JP3112105B2 - WDM light source - Google Patents

WDM light source

Info

Publication number
JP3112105B2
JP3112105B2 JP26640091A JP26640091A JP3112105B2 JP 3112105 B2 JP3112105 B2 JP 3112105B2 JP 26640091 A JP26640091 A JP 26640091A JP 26640091 A JP26640091 A JP 26640091A JP 3112105 B2 JP3112105 B2 JP 3112105B2
Authority
JP
Japan
Prior art keywords
waveguide
light source
waveguides
wavelength
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26640091A
Other languages
Japanese (ja)
Other versions
JPH05107420A (en
Inventor
正宏 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26640091A priority Critical patent/JP3112105B2/en
Publication of JPH05107420A publication Critical patent/JPH05107420A/en
Application granted granted Critical
Publication of JP3112105B2 publication Critical patent/JP3112105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0268Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、小形で多重度の多い波
長多重光源に関する。
The present invention relates to relates to a high multi-wavelength light source of multiplicity in compact.

【0002】[0002]

【従来の技術】従来の波長多重光源の代表的な構造を図
3に示す。図中、1は利得導波路用半導体基板、2は受
動導波路用半導体基板であり、利得導波路用半導体基板
1上には発振波長の異なる複数のDFB(分布帰還形)
レーザ3が形成されており、また、受動導波路用半導体
基板2上には各DFBレーザ3からの光を合波する合波
用導波路4が形成されている。かかる半導体光源では、
各DFBレーザ3でそれぞれ発振された多数の波長の光
は合波用導波路4で合波され、その出力端4Aから出力
される。
2. Description of the Related Art A typical structure of a conventional wavelength multiplex light source is shown in FIG. In the figure, 1 is a semiconductor substrate for a gain waveguide, 2 is a semiconductor substrate for a passive waveguide, and a plurality of DFBs (distributed feedback types) having different oscillation wavelengths are provided on the semiconductor substrate for a gain waveguide.
A laser 3 is formed, and a multiplexing waveguide 4 for multiplexing light from each DFB laser 3 is formed on the semiconductor substrate 2 for a passive waveguide. In such a semiconductor light source,
Light of a number of wavelengths oscillated by each DFB laser 3 is multiplexed by the multiplexing waveguide 4 and output from its output end 4A.

【0003】[0003]

【発明が解決しようとする課題】前述した従来の半導体
光源では、発振波長の異なるDFBレーザ3を多重度に
応じて並べる必要がある。すなわち、各DFBレーザ3
のグレーティングのピッチを各々変えて作製する必要が
あるという問題がある。そして、このようなグレーティ
ングを作製する場合には電子ビーム露光法によって各々
のグレーティングパターンを描画しなければならないの
で、製造時間とコストの点で大きな障害となる。また、
多数の波長の光を合波する合波用導波路4は、出力導波
路が単一モード導波路の場合には原理的に合波損が生
じ、nチャンネルを合波する場合には1/nのパワーしか
結合しないという問題がある。さらに、この光源を動作
させると、注入キャリアによる発熱によって発振波長が
シフトし、各々のチャンネルの波長を固定して動作させ
ることが不可能であるという問題がある。
In the above-mentioned conventional semiconductor light source, it is necessary to arrange DFB lasers 3 having different oscillation wavelengths according to the multiplicity. That is, each DFB laser 3
However, there is a problem that it is necessary to manufacture the gratings with different pitches. When fabricating such a grating, each grating pattern must be drawn by an electron beam exposure method, which is a major obstacle in terms of manufacturing time and cost. Also,
The multiplexing waveguide 4 for multiplexing light of a large number of wavelengths has a multiplexing loss in principle when the output waveguide is a single mode waveguide, and 1 / in the case where the n channels are multiplexed. There is a problem that only n powers are combined. Further, when this light source is operated, there is a problem that the oscillation wavelength shifts due to the heat generated by the injected carrier, and it is impossible to operate the light source while fixing the wavelength of each channel.

【0004】本発明はこのような事情に鑑み、多数の波
長多重光源の発振波長を精度よく等間隔に配置し、しか
も個々のチャンネルの光源を動作させることによって他
のチャンネルに影響を及ぼさないような波長多重光源を
提供することを目的とする。
In view of such circumstances, the present invention arranges the oscillation wavelengths of a large number of wavelength multiplexed light sources with high precision at equal intervals, and operates the light sources of individual channels so as not to affect other channels. and an object thereof is to <br/> provide a multi-wavelength light source.

