silicon carbide fine particles.
Here, "essentially" means that the alumina-based composite sintered body of the present invention substantially consists only of alumina particles and silicon carbide fine particles. That is, in a typical embodiment,
Although it is composed only of such alumina particles and silicon carbide fine particles, it means that the third component may be mixed in a small proportion as long as the effect of the invention is not impaired.

【0008】本発明のアルミナ基複合焼結体では、アル
ミナ粒子が全体の80〜97体積%、炭化珪素粒子が全
体の3〜20体積%を占める。ここで、このような割合
に混合したのは、焼結体内の炭化珪素の比率が3体積%
未満であると、得られる焼結体の硬度及び強度を充分に
向上させず、また、20体積%を越えると、炭化珪素微
粒子がアルミナの粒子内に入りきらずに粒界に多く存在
するようになり焼結を阻害するばかりでなく破壊源とな
りやすくなるからである。アルミナ粒子と炭化珪素微粒
子とを、焼結体中のアルミナ粒子が全体の80〜97体
積%、炭化珪素微粒子が全体の3〜20体積%を占める
ように予め配合し、この配合物を常圧で焼結することに
より、アルミナ粒子内部の炭化珪素粒子の間を線状に並
んだ欠陥がネットワークを形成し、かつ全体の気孔率が
2%以下のアルミナ基複合焼結体に形成されるのであ
る。
In the alumina-based composite sintered body of the present invention, alumina particles occupy 80 to 97% by volume, and silicon carbide particles occupy 3 to 20% by volume. Here, the mixture at such a ratio is that the ratio of silicon carbide in the sintered body is 3% by volume.
If it is less than the above, the hardness and strength of the obtained sintered body will not be sufficiently improved, and if it exceeds 20% by volume, the silicon carbide fine particles will not be able to fully enter the alumina particles and will be present in large amounts at the grain boundaries. This not only hinders sintering but also becomes a source of destruction. Alumina particles and silicon carbide fine particles are previously blended so that the alumina particles in the sintered body occupy 80 to 97% by volume of the whole and the silicon carbide fine particles occupy 3 to 20% by volume of the whole. By sintering, the defects arranged in a line between the silicon carbide particles inside the alumina particles form a network, and the entire porosity is formed in an alumina-based composite sintered body of 2% or less. is there.

【0009】本発明のアルミナ基複合焼結体を作製する
には、まず、常圧焼結を可能にするために、アルミナ粒
子、炭化珪素粒子としてそれぞれ平均粒子径が極めて小
さく、比表面積が大きく、従って表面活性に優れたもの
を用意する。アルミナ粒子は、平均粒径が0.05μm
以下、BET比表面積が40m2 /g以上でγ型の結晶
体であり、炭化珪素粒子は平均粒径が0.05μm以下
でBET比表面積が40m2 /g以上でβ型の結晶体で
あることが好ましい。
In order to manufacture the alumina-based composite sintered body of the present invention, first, in order to enable normal pressure sintering, alumina particles and silicon carbide particles have extremely small average particle diameters and large specific surface areas, respectively. Therefore, one having excellent surface activity is prepared. Alumina particles have an average particle size of 0.05 μm
Hereinafter, it is a γ-type crystal having a BET specific surface area of 40 m 2 / g or more, and the silicon carbide particles are a β-type crystal having an average particle diameter of 0.05 μm or less, a BET specific surface area of 40 m 2 / g or more. Is preferred.

【0010】ここでアルミナ粒子としてγ型の結晶体を
用いるのは、γ−アルミナ粒子は通常1100℃以上の
加熱によりα型へ相転移するが、その際に約100倍程
度の粒成長を起こしてその内部へ炭化珪素を取り込める
からであり、また、炭化珪素粒子としてβ型を用いるの
は、β−炭化珪素は立方晶であり単位格子は立方体であ
るためアルミナの粒子内へランダムな方向で取り込まれ
るので、発現する特性に方向性がなく均一となるためで
ある。
The reason for using γ-type crystals as alumina particles is that γ-alumina particles usually undergo a phase transition to α-type by heating at 1100 ° C. or more, and at that time, about 100 times the grain growth occurs. The reason for using β type as silicon carbide particles is that β-silicon carbide is cubic and the unit cell is cubic, so that it can be introduced into the alumina particles in random directions. This is because, since it is incorporated, the characteristics to be expressed are uniform without any directionality.

