JP3093811B2 - Polyvinylidene fluoride resin film and method for producing the same - Google Patents

Polyvinylidene fluoride resin film and method for producing the same

Info

Publication number
JP3093811B2
JP3093811B2 JP03074856A JP7485691A JP3093811B2 JP 3093811 B2 JP3093811 B2 JP 3093811B2 JP 03074856 A JP03074856 A JP 03074856A JP 7485691 A JP7485691 A JP 7485691A JP 3093811 B2 JP3093811 B2 JP 3093811B2
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
fluoride resin
degree
hydroxylation
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03074856A
Other languages
Japanese (ja)
Other versions
JPH04310223A (en
Inventor
博義 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP03074856A priority Critical patent/JP3093811B2/en
Publication of JPH04310223A publication Critical patent/JPH04310223A/en
Application granted granted Critical
Publication of JP3093811B2 publication Critical patent/JP3093811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はセルロース誘導体または
セルロースとポリフッ化ビニリデン樹脂のブレンドポリ
マーからなる高度に親水化されたポリフッ化ビニリデン
樹脂膜およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly hydrophilic polyvinylidene fluoride resin film comprising a cellulose derivative or a blend polymer of cellulose and polyvinylidene fluoride resin, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、人工膜の素材としては、セルロー
スアセテート等のセルロース誘導体、ポリアクリロニト
リル、ポリスルホン、ポリメタクリル酸メチル、ポリア
ミド等、多くの高分子化合物が用いられてきた。一方、
ポリフッ化ビニリデン樹脂は、機械的に強固で、熱
安定性がよく耐熱性に優れており135℃で大部分の薬品
に侵されない、また耐放射線性、耐侯性に優れてい
る。更に耐薬品性は極めて優れており、ハロゲン化合
物、炭化水素、アルコール、有機酸、塩素系溶剤、酸、
アルカリ、大部分の強酸化剤、還元剤、塩類に全くおか
されず耐薬品性ではポリスルホン、ポリエーテルスルホ
ンより優れた素材である。
2. Description of the Related Art Conventionally, many polymer compounds such as cellulose derivatives such as cellulose acetate, polyacrylonitrile, polysulfone, polymethyl methacrylate, and polyamide have been used as materials for artificial membranes. on the other hand,
Polyvinylidene fluoride resin is mechanically strong, has good thermal stability, is excellent in heat resistance, is not affected by most chemicals at 135 ° C., and is excellent in radiation resistance and weather resistance. Furthermore, chemical resistance is extremely excellent, and halogen compounds, hydrocarbons, alcohols, organic acids, chlorinated solvents, acids,
This material is superior to polysulfone and polyethersulfone in chemical resistance without being affected by alkalis, most strong oxidizing agents, reducing agents and salts.

【0003】しかしながらポリフッ化ビニリデン樹脂膜
は臨界表面張力が25.0dyne/cmと小さく、ポリフッ化ビ
ニリデン樹脂膜はセルロース等の親水性樹脂膜と比較し
て、さらにはポリスルホン、ポリエーテルスルホン等の
疎水性樹脂膜と比較しても極めて疎水性が強く、「一度
乾燥すると濡れにくい」、「透水性能が低い」、「膜面
が疎水性相互作用により汚染されやすい」など数多くの
欠点があった。特に医薬品製造工程においてタンパク質
等の生理活性物質の分離・精製等に使用される場合、膜
面への吸着・変性は回収率の低下を招くと同時に、膜孔
の閉塞によるろ過速度の急激な低下を引き起こすため、
深刻な問題となっていた。
However, the polyvinylidene fluoride resin film has a critical surface tension as small as 25.0 dyne / cm. Compared with resin membranes, they have extremely strong hydrophobicity, and have many drawbacks, such as "hard to wet once dried", "low water permeability", and "the membrane surface is easily contaminated by hydrophobic interaction". In particular, when used for the separation and purification of biologically active substances such as proteins in the pharmaceutical manufacturing process, adsorption and denaturation on the membrane surface causes a decrease in the recovery rate, and at the same time, a rapid decrease in the filtration rate due to blockage of the membrane pores. Cause
It was a serious problem.