【0005】[0005]

【課題を解決するための手段】前記目的を達成する本発
明に係る半導体光素子は、遅延時間差を有する複数本の
導波路からなるアレイ状導波路と、このアレイ導波路の
両端に設けられて当該アレイ状導波路の複数本の導波路
からの光を焦点面に収束するレンズ効果を有するスラブ
導波路とでアレイ導波路型グレーティングを構成し、こ
のアレイ導波路型グレーティングの一方のスラブ導波路
の焦点面には複数本の利得導波路を接続し、また、他方
のスラブ導波路には入出力用導波路を接続して、狭帯域
フィルタ特性を持ったキャビテイを構成したことを特徴
とする。また、[請求項2]は、請求項1において、レ
ンズ効果を有するスラブ導波路を扇状スラブ導波路で構
成したことを特徴とする。
A semiconductor optical device according to the present invention that achieves the above object has an arrayed waveguide composed of a plurality of waveguides having a delay time difference, and is provided at both ends of the arrayed waveguide. A slab waveguide having a lens effect for converging light from a plurality of waveguides of the arrayed waveguide on a focal plane constitutes an arrayed waveguide grating, and one slab waveguide of the arrayed waveguide grating is formed. A plurality of gain waveguides are connected to the focal plane, and an input / output waveguide is connected to the other slab waveguide.
A cavity having a filter characteristic is configured . [Claim 2] is claim 1
A slab waveguide having a lens effect is composed of a fan-shaped slab waveguide.
It is characterized by having done.

【0006】[0006]

【作用】前記構成のアレイ導波路型グレーティングは波
長選択素子として作用する。すなわち、このアレイ導波
路型グレーティングは、その一方のスラブ導波路の焦点
面の接続位置により波長を選択し、当該焦点面に接続さ
れた複数本の利得導波路は各接続位置の透過波長で発振
する。そして、各波長の光は他方のスラブ導波路の焦点
面に接続された入出力用導波路に多重結合される。一
方、入出力用導波路から波長多重信号を入力すれば、ア
レイ導波路型グレーティングは分波器として作用する。
The array waveguide grating having the above-described structure functions as a wavelength selecting element. That is, this arrayed waveguide grating selects a wavelength according to the connection position of the focal plane of one of the slab waveguides, and a plurality of gain waveguides connected to the focal plane oscillate at the transmission wavelength at each connection position. I do. Then, the light of each wavelength is multiplex-coupled to the input / output waveguide connected to the focal plane of the other slab waveguide. On the other hand, if a wavelength-division multiplexed signal is input from the input / output waveguide, the arrayed waveguide grating acts as a duplexer.

【0007】[0007]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0008】図1は本発明にかかる波長多重光源の一実
施例を説明するための構成図であり、図中、11A,1
1Bは利得導波路用半導体基板、12は利得導波路用半
導体基板11A,11Bに挟まれた受動導波路用半導体
基板を示す。そして、受動導波路用半導体基板12の端
部にはレンズ効果を有する扇状スラブ導波路13A,1
3Bが形成されている。扇状スラブ導波路13A,13
Bは、扇状の要側の焦点面14A,14Bを受動導波路
用半導体基板12の端面にそれぞれ一致させるように形
成されており、焦点面14A,14Bと反対側の円弧面
15A,15B同士は、各々の導波路間で一定の長さの
差を有する複数本のアレイ導波路16により接続されて
いる。一方、利得導波路用半導体基板11Aには、扇状
スラブ導波路13Aの焦点面14Aに接続する、通常半
導体構造を有する複数本の利得導波路17が形成されて
おり、また、利得導波路用半導体基板11Bには、扇状
スラブ導波路13Bの焦点面14Bに接続する1本の出
力導波路18が形成されている。なお、図中、19はア
レイ導波路16のコーナ部に設けられた全反射用コーナ
ミラーを示す。
FIG. 1 is a block diagram for explaining an embodiment of a wavelength division multiplexed light source according to the present invention.
1B denotes a semiconductor substrate for a gain waveguide, and 12 denotes a semiconductor substrate for a passive waveguide sandwiched between the semiconductor substrates for gain waveguides 11A and 11B. Further, fan-shaped slab waveguides 13A, 13A having a lens effect are provided at the ends of the semiconductor substrate 12 for passive waveguide.
3B is formed. Fan-shaped slab waveguides 13A, 13
B is formed so that the fan-shaped focal planes 14A and 14B on the essential side are respectively aligned with the end faces of the semiconductor substrate 12 for passive waveguide, and the arcuate surfaces 15A and 15B opposite to the focal planes 14A and 14B are connected to each other. Are connected by a plurality of arrayed waveguides 16 having a fixed length difference between the respective waveguides. On the other hand, a plurality of gain waveguides 17 having a normal semiconductor structure, which are connected to the focal plane 14A of the fan-shaped slab waveguide 13A, are formed on the semiconductor substrate for gain waveguide 11A. On the substrate 11B, one output waveguide 18 connected to the focal plane 14B of the fan-shaped slab waveguide 13B is formed. In the drawing, reference numeral 19 denotes a total reflection corner mirror provided at a corner portion of the arrayed waveguide 16.