【0011】次に、これらの粉末をアルミナ粒子が全体
の80〜97%、炭化珪素微粒子が全体の3〜20体積
%となるような割合で混合する。ここで、このような割
合に混合したのは、焼結体内の炭化珪素の比率が3体積
%未満であると、得られる焼結体の硬度及び強度が十分
に向上せず、また、20体積%を越えると、炭化珪素粒
子がアルミナ粒子内に入り切らず粒界に多く存在するよ
うになり、焼結を阻害するばかりでなく破壊源となりや
すくなるからである。また、混合の際は微粒子を纏めて
均一に混合する必要があるため、通常の湿式の混合に加
えて超音波による細かな振動を加えることが望ましい。
Next, these powders are mixed in such a ratio that alumina particles account for 80 to 97% of the whole and silicon carbide fine particles account for 3 to 20% by volume of the whole. Here, the mixing at such a ratio is such that if the ratio of silicon carbide in the sintered body is less than 3% by volume, the hardness and strength of the obtained sintered body are not sufficiently improved, %, Silicon carbide particles do not fit into the alumina particles and are present in large amounts at the grain boundaries, which not only hinders sintering but also easily becomes a source of destruction. Further, at the time of mixing, since it is necessary to collect and uniformly mix the fine particles, it is desirable to apply fine vibrations by ultrasonic waves in addition to ordinary wet mixing.

【0012】次いで、前記の混合粉末を約1200℃で
熱処理するとアルミナはα型に転移して0.5〜1.0
μmの粒子径へ粒成長する。この温度では炭化珪素は殆
ど粒成長しないのでアルミナの粒子内部に取り込まれ
る。このようにして合成された粒子内部に炭化珪素を含
有した粒径0.5〜1.0μmのアルミナ粉末を公知の
方法で成形したうえ、1800℃以上で1時間以上焼結
する。前述のアルミナ粉末は単純な混合粉末と異なり常
圧焼結が可能である。この際に昇温速度は400℃/h
r以上の速さにする。その理由は粒子間にネックができ
る低温域をすばやく終わらせて、粒成長の起こる高温域
に早く移り1.0〜10.0μmの粒径まで粒成長させ
て完全に炭化珪素粒子をアルミナ粒子の内部に取り込む
ためである。
Next, when the above mixed powder is heat-treated at about 1200 ° C., the alumina is transformed into α-form and becomes 0.5 to 1.0.
The grains grow to a particle diameter of μm. At this temperature, silicon carbide hardly grows in grain size, so it is taken into the alumina particles. Alumina powder having a particle size of 0.5 to 1.0 μm containing silicon carbide inside the particles synthesized as above is molded by a known method, and then sintered at 1800 ° C. or more for 1 hour or more. The above-mentioned alumina powder can be sintered under normal pressure, unlike a simple mixed powder. At this time, the heating rate was 400 ° C / h.
r or faster. The reason is that the low-temperature region in which a neck is formed between particles is quickly terminated, and the temperature quickly shifts to a high-temperature region in which grain growth occurs, and the grains are grown to a particle size of 1.0 to 10.0 μm to completely convert the silicon carbide particles into alumina particles. This is to take it inside.

【0013】ここで成長アルミナ粒子径が1.0μm未
満であると、アルミナ粒子内部への炭化珪素粒子の分散
が不十分となり、一方、成長粒子径が10μmを越える
と均一な成長が難しくなり異常粒成長による気孔が生成
して気孔率が2%よりも大きくなり、得られる焼結体の
機械的性質が不十分となる。
When the diameter of the grown alumina particles is less than 1.0 μm, the dispersion of the silicon carbide particles inside the alumina particles becomes insufficient. On the other hand, when the diameter of the grown particles exceeds 10 μm, uniform growth becomes difficult and abnormalities occur. Pores are generated due to grain growth and the porosity becomes larger than 2%, and the mechanical properties of the obtained sintered body become insufficient.