【0004】疎水性樹脂膜を親水化する方法として例え
ば、特開昭53-13679号公報、特開昭59-196322号公報な
どはスルホン酸基を、特開昭57-174104号公報は主鎖に
ポリエチレンイミンポリマー類を、それぞれ導入もしく
はグラフトして親水化している。また特開昭62-125802
号公報は親水性ポリマーであるビニル系重合体のポリビ
ニルピロリドンを疎水性樹脂膜にブレンドしている。し
かし、いずれの親水基、親水性ポリマーも若干の荷電を
有しているため、荷電を有する溶質、特に両性電解質で
あるタンパク質などを含む溶液に対してはむしろ逆効果
であった。
As a method for hydrophilizing a hydrophobic resin film, for example, JP-A-53-13679 and JP-A-59-196322 disclose a sulfonic acid group, and JP-A-57-174104 discloses a main chain. And polyethyleneimine polymers are introduced or grafted, respectively, to make them hydrophilic. Also JP-A-62-125802
In the publication, polyvinylpyrrolidone of a vinyl polymer as a hydrophilic polymer is blended in a hydrophobic resin film. However, since each of the hydrophilic groups and hydrophilic polymers has a slight charge, it has a rather opposite effect on a solution containing a charged solute, particularly a protein containing an amphoteric electrolyte.

【0005】荷電を有しない親水性に優れたポリマーと
して天然高分子であるセルロースがあるが、セルロース
は親水性が強くポリフッ化ビニリデン樹脂を溶解する溶
剤には溶解しないためブレンドは不可能であった。また
特開平2-78425号公報は酢酸セルロースをポリフッ化ビ
ニリデン樹脂膜にブレンドしているが、酢酸セルロース
は親水性が弱く、実質的な親水化を得るためにはかなり
の量をブレンドする必要があり、ポリフッ化ビニリデン
樹脂のような分子凝集力が大きいポリマーとの均一なブ
レンド体を得ることは困難であった。
[0005] As a polymer having no charge and having excellent hydrophilicity, there is cellulose which is a natural polymer. However, since cellulose is strong in hydrophilicity and does not dissolve in a solvent which dissolves polyvinylidene fluoride resin, blending was impossible. . Japanese Patent Application Laid-Open No. 2-78425 discloses that cellulose acetate is blended with a polyvinylidene fluoride resin film, but cellulose acetate has weak hydrophilicity, and it is necessary to blend a considerable amount to obtain substantial hydrophilicity. Therefore, it has been difficult to obtain a uniform blend with a polymer having a large molecular cohesion such as polyvinylidene fluoride resin.

【0006】[0006]

【発明が解決しようとする課題】これまでに提案された
ポリフッ化ビニリデン樹脂膜を親水化する方法はいずれ
も親水化が意味のある程度に達成されていないか、もし
くは親水化が達成されても荷電を有するためタンパク質
等の荷電を有する溶質を含む溶液に対しては効果がない
方法ばかりである。従って、本発明が解決しようとする
課題は荷電を有さずしかも高度に親水化されたポリフッ
化ビニリデン樹脂膜及びその製造方法を提供することで
ある。
In any of the methods proposed so far for hydrophilizing a polyvinylidene fluoride resin film, the hydrophilization has not been achieved to a significant extent, or even if the hydrophilization has been achieved, the charge is not sufficient. However, this method is not effective for a solution containing a charged solute such as a protein. Accordingly, an object of the present invention is to provide a polyvinylidene fluoride resin film having no charge and highly hydrophilized, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記課題を鋭意検討した
結果本発明に至った。即ちこの発明は、〔1〕ポリフッ
化ビニリデン樹脂と水酸化度が80%以上かつ100%未満で
あるセルロース誘導体とのブレンドポリマーで構成され
ることを特徴とするポリフッ化ビニリデン樹脂膜、
〔2〕ポリフッ化ビニリデン樹脂と水酸化度100%のセル
ロースとのブレンドポリマーで構成されることを特徴と
するポリフッ化ビニリデン樹脂膜、および〔3〕ポリフ
ッ化ビニリデン樹脂膜とセルロース誘導体を混和溶解し
た溶液により製膜し、その後セルロース誘導体を水酸化
度80%以上に加水分解することを特徴とするポリフッ化
ビニリデン樹脂膜の製造方法に関する。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present invention has been achieved. That is, the present invention provides [1] a polyvinylidene fluoride resin film characterized by being composed of a blend polymer of a polyvinylidene fluoride resin and a cellulose derivative having a degree of hydroxylation of 80% or more and less than 100%.
[2] a polyvinylidene fluoride resin film characterized by being composed of a blend polymer of a polyvinylidene fluoride resin and cellulose having a degree of hydroxylation of 100%, and [3] a polyvinylidene fluoride resin film and a cellulose derivative mixed and dissolved. The present invention relates to a method for producing a polyvinylidene fluoride resin film, which comprises forming a film with a solution, and then hydrolyzing a cellulose derivative to a degree of hydroxylation of 80% or more.