【0009】ここで、上記扇状スラブ導波路13A,1
3B及びアレイ導波路16で構成される光回路はいわゆ
るアレイ導波路型グレーティングで、回折格子型合分波
器と同じ機能を有する。すなわち、扇状スラブ導波路1
3Aの焦点面14Aの異なる位置に接続される複数本の
利得導波路17からの透過波長が異なり、各利得導波路
17からは例えばλ1 ,λ2 …λn の波長の光が発振さ
れてアレイ導波路16及び扇状スラブ導波路13Bを通
って出力導波路18へ多重出力される。
Here, the fan-shaped slab waveguide 13A, 1
The optical circuit composed of the 3B and the array waveguide 16 is a so-called array waveguide type grating and has the same function as a diffraction grating type multiplexer / demultiplexer. That is, the fan-shaped slab waveguide 1
Different transmission wavelengths of a plurality of gain waveguide 17 connected to the focal plane 14A of different locations 3A, from the gain waveguide 17 for example lambda 1, light of wavelength λ 2 ... λ n is oscillated The signal is multiplexed and output to the output waveguide 18 through the array waveguide 16 and the fan-shaped slab waveguide 13B.

【0010】かかるアレイ導波路型グレーティングをガ
ラス導波路で構成した例が、Integrated Fhotonic Rese
arch '91,Post-deadline Papers, PD1-1,"Multi/demult
iplexer for nanometer-spacing WDM using arrayed-wa
veguide grating",by H.Takahashi et.al.に報告されて
いる。図2はこの報告例を合波特性を示した図であり、
1nmのチャンネル間隔で28チャンネルの合波器を構成
したものである。
[0010] An example in which such an arrayed waveguide type grating is constituted by a glass waveguide is disclosed in Integrated Fhotonic Rese.
arch '91, Post-deadline Papers, PD1-1, "Multi / demult
iplexer for nanometer-spacing WDM using arrayed-wa
veguide grating ", by H. Takahashi et.al. FIG. 2 shows a multiplexing characteristic of this report example.
A 28-channel multiplexer is formed at a channel interval of 1 nm.

【0011】本実施例では上記アレイ導波路型グレーテ
ィングをInP系の半導体基板に構成した例を説明す
る。アレイ導波路16の導波路幅を2μmとし、扇状ス
ラブ導波路13A,13Bの焦点距離fを6.2mmとし、
各アレイ導波路16間の長さの差を10μmとした場
合、波長分散値は、dx/dλ=2μm/0.1nmとな
る。したがって、扇状スラブ導波路13Aの焦点面14
Aに幅2μm以下の利得導波路17を2μmピッチの間
隔で配列すると、0.1μm間隔の狭帯域フィルタを持っ
たキャビティが構成され、透過波長における損失を前後
の利得導波路で補償できれば透過波長で発振する。すな
わち、図1の構成例では、アレイ導波路16が900本
以上、チャンネル間隔1Å、チャンネル数100以上の
波長多重光源が1cm×2cmの基板上に構成できる。
In this embodiment, an example will be described in which the arrayed waveguide grating is formed on an InP-based semiconductor substrate. The waveguide width of the arrayed waveguide 16 is 2 μm, the focal length f of the fan-shaped slab waveguides 13A and 13B is 6.2 mm,
If the length difference between the array waveguides 16 is 10 μm, the chromatic dispersion value is dx / dλ = 2 μm / 0.1 nm. Therefore, the focal plane 14 of the fan-shaped slab waveguide 13A
When the gain waveguides 17 having a width of 2 μm or less are arranged in A at a pitch of 2 μm, a cavity having a narrow band filter of 0.1 μm interval is formed. Oscillates at That is, in the configuration example shown in FIG. 1, a wavelength multiplexed light source having 900 or more array waveguides 16, a channel interval of 1 °, and a channel number of 100 or more can be formed on a 1 cm × 2 cm substrate.