【0014】アルミナ粒子内に取り込まれた炭化珪素粒
子は、焼結温度からの冷却時にアルミナとの熱膨張の相
違によって炭化珪素粒子の接線方向には引っ張り応力、
法線方向には圧縮応力を発生する。法線方向の圧縮応力
はアルミナの粒界へ向かうため粒界を押し合って強化す
る。そのために粒界からは破壊がし難くなり破壊源は粒
子の内部になり、強度を決定する要素の1つである破壊
源の大きさは粒子径以下となり強度の向上につながる。
The silicon carbide particles taken into the alumina particles have a tensile stress in the tangential direction of the silicon carbide particles due to a difference in thermal expansion from alumina when cooled from the sintering temperature.
A compressive stress is generated in the normal direction. Since the compressive stress in the normal direction goes to the grain boundary of alumina, it compresses and strengthens the grain boundary. For this reason, it is difficult to break from the grain boundaries, and the breaking source is inside the particles, and the size of the breaking source, which is one of the factors that determine the strength, becomes smaller than the particle diameter, leading to improvement in strength.

【0015】1800℃以上で1時間以上常圧焼結した
後、約1000℃/hrの降温速度で冷却すると接線方
向の引張応力によってアルミナ原子の結合が切断され欠
陥が生成する。初めに欠陥を生成した部分は引張応力が
緩和されるので他の部分から応力が集中して、他で生成
した欠陥を移動させて積み重なり線状になる。さらに隣
の炭化珪素粒子の欠陥と結合して、次第にネットワーク
を形成する。この際に降温速度が遅すぎると欠陥はアル
ミナ粒子の外部まで成長してしまい粒界の圧縮応力まで
解放してしまうため粒界を強化しなくなってしまう。ま
た、降温速度が早すぎるとアルミナ自体の外部と内部に
熱膨張差を生じて割れてしまう危険がある。本発明の焼
結体の構造の模式図を図1に示す。
After normal pressure sintering at 1800 ° C. or more for 1 hour or more and cooling at a cooling rate of about 1000 ° C./hr, the bond of alumina atoms is broken by tensile stress in the tangential direction and defects are generated. Since the tensile stress is relieved in a portion where a defect is first generated, stress is concentrated from another portion, and the defect generated in the other portion is moved to form a stacked linear shape. Further, it combines with the defects of the adjacent silicon carbide particles to gradually form a network. At this time, if the cooling rate is too slow, the defects grow to the outside of the alumina particles and are released to the compressive stress of the grain boundaries, so that the grain boundaries are not strengthened. On the other hand, if the cooling rate is too fast, there is a danger that the alumina itself will crack due to a difference in thermal expansion between the outside and the inside. FIG. 1 shows a schematic view of the structure of the sintered body of the present invention.

【0016】[0016]

【作用および発明の効果】本発明のアルミナ基複合焼結
体においては、アルミナ粒子がマトリックスとなり、そ
の内部に炭化珪素微粒子が分散しており、その炭化珪素
微粒子の間で線状の欠陥がネットワークを形成してい
る。
In the alumina-based composite sintered body of the present invention, alumina particles serve as a matrix, and silicon carbide fine particles are dispersed therein. Is formed.