【0008】以下本発明を詳細に記述する。本発明で用
いるポリフッ化ビニリデン樹脂膜は通常、
Hereinafter, the present invention will be described in detail. The polyvinylidene fluoride resin film used in the present invention is usually

【0009】[0009]

【化1】 Embedded image

【0010】の繰り返し単位を持ち、一分子中の平均フ
ッ素含有量が50%〜60%のフッ素化合物であり、好ましく
はメチレン基とフッ化メチレン基が交互に安定した形で
結合した結晶化度の高く、また平均分子量が5×103以上
と高いものである。このようなポリフッ化ビニリデン樹
脂は溶媒中で長期にわたり安定であり製膜しやすい。一
方、本発明に用いるセルロース誘導体にはアセチルセル
ロースのようなセルロースエステル類、セルロースメチ
ルエーテルのようなセルロースエーテル類等があり特に
限定されないが、加水分解の容易さからセルロースエス
テル類が特に好ましい。本発明はポリフッ化ビニリデン
樹脂とセルロース誘導体をある混合比に溶解した溶液を
用いて、公知技術により中空状もしくは平膜状に製膜し
た後、セルロース誘導体を水酸化度80%以上に加水分解
することを特徴とする。なお水酸化度とはセルロース系
高分子を一般式 〔C672(OR)3-m (OH)mn m =0,1,2,3 n:自然数 R:水素原子以外の元素また化合物 で表したとき、
A fluorine compound having a repeating unit of the formula (1) and having an average fluorine content of 50% to 60% in one molecule, preferably having a crystallinity in which methylene groups and methylene fluoride groups are alternately bonded in a stable manner. And the average molecular weight is as high as 5 × 10 3 or more. Such a polyvinylidene fluoride resin is stable for a long time in a solvent and is easy to form a film. On the other hand, examples of the cellulose derivative used in the present invention include cellulose esters such as acetylcellulose and cellulose ethers such as cellulose methyl ether, and are not particularly limited. However, cellulose esters are particularly preferable because of ease of hydrolysis. The present invention uses a solution in which a polyvinylidene fluoride resin and a cellulose derivative are dissolved at a certain mixing ratio, and forms a hollow or flat film by a known technique, and then hydrolyzes the cellulose derivative to a degree of hydroxylation of 80% or more. It is characterized by the following. Note the degree hydroxide formula cellulosic polymer [C 6 H 7 O 2 (OR ) 3-m (OH) m ] n m = 0,1,2,3 n: natural number R: other than a hydrogen atom When expressed in elements or compounds,

【0011】[0011]

【数1】 (Equation 1)

【0012】で表される値であり加水分解物質を定量す
ることにより求めることができる。製膜原液に使用する
有機溶剤はポリフッ化ビニリデン樹脂及びセルロース誘
導体を溶解するものであればいずれも用い得るが、特に
好ましくは100℃以下の温度範囲でこれらのポリマーを3
0%重量以上の濃度に溶解し得る能力を持つもので、その
ような溶剤として例えばN−メチル−2−ピロリドン、ジ
メチルホルムアミド、ジメチルアセトアミド等があげら
れる。
The value is expressed by the following formula, and can be determined by quantifying the hydrolyzate. The organic solvent used for the film-forming stock solution may be any one as long as it can dissolve the polyvinylidene fluoride resin and the cellulose derivative, but it is particularly preferable to use these polymers in a temperature range of 100 ° C. or less.
It has the ability to dissolve at a concentration of 0% by weight or more. Examples of such a solvent include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide and the like.

【0013】該製膜原液におけるポリフッ化ビニリデン
樹脂の濃度組成は製膜可能でかつ膜としての性能を有す
る範囲であればよく、10〜50重量%である。また高い透
水性、大きな分画分子量を得るためにはポリマー濃度は
下げるべきで、この場合望ましくは10〜20重量%であ
る。セルロース誘導体の濃度組成は加水分解後に十分な
親水性が得られる範囲であればよく、また加水分解率を
調整することにより親水化度を自由に調整できるが、望
ましくは1〜15重量%がよい。また、原液の粘度、相分
離状態を制御する目的で第4成分、第5成分を添加する
ことも可能であり、それは求める透水性や分画分子量に
より随意行えばよい。
The concentration composition of the polyvinylidene fluoride resin in the film-forming stock solution may be in the range of being capable of forming a film and having performance as a film, and is 10 to 50% by weight. Further, in order to obtain high water permeability and a large molecular weight cut-off, the polymer concentration should be lowered, and in this case, it is desirably 10 to 20% by weight. The concentration composition of the cellulose derivative may be within a range where sufficient hydrophilicity can be obtained after hydrolysis, and the degree of hydrophilicity can be freely adjusted by adjusting the hydrolysis rate, but preferably 1 to 15% by weight. . In addition, the fourth component and the fifth component can be added for the purpose of controlling the viscosity of the stock solution and the state of phase separation, which may be optionally performed depending on the required water permeability and the molecular weight cut off.

【0014】以上の条件により調整した製膜原液を用い
て公知技術により製膜を行う。平膜の場合、該製膜原液
を平坦な基盤上に流展しその後凝固浴中に浸漬する。ま
た中空糸状膜については、中空形態を保つため注入液を
用いる。注入液は求める透水性、分画分子量により適宜
最良組成を決めればよいし、また気体を注入させること
も可能である。同様に凝固浴中の凝固剤も平膜、中空糸
膜いずれの場合でも求める膜性能により適宜最良組成を
決めればよく特に限定されるものではない。中空糸膜の
場合、紡口から凝固浴までの距離は0cm以上150cm以下で
あり、特に0cm以上30cm以下が紡糸安定性から望まし
い。
A film is formed by a known technique using the stock solution prepared under the above conditions. In the case of a flat membrane, the stock solution is spread on a flat substrate and then immersed in a coagulation bath. For the hollow fiber membrane, an injection liquid is used to maintain the hollow form. The best composition of the injection solution may be appropriately determined according to the required water permeability and the molecular weight cut off, or a gas may be injected. Similarly, the coagulant in the coagulation bath is not particularly limited as long as the best composition is appropriately determined depending on the required membrane performance in both the flat membrane and the hollow fiber membrane. In the case of a hollow fiber membrane, the distance from the spinneret to the coagulation bath is 0 cm or more and 150 cm or less, and particularly preferably 0 cm or more and 30 cm or less from the viewpoint of spinning stability.

【0015】上記のようにしてつくられた平膜あるいは
中空糸膜はこのままでは親水性の効力はほとんどなく、
以下に記述する方法によりセルロース誘導体を水酸化度
80%以上に加水分解処理することによりはじめて意味の
ある親水化が達成される。平膜あるいは中空糸膜を水洗
処理により十分に溶剤を除去した後、加水分解処理液に
浸漬する。加水分解処理液はセルロース誘導体のエステ
ル結合部分、エーテル結合部分を加水分解によって水酸
基に置換するするものであればいずれでもよく、セルロ
ースエステル類であれば酸性またはアルカリ性溶液、セ
ルロースエーテル類であれば酸性溶液である。またその
濃度、処理時間、処理温度により水酸化度を自由に調整
できることはいうまでもない。
The flat membrane or hollow fiber membrane produced as described above has almost no hydrophilic effect as it is,
The degree of hydroxylation of the cellulose derivative by the method described below
A significant hydrophilization can be achieved only by performing the hydrolysis treatment to 80% or more. After the flat membrane or the hollow fiber membrane is sufficiently removed of the solvent by a water washing treatment, it is immersed in a hydrolysis treatment solution. The hydrolysis treatment liquid may be any one as long as the ester bond portion and the ether bond portion of the cellulose derivative are substituted with a hydroxyl group by hydrolysis.Cellulose esters are acidic or alkaline solutions, and cellulose ethers are acidic. Solution. Needless to say, the degree of hydroxylation can be freely adjusted depending on the concentration, the processing time, and the processing temperature.

【0016】以下に本発明の実施例を示すが、本発明は
これに限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0017】[0017]

【実施例1】ジメチルアセトアミド(以下DMACと略記)
65.0g、分散溶媒としてジオキサン5.0g、界面活性剤と
してポリオキシエチレンソルビタンモノオレート(花王
アトラス社製、商品名Tween80)5gの混合溶媒にアセチ
ル化度55%の酢酸セルロース(和光純薬)5gを室温で溶
解後、ポリフッ化ビニリデン樹脂( 三菱油化社、 商品
名Kynar)15gを加えさらに60℃で9時間溶解し真空脱胞
後製膜原液とした。通常の方法によりベーカー式アプリ
ケーターを用い40℃保温でガラス板上に流展後、60℃の
水浴中で凝固させた後水洗により十分に溶剤を除去し平
膜を得た。この平膜 100gを50℃、1N NaOH 50%エタノー
ル水溶液 1000mlに9時間浸漬し加水分解処理を行った。
表1に加水分解時間、水酸化度、透水性能及び各種タン
パク質の吸着量を示した。水酸化度は加水分解物の定量
により求めた。なおタンパク質吸着量は以下の方法で測
定した。
[Example 1] Dimethylacetamide (hereinafter abbreviated as DMAC)
55.0 g of cellulose acetate (Wako Pure Chemical Industries) with 55% acetylation degree in a mixed solvent of 65.0 g, 5.0 g of dioxane as a dispersion solvent, and 5 g of polyoxyethylene sorbitan monooleate (trade name: Tween 80, manufactured by Kao Atlas Co., Ltd.) as a surfactant After dissolution at room temperature, 15 g of polyvinylidene fluoride resin (Mitsubishi Yuka Co., Ltd., Kynar) was added, and the mixture was further dissolved at 60 ° C. for 9 hours. After spreading on a glass plate while keeping the temperature at 40 ° C. using a baker-type applicator by a usual method, the mixture was coagulated in a water bath at 60 ° C., and then the solvent was sufficiently removed by washing with water to obtain a flat membrane. 100 g of this flat membrane was immersed in 1000 ml of 1N NaOH 50% ethanol aqueous solution at 50 ° C. for 9 hours to perform a hydrolysis treatment.
Table 1 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. The degree of hydroxylation was determined by quantification of the hydrolyzate. The protein adsorption was measured by the following method.

【0018】放射性同位元素でラベルされたタンパク質
を0.01mg/mlになるようにリン酸緩衝液(pH=7.0、イオ
ン強度0.15)に溶解し試験液とした。膜面積 1×10-3
2の被試験膜を容量 100mlの試験液に38℃で1時間浸漬し
た後、水中で15時間被試験膜を洗浄し十分に非吸着タン
パク質を洗い落とした。その後ガイガーカウンターで吸
着タンパク質量を直接定量した。なお平膜の膜面積は表
及び裏の表面積の和とした。
A protein labeled with a radioisotope was dissolved in a phosphate buffer (pH = 7.0, ionic strength 0.15) to a concentration of 0.01 mg / ml to prepare a test solution. Film area 1 × 10 -3 m
After soaking for 1 hour at 38 ° C. The 2 under test film test liquid volume 100 ml, was washed for 15 hours under test film in water was washed off sufficiently non-adsorbed proteins. Thereafter, the amount of the adsorbed protein was directly quantified using a Geiger counter. The area of the flat membrane was the sum of the surface area of the front and back surfaces.

【0019】[0019]

【実施例2】実施例1と同様な方法により平膜を得た。
この平膜 100gを50℃、1N NaOH 50%エタノール溶液 100
0mlに17時間浸漬し加水分解処理を行った。表1に加水
分解時間、水酸化度、透水性能及び各種タンパク質の吸
着量を示した。水酸化度、タンパク質吸着量は実施例1
と同様の方法で測定した。
Example 2 A flat film was obtained in the same manner as in Example 1.
100 g of this flat membrane at 50 ° C, 1N NaOH 50% ethanol solution 100
It was immersed in 0 ml for 17 hours to perform a hydrolysis treatment. Table 1 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. Example 1 shows the degree of hydroxylation and the amount of protein adsorbed.
The measurement was performed in the same manner as described above.

【0020】[0020]

【比較例1】実施例1と同様な方法で平膜を得た。但し
加水分解処理は行わなかった。表1に水酸化度、透水性
能、分画分子量及び各種タンパク質の吸着量を示した。
水酸化度、タンパク質吸着量は実施例1と同様の方法で
測定した。
Comparative Example 1 A flat film was obtained in the same manner as in Example 1. However, no hydrolysis treatment was performed. Table 1 shows the degree of hydroxylation, water permeability, molecular weight cut-off, and the amount of various proteins adsorbed.
The degree of hydroxylation and the amount of protein adsorption were measured in the same manner as in Example 1.

【0021】[0021]

【比較例2】実施例1と同様な方法により平膜を得た。
この平膜 100gを50℃、1N NaOH 50%エタノール溶液 100
0mlに7時間浸漬し加水分解処理を行った。表1に加水分
解時間、水酸化度、透水性能及び各種タンパク質の吸着
量を示した。水酸化度、タンパク質吸着量は実施例1と
同様の方法で測定した。
Comparative Example 2 A flat film was obtained in the same manner as in Example 1.
100 g of this flat membrane at 50 ° C, 1N NaOH 50% ethanol solution 100
It was immersed in 0 ml for 7 hours to perform a hydrolysis treatment. Table 1 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. The degree of hydroxylation and the amount of protein adsorption were measured in the same manner as in Example 1.

【0022】[0022]

【実施例3】実施例1と同等の製膜原液を注入液にDMAC
/水=1/1を用いて、内径0.64mm、外径1.04mmの環状
オリフィスからなる紡口より吐出させ、紡口から30cm下
方に設置した60℃の水浴中を通過させ、通常の方法で水
洗後カセに巻き取り中空糸膜を得た。この中空糸膜 100
gを50℃、1N NaOH 50%エタノール水溶液 1000mlに5時間
浸漬し加水分解処理を行った。表2に加水分解時間、水
酸化度、透水性能及び各種タンパク質の吸着量を示し
た。水酸化度、タンパク質吸着量は実施例1と同様の方
法で測定した。なお中空糸膜の膜面積は外表面、内表面
の膜面積の和とした。
Example 3 The same membrane-forming stock solution as in Example 1 was used as the injection solution for DMAC.
Using a water / water ratio of 1/1, discharge from a spinneret consisting of an annular orifice with an inner diameter of 0.64 mm and an outer diameter of 1.04 mm, pass through a 60 ° C water bath 30 cm below the spine, and use the usual method. After washing with water, it was wound around a cassette to obtain a hollow fiber membrane. This hollow fiber membrane 100
g was immersed in 1000 ml of 1N NaOH 50% ethanol aqueous solution at 50 ° C. for 5 hours to perform a hydrolysis treatment. Table 2 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. The degree of hydroxylation and the amount of protein adsorption were measured in the same manner as in Example 1. The membrane area of the hollow fiber membrane was the sum of the membrane area of the outer surface and the inner surface.

【0023】[0023]

【実施例4】実施例3と同様な方法により中空糸膜を得
た。 この中空糸膜 100gを50℃、1NNaOH 50%エタノール
溶液 1000mlに12時間浸漬し加水分解処理を行った。表
2に加水分解時間、水酸化度、透水性能及び各種タンパ
ク質の吸着量を示した。水酸化度、タンパク質吸着量は
実施例1と同様の方法で測定した。
Example 4 A hollow fiber membrane was obtained in the same manner as in Example 3. 100 g of this hollow fiber membrane was immersed in 1000 ml of 1N NaOH 50% ethanol solution at 50 ° C. for 12 hours to perform a hydrolysis treatment. Table 2 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. The degree of hydroxylation and the amount of protein adsorption were measured in the same manner as in Example 1.

【0024】[0024]

【比較例3】実施例3と同様な方法により中空糸膜を得
た。但し加水分解処理は行わなかった。表2に加水分解
時間、水酸化度、透水性能及び各種タンパク質の吸着量
を示した。水酸化度、タンパク質吸着量は実施例1と同
様の方法で測定した。
Comparative Example 3 A hollow fiber membrane was obtained in the same manner as in Example 3. However, no hydrolysis treatment was performed. Table 2 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. The degree of hydroxylation and the amount of protein adsorption were measured in the same manner as in Example 1.

【0025】[0025]

【比較例4】実施例3と同様な方法により中空糸膜を得
た。 この中空糸膜 100gを50℃、1NNaOH 50%エタノール
1000mlに3時間浸漬し加水分解処理を行った。表2に加
水分解時間、水酸化度、透水性能及び各種タンパク質の
吸着量を示した。水酸化度、タンパク質吸着量は実施例
1と同様の方法で測定した。
Comparative Example 4 A hollow fiber membrane was obtained in the same manner as in Example 3. 100 g of this hollow fiber membrane is heated at 50 ° C, 1N NaOH 50% ethanol
It was immersed in 1000 ml for 3 hours to perform a hydrolysis treatment. Table 2 shows the hydrolysis time, the degree of hydroxylation, the water permeability, and the adsorption amounts of various proteins. The degree of hydroxylation and the amount of protein adsorption were measured in the same manner as in Example 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明のポリフッ化ビニリデン樹脂とセ
ルロース誘導体またはセルロースのブレンドポリマーか
らなるポリフッ化ビニリデン樹脂膜は、天然高分子であ
るセルロースの優れた親水性、生体適合性と、ポリフッ
化ビニリデン樹脂の優れた耐熱性、耐薬品性を合わせ持
つ全く新規な人工膜であり、医薬品製造、食品製造など
一般工業分野のみならず、濾過型人工腎臓をはじめとす
る医療分野などにおいて使用するに十分な性能を持つも
のである。
The polyvinylidene fluoride resin film of the present invention comprising a polyvinylidene fluoride resin and a cellulose derivative or a blend polymer of cellulose is excellent in the hydrophilicity and biocompatibility of cellulose, which is a natural polymer, and the polyvinylidene fluoride resin. It is a completely new artificial membrane that combines excellent heat resistance and chemical resistance, and is enough to be used not only in the general industrial fields such as pharmaceutical manufacturing and food manufacturing, but also in the medical field such as filtration type artificial kidney. It has performance.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリフッ化ビニリデン樹脂と水酸化度が80
%以上かつ100%未満であるセルロース誘導体とのブレン
ドポリマーで構成されることを特徴とするポリフッ化ビ
ニリデン樹脂膜。
1. A polyvinylidene fluoride resin having a degree of hydroxylation of 80
A polyvinylidene fluoride resin film comprising a blend polymer with a cellulose derivative of not less than 100% and less than 100%.
【請求項2】ポリフッ化ビニリデン樹脂と水酸化度100%
のセルロースとのブレンドポリマーで構成されることを
特徴とするポリフッ化ビニリデン樹脂膜。
2. Polyvinylidene fluoride resin and a degree of hydroxylation of 100%
A polyvinylidene fluoride resin film comprising a blend polymer with cellulose.
【請求項3】 ポリフッ化ビニリデン樹脂とセルロース
誘導体を混和溶解した溶液により製膜し、その後セルロ
ース誘導体を水酸化度80%以上に加水分解することを
特徴とするポリフッ化ビニリデン樹脂膜の製造方法。
3. A method for producing a polyvinylidene fluoride resin film, comprising forming a film with a solution in which a polyvinylidene fluoride resin and a cellulose derivative are mixed and dissolved, and then hydrolyzing the cellulose derivative to a degree of hydroxylation of 80% or more.
JP03074856A 1991-04-08 1991-04-08 Polyvinylidene fluoride resin film and method for producing the same Expired - Lifetime JP3093811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03074856A JP3093811B2 (en) 1991-04-08 1991-04-08 Polyvinylidene fluoride resin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03074856A JP3093811B2 (en) 1991-04-08 1991-04-08 Polyvinylidene fluoride resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04310223A JPH04310223A (en) 1992-11-02
JP3093811B2 true JP3093811B2 (en) 2000-10-03

Family

ID=13559380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03074856A Expired - Lifetime JP3093811B2 (en) 1991-04-08 1991-04-08 Polyvinylidene fluoride resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3093811B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
JP5066810B2 (en) * 2005-02-04 2012-11-07 東レ株式会社 Polymer separation membrane and production method thereof
JP5109263B2 (en) * 2005-02-28 2012-12-26 東レ株式会社 Fluororesin polymer separation membrane and method for producing the same
NZ562786A (en) 2005-04-29 2010-10-29 Siemens Water Tech Corp Chemical clean for membrane filter
MY146286A (en) 2005-08-22 2012-07-31 Siemens Industry Inc An assembly for water filtration using a tube manifold to minimise backwash
CA2655907A1 (en) 2006-06-27 2008-01-03 Toray Industries, Inc. Polymer separation membrane and process for producing the same
CA2657725A1 (en) 2006-07-25 2008-01-31 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
JP2008036574A (en) * 2006-08-09 2008-02-21 Toray Ind Inc Membrane module and water-treating method
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
CN109107392A (en) 2007-05-29 2019-01-01 懿华水处理技术有限责任公司 Use the Membrane cleaning of pulsed airlift pump
EP2331242B1 (en) 2008-07-24 2018-09-05 Evoqua Water Technologies LLC Frame system for membrane filtration modules
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
CN102869432B (en) 2010-04-30 2016-02-03 伊沃夸水处理技术有限责任公司 Fluid flow distribution device
EP2618916A4 (en) 2010-09-24 2016-08-17 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
KR20140097140A (en) 2011-09-30 2014-08-06 에보쿠아 워터 테크놀로지스 엘엘씨 Isolation valve
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
CN104394965B (en) 2012-06-28 2016-11-23 伊沃夸水处理技术有限责任公司 encapsulating method
AU2013315547A1 (en) 2012-09-14 2015-02-26 Evoqua Water Technologies Llc A polymer blend for membranes
GB2520871B (en) 2012-09-26 2020-08-19 Evoqua Water Tech Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
KR20150059788A (en) 2012-09-27 2015-06-02 에보쿠아 워터 테크놀로지스 엘엘씨 Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN107847869B (en) 2015-07-14 2021-09-10 罗门哈斯电子材料新加坡私人有限公司 Aeration device for a filtration system
CN111228896B (en) * 2020-01-21 2022-03-08 江苏扬农化工集团有限公司 Filter, preparation method thereof and application thereof in treatment of dichlorobenzene rectification residues

Also Published As

Publication number Publication date
JPH04310223A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
JP3093811B2 (en) Polyvinylidene fluoride resin film and method for producing the same
JP3200095B2 (en) Hydrophilic heat-resistant film and method for producing the same
JP3196029B2 (en) Preparation method of microporous membrane
CN100478389C (en) Polyvinylidene fluoride and polyethersulfone blending membrane, production method and uses
JPWO2002009857A1 (en) Modified hollow fiber membrane
JP2020533162A (en) Purification methods involving the use of membranes obtained from bio-based sulfone polymers
JP4299468B2 (en) Cellulose derivative hollow fiber membrane
JPS61238834A (en) Porous polysulfone resin membrane
JPH053331B2 (en)
CN1253241C (en) Manufacture and products of hollow fiber membrane of outer pressured polyvinylidene fluoride by immersion gelation
JPH09323031A (en) Polysulfonic permselective hollow-fiber membrane
JPH0347127B2 (en)
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPH0675667B2 (en) Method for producing semi-permeable membrane of polysulfone resin
WO2022199554A1 (en) Composite ultrafiltration membrane material and preparation method therefor
JPH053335B2 (en)
JP4757396B2 (en) Cellulose derivative hollow fiber membrane
JP3046082B2 (en) Polysulfone resin membrane and method for producing the same
CN112588132B (en) Hollow fiber membrane and preparation method thereof
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPH0760085A (en) Acrylonitrile copolymer membrane and preparation and use thereof
JP2926082B2 (en) Hydrophilic membrane
JP2855233B2 (en) Method for producing aromatic polysulfone semipermeable membrane having excellent water permeability
JP2001149763A (en) Semipermeable membrane and production method for semipermeable membrane
JPS62160109A (en) Manufacture of microporous filter membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11