【0012】本実施例の利得導波路路17は通常半導体
レーザ構造を有しているため、利得分布は非常に広く、
1.55μm帯では1000Å以上の波長帯域にわたって
3dB以下の利得差になっている。したがって、本実施例
では利得導波路17の中心波長域さえあわせれば100
チャンネル以上の波長多重光源を精度よく配置すること
ができる。また、動作時における発熱は波長選択機構に
直接影響を与えないためチャンネル間のクロストークも
問題がない。また、出力導波路18においては各波長で
の焦点に一致しているため、合波損は原理的に生じな
い。すなわち、従来の合流器が単なる光パワーの合流で
あるために合流損が生じるのに対して、本発明では波長
差による位相差を制御しているために合波損が生じない
のである。
Since the gain waveguide 17 of this embodiment usually has a semiconductor laser structure, the gain distribution is very wide,
In the 1.55 μm band, the gain difference is 3 dB or less over a wavelength band of 1000 ° or more. Therefore, in the present embodiment, if the center wavelength region of the gain waveguide 17 is adjusted, 100
Wavelength multiplexed light sources of channels or more can be arranged with high accuracy. In addition, since heat generated during operation does not directly affect the wavelength selection mechanism, there is no problem of crosstalk between channels. Further, in the output waveguide 18, since the focal point is coincident with each wavelength, no multiplexing loss occurs in principle. That is, while the conventional combiner is merely a convergence of optical power, a merger loss occurs, whereas the present invention controls a phase difference due to a wavelength difference, so that a merger loss does not occur.

【0013】上記実施例において、出力導波路18は利
得導波路で構成できることは言うまでもない。また、利
得導波路17の端面には、反射損を減らすために高反射
膜を設けるのが好ましい。さらに、レンズ効果を有する
スラブ導波路として、扇状スラブ導波路13A,13B
の代りにスラブ型レンズ等を用いることができる。
In the above embodiment, it goes without saying that the output waveguide 18 can be constituted by a gain waveguide. Further, it is preferable to provide a high reflection film on the end face of the gain waveguide 17 in order to reduce reflection loss. Further, fan-shaped slab waveguides 13A and 13B are used as slab waveguides having a lens effect.
Instead, a slab type lens or the like can be used.

【0014】なお、上記実施例では波長多重光源の例を
説明したが、利得導波路17の注入電流を流すチャンネ
ルを切り換えることによって超広帯域波長可変光源とし
て利用できることは言うまでもない。さらに、上記構成
で、出力導波路18を入力導波路として波長多重信号を
入射させ、利得導波路17での利得を発振しない範囲で
用いれば、分波器として使用が可能である。
In the above embodiment, an example of a wavelength multiplexed light source has been described. However, it is needless to say that the channel can be used as an ultra-wide band tunable light source by switching a channel through which an injection current flows in the gain waveguide 17. Further, in the above configuration, if a wavelength multiplexed signal is made incident using the output waveguide 18 as an input waveguide and the gain in the gain waveguide 17 is not oscillated, it can be used as a duplexer.

【0015】[0015]

【発明の効果】以上説明したように、本発明にかかる波
長多重光源は、アレイ導波路型グレーティングを波長選
択機構としてもちいているため、以下に示すような効果
を奏するものである。 動作時に他チャンネルへのク
ロストークがない。 チャンネル数を大きくとること
ができる。 合波損失が原理的になく結合効率が高
い。 作製が容易である。 損失のない分波器を構
成することができる。 超広帯域な波長可変光源を構
成することができる。
As described above , the wave according to the present invention is
Since the long multiplex light source uses an arrayed waveguide grating as a wavelength selection mechanism, it has the following effects. No crosstalk to other channels during operation. The number of channels can be increased. No coupling loss in principle and high coupling efficiency. Easy to make. A lossless duplexer can be configured. An ultra-wide band tunable light source can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例に係る波長多重光源を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a wavelength division multiplexed light source according to one embodiment.

【図2】アレイ導波路型グレーティングの分波特性を示
す図である。
FIG. 2 is a diagram illustrating the demultiplexing characteristics of an arrayed waveguide grating.

【図3】従来の波長多重光源の一例を示す構成図であ
る。
FIG. 3 is a configuration diagram illustrating an example of a conventional wavelength multiplexed light source.

【符号の説明】[Explanation of symbols]

11A,11B 利得導波路用半導体基板 12 受動導波路用半導体基板 13A,13B 扇状スラブ導波路 14A,14B 焦点面 15A,15B 円弧面 16 アレイ導波路 17 利得導波路 18 出力導波路 19 全反射用コーナミラー 11A, 11B Semiconductor substrate for gain waveguide 12 Semiconductor substrate for passive waveguide 13A, 13B Fan-shaped slab waveguide 14A, 14B Focal plane 15A, 15B Arc plane 16 Array waveguide 17 Gain waveguide 18 Output waveguide 19 Corner for total reflection mirror

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 遅延時間差を有する複数本の導波路から
なるアレイ状導波路と、このアレイ状導波路の両端に設
けられて当該アレイ状導波路の複数本の導波路からの光
を焦点面に収束するレンズ効果を有するスラブ導波路と
でアレイ導波路型グレーティングを構成し、このアレイ
導波路型グレーティングの一方のスラブ導波路の焦点面
には複数本の利得導波路を接続し、また、他方のスラブ
導波路には入出力用導波路を接続して、狭帯域フィルタ
特性を持ったキャビテイを構成したことを特徴とする
長多重光源。
1. An arrayed waveguide comprising a plurality of waveguides having a delay time difference, and light beams from a plurality of waveguides of the arrayed waveguide provided at both ends of the arrayed waveguide are used as focal planes. A slab waveguide having a lens effect that converges to form an arrayed waveguide grating, and a plurality of gain waveguides are connected to the focal plane of one slab waveguide of the arrayed waveguide grating, An input / output waveguide is connected to the other slab waveguide, and a narrow band filter
Waves characterized by forming cavities with characteristics
Long multiplex light source.
【請求項2】 請求項1において、レンズ効果を有する
スラブ導波路を扇状スラブ導波路で構成したことを特徴
とする波長多重光源。
2. A wavelength multiplexed light source according to claim 1, wherein the slab waveguide having a lens effect is constituted by a fan-shaped slab waveguide .
JP26640091A 1991-10-15 1991-10-15 WDM light source Expired - Lifetime JP3112105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26640091A JP3112105B2 (en) 1991-10-15 1991-10-15 WDM light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26640091A JP3112105B2 (en) 1991-10-15 1991-10-15 WDM light source

Publications (2)

Publication Number Publication Date
JPH05107420A JPH05107420A (en) 1993-04-30
JP3112105B2 true JP3112105B2 (en) 2000-11-27

Family

ID=17430407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26640091A Expired - Lifetime JP3112105B2 (en) 1991-10-15 1991-10-15 WDM light source

Country Status (1)

Country Link
JP (1) JP3112105B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69415768T2 (en) * 1993-11-01 1999-06-10 Sumitomo Electric Industries Optical branch element
US6052394A (en) * 1997-09-12 2000-04-18 Samsung Electronics Co., Ltd. High power pumping device for optical fiber amplification
JP4007329B2 (en) * 2004-02-19 2007-11-14 学校法人慶應義塾 Arrayed waveguide grating

Also Published As

Publication number Publication date
JPH05107420A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US5946331A (en) Integrated multi-wavelength transmitter
US6434175B1 (en) Multiwavelength distributed bragg reflector phased array laser
KR100922479B1 (en) Optical Device With Slab Waveguide And Channel Waveguides On Substrate
TW552753B (en) Tunable semiconductor laser with integrated wideband reflector
CN1371539A (en) Wavelength-locked external cavity lasers with integrated modulator
JP3530404B2 (en) Wavelength selectable laser source
JPH11211924A (en) Optical circuit for wavelength multiplexing communication
JP2007158057A (en) Integrated laser device
US6856455B2 (en) Light source apparatus, optical amplifier and optical communication system
JP5240095B2 (en) Wavelength tunable laser light source and driving method thereof
JP2007115900A (en) Wavelength tunable light source, module thereof, and method for driving the same
WO2020107315A1 (en) Two-section dbr laser and monolithic integrated array light source chip
JP2000012952A (en) Manufacture of semiconductor optical waveguide array and array-structured semiconductor optical element
JP3112105B2 (en) WDM light source
Doerr et al. Wavelength selectable laser with inherent wavelength and single-mode stability
JP4208366B2 (en) Optical coupler and optical multiplexer
US8379300B2 (en) Wavelength-variable light source with dual resonator loop circuit
JPH0590715A (en) Device for multi-wavelength light detection and/or light emission having grating directional couplers arranged in series
JP3529275B2 (en) WDM light source
US6791747B2 (en) Multichannel laser transmitter suitable for wavelength-division multiplexing applications
WO2004008595A1 (en) Distribution bragg reflection semiconductor laser, integrated semiconductor laser, semiconductor laser module, optical network system
WO2011001571A1 (en) Wavelength-variable laser light source and method for driving same
JP3600785B2 (en) Waveguide type laser
JP2000241638A (en) Array waveguide diffraction grating part
JP2001085799A (en) Light transmitting/receiving device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12