【0017】アルミナ粒子内に取り込まれた炭化珪素微
粒子は、焼結温度からの冷却時にアルミナ粒子との熱膨
張の違いによってアルミナ粒子の粒界に向かって応力を
発生して、粒界を強化する。そのため粒内破壊が支配的
となり破壊源が粒子内になるため、破壊源の大きさは粒
子径以下となり強度の向上につながる。ここで本発明の
アルミナ基複合焼結体の製造においては、焼結方法とし
て、従来の加圧焼結とは異なり、常圧焼結が採られ、し
かも特定の冷却速度で冷却すると、発生した熱応力は、
粒界へ向かうだけでなく、一部は炭化珪素粒子の周りで
解放されてアルミナ粒子内の原子の結合を切断して欠陥
を生成する。この欠陥は引張応力により炭化珪素微粒子
の間を移動させられて線状に並びネットワークを形成す
る。その一例の透過型電子顕微鏡写真を図2に示す。こ
の線状の欠陥は、アルミナ粒子の内部に存在して粒界に
は至っていないことが望ましい。その理由は、欠陥が粒
界に至っていると発生した熱応力の大部分を解放してし
まうため粒界の強化しいては強度の向上につながらない
からである。
The silicon carbide fine particles taken into the alumina particles generate stress toward the grain boundaries of the alumina particles due to a difference in thermal expansion from the alumina particles during cooling from the sintering temperature, thereby strengthening the grain boundaries. . Therefore, intragranular fracture is dominant and the fracture source is inside the particle, so that the size of the fracture source is smaller than the particle diameter, which leads to improvement in strength. Here, in the production of the alumina-based composite sintered body of the present invention, as a sintering method, unlike conventional pressure sintering, normal-pressure sintering is employed, and when cooling at a specific cooling rate, it occurs. Thermal stress is
In addition to going to the grain boundaries, some are released around the silicon carbide particles to break the bonds of the atoms in the alumina particles and create defects. These defects are moved between the silicon carbide fine particles by the tensile stress and are arranged in a line to form a network. FIG. 2 shows a transmission electron micrograph of one example. It is desirable that the linear defects exist inside the alumina particles and do not reach the grain boundaries. The reason is that if the defect reaches the grain boundary, most of the generated thermal stress is released, so that strengthening the grain boundary does not lead to improvement in strength.

【0018】要するに、本発明のアルミナ基複合焼結体
では、高い熱的化学的安定性を有するアルミナがマトリ
ックスとなり、その内部に硬度の高い炭化珪素が分散し
ているためアルミナの硬度は向上し、粒子内分散によっ
て粒界に向かって応力を発生して粒界を強化するため強
度が向上する。さらに、粒内破壊をしてすすんできた亀
裂が、炭化珪素粒子の間に形成された線状の欠陥のネッ
トワークと相互作用を奏して、粒子内で亀裂の偏向や枝
別れを起こすため破壊に要するエネルギーは大きくな
り、その結果として破壊靱性値が向上する。また、通常
破壊の原因となる欠陥の大きさは数十μm以上であると
言われているのに対し、本発明の焼結体では、粒子内の
欠陥は粒子径以下であることから破壊の原因となること
はなく、欠陥のネットワークが破壊靱性値の向上による
強度の向上につながることはあっても強度低下の原因と
なることはない。
In short, in the alumina-based composite sintered body of the present invention, alumina having high thermal and chemical stability serves as a matrix, and silicon carbide having high hardness is dispersed therein, so that the hardness of alumina is improved. In addition, stress is generated toward the grain boundaries by intra-particle dispersion to strengthen the grain boundaries, thereby improving the strength. In addition, the cracks that have progressed through intragranular fracture interact with a network of linear defects formed between the silicon carbide particles, causing cracks to deflect and branch within the particles, resulting in fracture. The required energy is increased, resulting in improved fracture toughness values. Further, it is said that the size of the defect that usually causes fracture is several tens of μm or more, whereas in the sintered body of the present invention, the defect in the particle is smaller than the particle diameter, It is not a cause, and the defect network may lead to an increase in strength due to an increase in fracture toughness, but does not cause a decrease in strength.

【0019】従って、本発明のアルミナ基複合焼結体は
優れた機械部品の製造原料として有用なセラミックス材
料である。
Therefore, the alumina-based composite sintered body of the present invention is a ceramic material useful as a raw material for producing excellent mechanical parts.

【0020】[0020]

【実施例】以下、実施例について本発明を具体的に説明
する。実施例1〜3及び比較例1 γ−アルミナ粉末(平均粒径:0.004μm)とβ−
炭化珪素粉末(平均粒径:0.02μm)とを、表1に
記載の割合で調合し超音波で振動させたメタノール中で
10時間湿式混合した後、乾燥して熱処理と粉砕によっ
て粒径を約0.5〜1.0μmに調整し、45×35×
5mmの板状に成形した。その後、この成形物を常圧の
窒素ガス雰囲気下にて表1に記載の焼結条件で焼結して
アルミナ基複合焼結体を得た。その際、焼結温度への昇
温速度は400℃/hr、焼結温度からの降温速度は1
000℃とした。
Hereinafter, the present invention will be described in detail with reference to examples. Examples 1-3 and Comparative Example 1 γ-alumina powder (average particle size: 0.004 μm) and β-alumina powder
Silicon carbide powder (average particle size: 0.02 μm) was mixed at a ratio shown in Table 1, wet-mixed in methanol vibrated by ultrasonic waves for 10 hours, dried, and heat-treated and pulverized to reduce the particle size. Adjust to about 0.5-1.0μm, 45 × 35 ×
It was formed into a 5 mm plate shape. Thereafter, this molded product was sintered under a nitrogen gas atmosphere at normal pressure under the sintering conditions shown in Table 1 to obtain an alumina-based composite sintered body. At that time, the rate of temperature rise to the sintering temperature was 400 ° C./hr, and the rate of temperature decrease from the sintering temperature was 1
000 ° C.

【0021】比較例2 炭化珪素原料粉末として平均粒径が0.3μmのものを
用い、他の条件は実施例1と同一にしてアルミナ基複合
焼結体を得た。
Comparative Example 2 An alumina-based composite sintered body was obtained in the same manner as in Example 1 except that a silicon carbide raw material powder having an average particle diameter of 0.3 μm was used.

【0022】比較例3 焼結に窒素ガス雰囲気下にて1800℃で1時間ホット
プレスを行い、他の条件は実施例1と同一にしてアルミ
ナ基複合焼結体を得た。
Comparative Example 3 Sintering was performed by hot pressing at 1800 ° C. for 1 hour in a nitrogen gas atmosphere, and the other conditions were the same as in Example 1 to obtain an alumina-based composite sintered body.

【0023】実施例1で得られた複合焼結体の透過型電
子顕微鏡写真を図1に示す。比較例2及び3について
は、透過型電子顕微鏡写真によって、アルミナの粒子内
部の炭化珪素粒子の間に線状に並んだ欠陥が存在してい
ないことを確認した。
A transmission electron micrograph of the composite sintered body obtained in Example 1 is shown in FIG. With respect to Comparative Examples 2 and 3, it was confirmed from transmission electron micrographs that there were no linear defects between the silicon carbide particles inside the alumina particles.

【0024】実施例1〜3及び比較例1〜3で得られた
各焼結体について水置換によるアルキメデス法によりそ
の密度を測定し、理論密度と前記実測値とから相対密度
を算出した。また、室温の3点曲げ強度をJIS−R1
601により、硬度と破壊靱性値をビッカース硬度計と
インデンテーション法によりそれぞれ測定した。得られ
た結果を表1に示す。
The densities of the sintered bodies obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were measured by the Archimedes method using water displacement, and the relative densities were calculated from the theoretical densities and the actually measured values. Further, the three-point bending strength at room temperature was measured according to JIS-R1.
According to No. 601, the hardness and the fracture toughness were measured by a Vickers hardness meter and an indentation method, respectively. Table 1 shows the obtained results.

【0025】[0025]

【表1】 表1より、本発明に係る焼結体が、比較例の焼結体に比
べて、密度が高く構造が緻密であり、優れた強度、硬
度、破壊靱性値を有することが確認された。
[Table 1] From Table 1, it was confirmed that the sintered body according to the present invention had a higher density, a denser structure, and excellent strength, hardness, and fracture toughness as compared with the sintered body of the comparative example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミナ基複合焼結体の微細構造を示
す模式図である。
FIG. 1 is a schematic view showing a fine structure of an alumina-based composite sintered body of the present invention.

【図2】本発明のアルミナ基複合焼結体の微細構造を示
す透過型電子顕微鏡写真である。
FIG. 2 is a transmission electron micrograph showing the fine structure of the alumina-based composite sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミナ粒界 2 炭化珪素微粒子 3 線状欠陥のネットワーク 1 Alumina grain boundary 2 Silicon carbide fine particles 3 Network of linear defects

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−210571(JP,A) 特開 昭64−87552(JP,A) 特開 昭61−174165(JP,A) 特開 平4−240157(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/10 C04B 35/64 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-60-210571 (JP, A) JP-A-64-87552 (JP, A) JP-A-61-174165 (JP, A) JP-A-4- 240157 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/10 C04B 35/64

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 80〜97体積%のアルミナ粒子と3〜
20体積%の炭化珪素粒子から本質的になる常圧焼結体
であって、前記アルミナ粒子の粒径が1.0〜10.0
μm、前記炭化珪素の粒径が0.3μm以下であるとと
もに、前記アルミナ粒子の内部及び粒界に前記炭化珪素
粒子が分散せしめられ、焼結時の昇温速度を400℃/
hr以上とし降温速度を約1,000℃/hrとするこ
とによって前記アルミナ粒子内部の前記炭化珪素粒子の
間を線状に並んだ欠陥が前記アルミナ粒子内部でネット
ワークを形成しており、かつ全体として気孔率が2%以
下であることを特徴とするアルミナ基複合焼結体。
1. A method according to claim 1, wherein 80 to 97% by volume of alumina particles and 3 to
An atmospheric pressure sintered body consisting essentially of 20% by volume of silicon carbide particles, wherein the alumina particles have a particle size of 1.0 to 10.0.
μm, the particle size of the silicon carbide is 0.3 μm or less, and the silicon carbide particles are dispersed inside the alumina particles and at the grain boundaries.
hr or more, and the temperature decreasing rate is about 1,000 ° C./hr, so that defects linearly arranged between the silicon carbide particles inside the alumina particles form a network inside the alumina particles, and Characterized in that the porosity is 2% or less.
JP04031500A 1992-01-22 1992-01-22 Alumina-based composite sintered body Expired - Fee Related JP3126059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04031500A JP3126059B2 (en) 1992-01-22 1992-01-22 Alumina-based composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04031500A JP3126059B2 (en) 1992-01-22 1992-01-22 Alumina-based composite sintered body

Publications (2)

Publication Number Publication Date
JPH05194023A JPH05194023A (en) 1993-08-03
JP3126059B2 true JP3126059B2 (en) 2001-01-22

Family

ID=12332957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04031500A Expired - Fee Related JP3126059B2 (en) 1992-01-22 1992-01-22 Alumina-based composite sintered body

Country Status (1)

Country Link
JP (1) JP3126059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008230B2 (en) * 2001-11-14 2007-11-14 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck

Also Published As

Publication number Publication date
JPH05194023A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
EP0699174B1 (en) Sintered self-reinforced silicon nitride
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH02296771A (en) Composite ceramic and its production
JP3126059B2 (en) Alumina-based composite sintered body
JP3127022B2 (en) Method for producing alumina-based composite sintered body
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH01145380A (en) Production of silicon nitride sintered form
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH0559073B2 (en)
JPH05194024A (en) Alumina-based multiple sintered compact
Valecillos et al. Microstructure and mechanical properties of microwave sintered silicon nitride
JPH1129361A (en) Silicon nitride sintered product and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH0375505B2 (en)
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH0832590B2 (en) Silicon carbide sintered body and manufacturing method thereof
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH0656524A (en) Production of zirconia sintered compact and zirconia sintered compact
JPS6077175A (en) Manufacture of silicon nitride sintered body
JPH0461834B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees