JP3089707B2 - Solid electrode composition - Google Patents

Solid electrode composition

Info

Publication number
JP3089707B2
JP3089707B2 JP03134004A JP13400491A JP3089707B2 JP 3089707 B2 JP3089707 B2 JP 3089707B2 JP 03134004 A JP03134004 A JP 03134004A JP 13400491 A JP13400491 A JP 13400491A JP 3089707 B2 JP3089707 B2 JP 3089707B2
Authority
JP
Japan
Prior art keywords
polyaniline
battery
sulfur
electrode
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03134004A
Other languages
Japanese (ja)
Other versions
JPH04359865A (en
Inventor
正 外邨
佳子 佐藤
裕史 上町
輝寿 神原
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03134004A priority Critical patent/JP3089707B2/en
Publication of JPH04359865A publication Critical patent/JPH04359865A/en
Application granted granted Critical
Publication of JP3089707B2 publication Critical patent/JP3089707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固形電極組成物に関
し、特に固体あるいは固形状のリチウムイオン伝導性電
解質を用いるリチウム二次電池等の電気化学素子に用い
られる電極組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrode composition, and more particularly to an electrode composition used for an electrochemical device such as a lithium secondary battery using a solid or solid lithium ion conductive electrolyte.

【0002】[0002]

【従来の技術】軽量で高エネルギー密度の電池や、大面
積のエレクトロクロミック素子,微小電極を用いた生物
化学センサー等の電気化学素子が期待できることから、
導電性高分子電極が盛んに検討されている。ポリアセチ
レンは不安定で電極としては実用性に乏しいことから他
のπ電子共役系導電性高分子が検討され、ポリアニリ
ン,ポリピロール,ポリアセン,ポリチオフェンといっ
た比較的安定な高分子が開発され、これを正極に用いた
リチウム二次電池が開発されるに及んでいる。これらの
高分子電極は、電極反応に際してはカチオンのみならず
電解質中のアニオンを取り込むので、電池内にあって電
解質はイオンの移動媒体として作用するだけでなく電池
反応に関与するため、電池容量に見合う量の電解質を電
池内に供給する必要がある。そして、その分電池のエネ
ルギー密度が小さくなるという問題を有している。エネ
ルギー密度は、20〜50wh/kg程度でニッケルカドミ
ウム蓄電池,鉛蓄電池等の通常の二次電池に較べ2分の
1程度と小さい。これに対し、高エネルギー密度が期待
できる有機材料として、米国特許第4,833,048
号にジスルフィド系化合物が提案されている。この化合
物は、最も簡単にR−S−S−Rと表される(Rは脂肪
族あるいは芳香族の有機基、Sは硫黄)。S−S結合は
電解還元により開裂し、電解浴中のカチオン(M+)と
でR−S-・M+で表される塩を生成する。この塩は、電
解酸化により元のR−S−S−Rに戻る。カチオン(M
+)を供給,補足する金属Mとジスルフィド系化合物を
組み合わせた金属−硫黄二次電池が前述の米国特許に提
案されている。150wh/kg以上と、通常の二次電池に
匹敵あるいはそれ以上のエネルギー密度が期待できる。
2. Description of the Related Art Electrochemical devices such as light-weight, high-energy-density batteries, large-area electrochromic devices, and biochemical sensors using microelectrodes can be expected.
Conductive polymer electrodes are being actively studied. Since polyacetylene is unstable and impractical as an electrode, other π-electron conjugated conductive polymers have been studied, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been developed. The lithium secondary batteries used have been developed. Since these polymer electrodes take in not only cations but also anions in the electrolyte during the electrode reaction, the electrolyte not only acts as a transfer medium for ions in the battery but also participates in the battery reaction. It is necessary to supply an appropriate amount of electrolyte into the battery. In addition, there is a problem that the energy density of the battery is reduced accordingly. The energy density is about 20 to 50 wh / kg, which is about one half that of a normal secondary battery such as a nickel cadmium storage battery or a lead storage battery. On the other hand, US Pat. No. 4,833,048 discloses an organic material which can be expected to have a high energy density.
The disulfide compound is proposed in the publication. This compound is most simply represented as R-S-S-R (R is an aliphatic or aromatic organic group, and S is sulfur). S-S bond is cleaved by electrolytic reduction, de R-S and cations in the electrolyte bath (M +) - to produce the salt represented by · M +. This salt returns to the original RSSR by electrolytic oxidation. Cation (M
A metal-sulfur secondary battery combining a metal M and a disulfide-based compound for supplying and supplementing + ) is proposed in the aforementioned U.S. Patent. With an energy density of 150 wh / kg or more, an energy density comparable to or higher than that of a normal secondary battery can be expected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、提案さ
れているジスフィド系化合物は、米国特許第4,83
3,048号の発明者らがJ.Electrochem.Soc,Vol.136,
No.9,p,2570〜2575(1989)で報告しているように、例
えば[(C252NCSS−]2の電解では、酸化と還
元の電位が1volt以上離れており電極反応論の教えると
ころに依れば電子移動過程は極めて遅い。従って、室温
付近では実用に見合う大きな電流、例えば1mA/cm2
上の電流を取り出すことが困難であり、60℃以上の高
温での使用に限られるという問題があった。さらに、ジ
スルフィド系化合物は有機溶媒に溶解するため有機溶媒
に塩を溶解した有機電解質を用いることは困難で、ポリ
マー電解質等の固形あるいは固体状の電解質を用いる必
要がある。また、ジスルフィド系化合物は電子電導性に
乏しいことから導電剤と混合して用いる必要がある。通
常は、黒鉛粉末等の導電材とポリマー固体電解質と混合
して組成物として用いられている。しかしながら、組成
物中において必ずしも良好な電子とイオンのネットワー
クが形成されず、分極が大きくなる欠点を有していた。
本発明は、このような問題を解決し、ジスルフィド系化
合物の高エネルギー密度という特徴を損なわず、かつ室
温でも大電流での電解(充放電)が可能な可逆性に優れ
た固形電極組成物を提供することを目的とする。
However, the proposed disulfide compounds are disclosed in US Pat.
No. 3,048, J. Electrochem. Soc, Vol. 136,
No.9, p, as reported in 2570 to 2575 (1989), for example, in [(C 2 H 5) 2 NCSS-] 2 of the electrolysis, the electrodes are separated potential of oxidation and reduction is more 1volt reaction According to the theory, the electron transfer process is extremely slow. Therefore, it is difficult to extract a large current suitable for practical use, for example, a current of 1 mA / cm 2 or more near room temperature, and there is a problem that the use is limited to a high temperature of 60 ° C. or more. Further, since the disulfide compound is dissolved in an organic solvent, it is difficult to use an organic electrolyte in which a salt is dissolved in the organic solvent, and it is necessary to use a solid or solid electrolyte such as a polymer electrolyte. Further, since the disulfide compound has poor electron conductivity, it must be used in combination with a conductive agent. Usually, a conductive material such as graphite powder and a polymer solid electrolyte are mixed and used as a composition. However, a favorable electron-ion network was not necessarily formed in the composition, and the composition had a disadvantage of increasing polarization.
The present invention solves such a problem, and does not impair the feature of the high energy density of the disulfide compound, and provides a solid electrode composition excellent in reversibility capable of performing electrolysis (charge / discharge) with a large current even at room temperature. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】この課題を解決するため
本発明の固形電極組成物は、ジスルフィド系化合物と電
極触媒および導電材として作用するポリアニリンを担持
した活性炭と、リチウム塩を溶解したプロピレンカーボ
ネートとエチレンカーボネートの少なくとも一方よりな
る有機溶媒をアクリロニトリルとアクリル酸メチルある
いはメタアクリル酸メチルとの共重合体を用いてゲル状
にした固形電解質とを複合化したものである。
SUMMARY OF THE INVENTION In order to solve this problem, a solid electrode composition of the present invention comprises an activated carbon carrying a disulfide compound, an electrode catalyst and polyaniline acting as a conductive material, and propylene carbonate having a lithium salt dissolved therein. An organic solvent composed of at least one of ethylene carbonate and ethylene carbonate is combined with a solid electrolyte gelled using a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate.

【0005】[0005]

【作用】この構成により本発明の固形電極組成物は、ポ
リアニリンを担持した活性炭は、ジスルフィド系化合物
の電極反応触媒として作用し、特に還元反応を促進す
る。ポリアニリンは活性炭の細孔中に主に担持されてい
る。ジスルフィド系化合物も導電性を有する活性炭の細
孔内に保持される形で固形化されている。アクリロニト
リルとアクリル酸メチルあるいはメタアクリル酸メチル
との共重合体を用いてリチウム塩を溶解したプロピレン
カーボネートとエチレンカーボネートの少なくとも一方
の溶液をゲル状にした固形電解質は活性炭の細孔中に入
り、ジスルフィド系化合物の酸化還元反応に有利な電極
反応界面を提供するとともに、活性炭およびジスルフィ
ド系化合物の結合材としても作用し、固形電極組成物に
良好な機械的強度と加工性を与えることとなる。
According to this structure, in the solid electrode composition of the present invention, the activated carbon supporting polyaniline acts as an electrode reaction catalyst for a disulfide compound, and particularly promotes the reduction reaction. Polyaniline is mainly supported in the pores of activated carbon. The disulfide compound is also solidified while being held in the pores of the activated carbon having conductivity. A solid electrolyte in which a solution of at least one of propylene carbonate and ethylene carbonate in which a lithium salt is dissolved using a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate is gelled enters the pores of activated carbon, and disulfide In addition to providing an electrode reaction interface that is advantageous for the oxidation-reduction reaction of the system-based compound, it also acts as a binder for the activated carbon and the disulfide-based compound, and provides the solid electrode composition with good mechanical strength and workability.

【0006】[0006]

【実施例】以下本発明の一実施例の電極組成物について
図面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An electrode composition according to one embodiment of the present invention will be described below with reference to the drawings.

【0007】本実施例のジスルフィド系化合物として
は、米国特許第4,833,048号に述べられている
一般式(R(S)ynで表されるジスルフィド系化合物
を用いることができる。Rは脂肪族基,芳香族基、Sは
硫黄、yは1以上の整数、nは2以上の整数である。例
えば、C22S(SH)2で表される2,5−ジメルカ
プト−1,3,4−チアジアゾール、C3333で表
されるs−トリアジン−2,4,6−トリチオール等が
用いられる。
As the disulfide compound of this embodiment, a disulfide compound represented by the general formula (R (S) y ) n described in US Pat. No. 4,833,048 can be used. R is an aliphatic group, an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more. For example, C 2 N 2 S (SH ) represented by 2 2,5-dimercapto-1,3,4-thiadiazole, C 3 H 3 N 3 s- triazine represented by S 3-2,4,6 -Trithiol and the like are used.

【0008】本実施例のポリアニリンは電解重合,化学
重合のいずれの方法によっても得ることができる。電導
度が10-1S/cmのものが好ましく用いられる。活性炭
への担持は、脱ドープあるいはアニオンの導入により可
溶化したポリアニリン酸を良溶媒に溶解することで得ら
れる溶液を活性炭に含浸したのち溶媒を真空加熱等によ
り散逸することで得られることができる。活性炭として
は、平均粒径が5μm、比表面積が1000m2/g、
細孔容積が0.5ml/g程度の粉末状のもの、あるい
は繊維状のものが好ましく用いられる。
The polyaniline of this embodiment can be obtained by any of electrolytic polymerization and chemical polymerization. Those having an electric conductivity of 10 -1 S / cm are preferably used. Loading on activated carbon can be obtained by impregnating the activated carbon with a solution obtained by dissolving polyaniline solubilized by undoping or introduction of an anion into a good solvent, and then dissipating the solvent by vacuum heating or the like. . The activated carbon has an average particle size of 5 μm, a specific surface area of 1000 m 2 / g,
A powdery material having a pore volume of about 0.5 ml / g or a fibrous material is preferably used.

【0009】アクリロニトリルとアクリル酸メチルある
いはメタアクリル酸メチルとの共重合体は、通常の重合
法でアクリロニトリルモノマーとアクリル酸メチルある
いはメタアクリル酸メチルとを重合することで得られ
る。分子量が30,000〜100,000のものが好
ましく用いられる。アクリロニトリル(AN)とアクリ
ル酸メチルあるいはメタアクリル酸メチル(MA)との
共重合比(AN/MA)は50:1〜2:1(モル比)
程度が好ましい。
A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate can be obtained by polymerizing an acrylonitrile monomer with methyl acrylate or methyl methacrylate by a usual polymerization method. Those having a molecular weight of 30,000 to 100,000 are preferably used. The copolymerization ratio (AN / MA) of acrylonitrile (AN) and methyl acrylate or methyl methacrylate (MA) is 50: 1 to 2: 1 (molar ratio).
The degree is preferred.

【0010】リチウム塩としては、沃化リチウム,過塩
素酸リチウム,トリフルオロスルホン酸リチウム,ほう
フッ化リチウム等が用いられる。
As the lithium salt, lithium iodide, lithium perchlorate, lithium trifluorosulfonate, lithium borofluoride and the like are used.

【0011】本実施例の固形電解質組成物は次のように
して製造される。まず、プロピレンカーボネートとエチ
レンカーボネートの少なくとも一方よりなる溶媒にリチ
ウム塩を加熱溶解してリチウム塩の溶液を得る。次にこ
の溶液にアクリロニトリルとアクリル酸メチルあるいは
メタアクリル酸メチルとの共重合体の粉末を添加し、1
50℃〜180℃で加熱して粉末を溶解し均一な透明な
溶液を得る。この溶液をアクリロニトリルにより重量で
2〜3倍に希釈する。ジスルフィド系化合物粉末とポリ
アニリンを担持した活性炭とを乳鉢で混合することで得
た粉末と、希釈溶液とを混合し、得られたスラリーをガ
ラス板上に流延する。室温で乾燥後、60℃で1Tor
rの減圧下で真空加熱乾燥することで固形電解質組成物
が得られる。必要に応じ、スラリー中にLiI,Li3
N−LiI−B23,LiI・H2O,Li−β−Al2
3等のリチウムイオン伝導性粉末を添加してもよい。
The solid electrolyte composition of this embodiment is manufactured as follows. First, a lithium salt is dissolved in a solvent comprising at least one of propylene carbonate and ethylene carbonate by heating to obtain a lithium salt solution. Next, a powder of a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate was added to this solution.
Heat at 50 ° C to 180 ° C to dissolve the powder and obtain a uniform transparent solution. The solution is diluted 2-3 times by weight with acrylonitrile. A powder obtained by mixing a disulfide-based compound powder and activated carbon carrying polyaniline in a mortar is mixed with a diluted solution, and the obtained slurry is cast on a glass plate. After drying at room temperature, 1 Torr at 60 ° C
The solid electrolyte composition is obtained by vacuum drying under reduced pressure of r. If necessary, LiI, Li 3
N-LiI-B 2 O 3 , LiI · H 2 O, Li-β-Al 2
A lithium ion conductive powder such as O 3 may be added.

【0012】ポリアニリンを担持した活性炭粉末を次の
ように得た。1M(M=mol/dm3)のアニリンおよび5
MのNa2SO4を溶解したpH=1.0の硫酸酸性水溶
液中で、飽和カロメル参照電極に対し1.2〜1.5vo
ltで定電位電解することにより硫酸をドープしたポリア
ニリン粉末を得た。このようにして得られた硫酸ドープ
ポリアニリンの電導度を、密度1.6g/cm3のペレッ
トに加圧成形して測定したところ室温で約2S/cmであ
った。このポリアニリン粉末を1MNaOH水溶液中に
分散し約1時間置いた後、濾過,乾燥して脱ドープした
可溶性のポリアニリン粉末とした。可溶性のポリアニリ
ン粉末0.25gを1−N−メチルピロリドン約150
gに溶解し青色のポリアニリン溶液とした。予め150
℃で17時間真空乾燥した活性炭粉末(BP−25,ク
ラレケミカル製)5gにポリアニリン溶液30gを含浸
した後、120℃で5時間真空乾燥することでポリアニ
リン担持活性炭粉末を得た。
An activated carbon powder supporting polyaniline was obtained as follows. 1M (M = mol / dm 3 ) aniline and 5
M-Na 2 SO 4 in a sulfuric acid aqueous solution at pH = 1.0 and 1.2-1.5 volts relative to a saturated calomel reference electrode.
The polyaniline powder doped with sulfuric acid was obtained by performing constant potential electrolysis with lt. The conductivity of the sulfuric acid-doped polyaniline obtained as described above was measured by pressure molding into pellets having a density of 1.6 g / cm 3 and found to be about 2 S / cm at room temperature. This polyaniline powder was dispersed in a 1 M NaOH aqueous solution, left for about 1 hour, and then filtered and dried to obtain a undoped soluble polyaniline powder. 0.25 g of the soluble polyaniline powder was added to about 150 of 1-N-methylpyrrolidone.
g) to give a blue polyaniline solution. 150 in advance
5 g of activated carbon powder (BP-25, manufactured by Kuraray Chemical Co., Ltd.) vacuum-dried at 17 ° C. for 17 hours was impregnated with 30 g of a polyaniline solution, followed by vacuum drying at 120 ° C. for 5 hours to obtain a polyaniline-supported activated carbon powder.

【0013】次に、トリフルオロスルホン酸リチウム
3.58g,プロピレンカーボネート10.47g,エ
チレンカーボネート7.86gを混合し、120℃に加
熱して均一溶液を得た。この溶液に、分子量6万のポリ
アクリロニトリルとアクリル酸メチルの共重合体(AN
/MA=10/1、モル比)粉末3gを混合し、密封し
た100mlの三角フラスコ中で150℃に加熱し、共重
合体粉末を完全に溶解し粘ちょうな透明の液体を得た。
この液体にアセトニトリルを30g添加し希釈溶液を得
た。
Next, 3.58 g of lithium trifluorosulfonate, 10.47 g of propylene carbonate and 7.86 g of ethylene carbonate were mixed and heated to 120 ° C. to obtain a homogeneous solution. In this solution, a copolymer of polyacrylonitrile having a molecular weight of 60,000 and methyl acrylate (AN
(/ MA = 10/1, molar ratio) 3 g of powder was mixed and heated to 150 ° C. in a sealed 100 ml Erlenmeyer flask to completely dissolve the copolymer powder to obtain a viscous transparent liquid.
30 g of acetonitrile was added to this liquid to obtain a diluted solution.

【0014】2,5−ジメルカプト−1,3,4−チア
ジアゾール(DMTD)粉末2.0gと平均粒径が3.
5μmのポリアニリンを担持して活性炭粉末0.5gと
を乳鉢で混合して得た混合粉末と希釈溶液10gとを混
合して電極スラリーを得た。
2.0 g of 2,5-dimercapto-1,3,4-thiadiazole (DMTD) powder and an average particle size of 3.
An electrode slurry was obtained by mixing 5 g of activated carbon powder carrying 5 μm of polyaniline and 0.5 g of activated carbon powder in a mortar with 10 g of a dilute solution.

【0015】電極スラリーを直径が90mmのガラスシャ
ーレに流延し、40℃の乾燥アルゴン気流中で1時間乾
燥しさらに80℃で5時間真空乾燥することで、厚さ約
280μmの可撓性のあるシート状の固形電極組成物A
を得た。
The electrode slurry was cast on a glass Petri dish having a diameter of 90 mm, dried for 1 hour in a dry argon gas stream at 40 ° C., and further vacuum-dried at 80 ° C. for 5 hours to obtain a flexible film having a thickness of about 280 μm. Certain sheet-shaped solid electrode composition A
I got

【0016】(比較例1)ポリアニリンを担持した活性
炭粉末の代わりに平均粒径が2μmの人造黒鉛粉末を用
いた他は実施例と同様にして厚さ約300μmの固形電
極組成物Bを得た。
Comparative Example 1 A solid electrode composition B having a thickness of about 300 μm was obtained in the same manner as in Example except that an artificial graphite powder having an average particle size of 2 μm was used instead of the activated carbon powder supporting polyaniline. .

【0017】(比較例2)アクリロニトリルとアクリル
酸メチル共重合体に代えて分子量が55,000のポリ
アクリロニトリルを用いた以外は実施例と同様にして厚
さ約300ミクロンの固形電極組成物Cを得た。
Comparative Example 2 A solid electrode composition C having a thickness of about 300 μm was prepared in the same manner as in the Example except that polyacrylonitrile having a molecular weight of 55,000 was used instead of the acrylonitrile and methyl acrylate copolymer. Obtained.

【0018】(電極特性評価)実施例、および比較例
1,2で得られた固形電極組成物を直径22mmの円板状
に打ち抜いた。図1において、固形電極組成物を円板状
に打ち抜いた正極1を内径が22mmのステンレス鋼でで
きたケース2の底面と接触するよう配置し正極モジュー
ルを構成した。一方、凹部に厚さ0.3mm,直径17mm
の金属リチウム円板の負極3を当接したケース2の開口
部をポリプロピレン製の封口リング4とで密閉する封口
板5に、150℃に加熱して流動性をもたせた希釈前の
固形電解質6を流し込み負極モジュールを構成した。正
極1に固形電解質6が当接するように正極モジュールの
開口部を負極モジュールで塞ぎケース2の上線部をかし
めて電極特性評価用の電池を組み立てた。
(Evaluation of Electrode Characteristics) The solid electrode compositions obtained in Examples and Comparative Examples 1 and 2 were punched into a disk having a diameter of 22 mm. In FIG. 1, a positive electrode 1 in which a solid electrode composition was punched into a disk shape was arranged so as to be in contact with the bottom surface of a case 2 made of stainless steel having an inner diameter of 22 mm to form a positive electrode module. On the other hand, 0.3mm in thickness and 17mm in diameter
The opening of the case 2 in contact with the negative electrode 3 of the metallic lithium disk was sealed with a sealing ring 4 made of polypropylene. To form a negative electrode module. The opening of the positive electrode module was closed with the negative electrode module so that the solid electrolyte 6 was in contact with the positive electrode 1, and the upper line of the case 2 was caulked to assemble a battery for evaluating electrode characteristics.

【0019】実施例,比較例1および比較例2による固
形電解質組成物A,BおよびCをそれぞれ正極1に用い
た電池を、電池A,電池Bおよび電池Cとする。
Batteries using the solid electrolyte compositions A, B and C according to the Examples, Comparative Examples 1 and 2 for the positive electrode 1 are referred to as batteries A, B and C, respectively.

【0020】このようにして組み立てた電池について、
1.5〜4.0Vの間でサイクリックボルタモグラムを
測定した。電圧の掃引速度は10mV/secとした。
各電池の組立後の回路電圧および内部抵抗、4.0Vの
定電圧で17時間充電した後500μAの定電流で放電
した際の電池電圧が2.8Vにおける分極値を(表1)
にまとめて示す。
Regarding the battery assembled in this manner,
Cyclic voltammograms were measured between 1.5 and 4.0V. The voltage sweep speed was 10 mV / sec.
The circuit voltage and the internal resistance after assembly of each battery were charged at a constant voltage of 4.0 V for 17 hours, and then discharged at a constant current of 500 μA, and the polarization value at a battery voltage of 2.8 V (Table 1).
Are shown together.

【0021】内部抵抗は、10mV,10KHzの交流信
号を用いて得た回路電圧における交流インピーダンス値
である。分極値は、放電電圧が2.8Vになった際、一
時放電をを中止し開路状態とし、その後電池電圧が一定
になるまで放置し、放電中止0.1sec後の電圧と放
置1時間後の電圧との差として得た。評価はすべて20
℃で行った。
The internal resistance is an AC impedance value at a circuit voltage obtained using an AC signal of 10 mV and 10 KHz. When the discharge voltage reaches 2.8 V, the polarization value is temporarily stopped and the circuit is opened. After that, the battery is allowed to stand until the battery voltage becomes constant. Obtained as the difference from the voltage. All evaluations are 20
C. was performed.

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)に示したように、実施例の電池A
では分極値が比較例の電池B,Cに較べ極めて小さい。
As shown in Table 1, the battery A of the embodiment
In this case, the polarization value is extremely smaller than those of the batteries B and C of the comparative example.

【0024】また、図2から明らかなように、実施例の
電池Aでは、ジスルフィド系化合物であるDMTDの還
元すなわち電池の充電に対応する電流ピークが2.0〜
3.2Vの間で得られる。同じポリアニリン担持活性炭
粉末を用いてもポリアクリロニトリルの固形電解質を用
いた比較例3の電池Cでは、DMTDの還元ピークが低
電圧側にあり、実施例の電池Aに較べて分極が大きい。
比較例1の電池Bでは、2.0〜3.2V付近のDMT
Dの酸化の電流ピークに対応する還元電流、すなわち電
池の放電電流は検討した電圧範囲では観測されない。
As is apparent from FIG. 2, in the battery A of the embodiment, the current peak corresponding to the reduction of the disulfide compound DMTD, that is, the charging of the battery is 2.0 to 2.0.
Obtained between 3.2V. Even in the case of using the same polyaniline-supported activated carbon powder, in the battery C of Comparative Example 3 using the polyacrylonitrile solid electrolyte, the reduction peak of DMTD was on the low voltage side, and the polarization was larger than that of the battery A of Example.
In the battery B of Comparative Example 1, the DMT around 2.0 to 3.2 V was used.
The reduction current corresponding to the current peak of oxidation of D, that is, the discharge current of the battery, is not observed in the voltage range studied.

【0025】以上のことから、DMTDの還元反応(放
電反応)がポリアニリンと活性炭粉末との触媒作用を受
けて、さらにポリアクリロニトリルとアクリル酸メチル
の共重合体を含む固形電解質の共存下において、室温で
も2.0〜3.2Vの高電圧域において進行することが
できる。
From the above, the reduction reaction (discharge reaction) of DMTD is catalyzed by polyaniline and activated carbon powder, and is further reduced to room temperature in the presence of a solid electrolyte containing a copolymer of polyacrylonitrile and methyl acrylate. However, it can proceed in a high voltage range of 2.0 to 3.2 V.

【0026】[0026]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明の固形電極組成物によれば、ポリアニリンを担
持した活性炭とジスルフィド系化合物とを複合化した電
極では、従来のジスルフィド系化合物のみでは困難であ
った大電流での電解が可能となる。さらに、ポリアクリ
ロニトリルとアクリル酸メチルあるいはメタアクリル酸
メチルの共重合体を含む固形電解質を用いることで分極
を小さくすることができる。この固形電極組成物を正極
に用い、金属リチウムを負極に用いることで大電流充放
電が期待できる固体状の高エネルギー密度リチルム二次
電池を構成することができる。
As apparent from the above description of the examples, according to the solid electrode composition of the present invention, in the electrode in which the activated carbon supporting polyaniline and the disulfide compound are combined, only the conventional disulfide compound is used. This makes it possible to perform electrolysis with a large current, which was difficult. Furthermore, polarization can be reduced by using a solid electrolyte containing a copolymer of polyacrylonitrile and methyl acrylate or methyl methacrylate. By using this solid electrode composition for the positive electrode and metallic lithium for the negative electrode, a solid high-energy-density lithium secondary battery in which high-current charging and discharging can be expected can be formed.

【0027】なお、実施例として電池のみを示したが、
電池の他に、本発明の固形電極組成物を対極に用いるこ
とで発色,退色速度の速いエレクトロクロミック素子、
応答速度の速いグルコースセンサー等の生物化学センサ
ーを得ることができるし、また、書き込み・読み出し速
度の速い電気化学アナログメモリーを構成することもで
きる。
Although only the battery is shown as an example,
In addition to batteries, the solid electrode composition of the present invention is used as a counter electrode to produce an electrochromic device with high color development and fading speed,
A biochemical sensor such as a glucose sensor having a high response speed can be obtained, and an electrochemical analog memory having a high writing / reading speed can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の固形電極組成物の特性を評
価するために用いた電池の構造を示す縦断面図
FIG. 1 is a longitudinal sectional view showing a structure of a battery used for evaluating characteristics of a solid electrode composition according to one embodiment of the present invention.

【図2】本発明の一実施例,比較例1または比較例2の
電極組成物を正極、金属リチウムを負極とするそれぞれ
の電池のサイクリックボルタモグラムを表す図
FIG. 2 is a diagram showing a cyclic voltammogram of each battery using the electrode composition of one example of the present invention, Comparative Example 1 or Comparative Example 2 as a positive electrode, and using lithium metal as a negative electrode.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 負極 4 封口リング 5 封口板 6 固形電解質 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Negative electrode 4 Sealing ring 5 Sealing plate 6 Solid electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神原 輝寿 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−93169(JP,A) 米国特許4833048(US,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/60 H01B 1/06 H01M 4/02 - 4/04 H01M 10/40 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Teruju Kamihara 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-3-93169 (JP, A) U.S. Pat. No. 4,833,048 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/60 H01B 1/06 H01M 4/02-4/04 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解還元により硫黄−硫黄結合が開裂
し、硫黄−リチウムイオン結合を生成し、電解酸化によ
り前記硫黄−リチウムイオン結合が元の前記硫黄−硫黄
結合を再生する有機化合物と、ポリアニリンを担持した
活性炭と、アクリロニトリルとアクリル酸メチルあるい
はメタアクリル酸メチルとの共重合体と、リチウム塩
と、プロピレンカーボネートとエチレンカーボネートの
少なくとも一方を含む固形電極組成物。
1. An organic compound in which a sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-lithium ion bond, and the sulfur-lithium ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, and polyaniline. A solid electrode composition comprising activated carbon carrying the above, a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate, a lithium salt, and at least one of propylene carbonate and ethylene carbonate.
JP03134004A 1991-06-05 1991-06-05 Solid electrode composition Expired - Fee Related JP3089707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03134004A JP3089707B2 (en) 1991-06-05 1991-06-05 Solid electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03134004A JP3089707B2 (en) 1991-06-05 1991-06-05 Solid electrode composition

Publications (2)

Publication Number Publication Date
JPH04359865A JPH04359865A (en) 1992-12-14
JP3089707B2 true JP3089707B2 (en) 2000-09-18

Family

ID=15118131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03134004A Expired - Fee Related JP3089707B2 (en) 1991-06-05 1991-06-05 Solid electrode composition

Country Status (1)

Country Link
JP (1) JP3089707B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665492A (en) * 1995-02-08 1997-09-09 Matsushita Electric Industrial Co., Ltd. Composite Electrode including organic disulfide compound, method of producing the same, and lithium secondary battery utilizing the same
US5792575A (en) * 1995-09-11 1998-08-11 Yazaki Corporation Lithium sulfur secondary battery and elecrode material for a non-aqueous battery
NZ567974A (en) * 2005-10-05 2012-04-27 Thomas Beretich Thermally enhanced solid-state generator
IN2012DN02063A (en) * 2009-08-28 2015-08-21 Sion Power Corp
RU2762741C1 (en) * 2020-12-25 2021-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" Method for producing an electrically conductive composite based on polyaniline and nanoscale sulfur

Also Published As

Publication number Publication date
JPH04359865A (en) 1992-12-14

Similar Documents

Publication Publication Date Title
US5690702A (en) Method of making electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
Novák et al. Electrochemically active polymers for rechargeable batteries
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5324599A (en) Reversible electrode material
US5733683A (en) Electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer
EP1095090B1 (en) Polymer gel electrode
US4472488A (en) Polymeric electrode coated with reaction product of cyclic compound
JP3168592B2 (en) Solid electrode composition
JP3089707B2 (en) Solid electrode composition
JP2015165481A (en) Electrode and power storage device using the same
JP2940198B2 (en) Solid electrode composition
JP3115153B2 (en) Electrochemical devices and secondary batteries
KR20190044313A (en) Selenium-sulfur compound electrode material coated with polyaniline for lithium-sulfur battery and lithium-sulfur battery using the same
JP3239374B2 (en) Electrode composition
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP3047492B2 (en) Solid electrode composition
JPH06163049A (en) Electrode
JP2993272B2 (en) Reversible electrode
JPH043066B2 (en)
JP3115165B2 (en) Lithium secondary battery
JPH04264363A (en) Reversible compound electrode
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
JP3111506B2 (en) Reversible electrode
JP2501821B2 (en) Secondary battery
JPS63224151A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees