JP3064470B2 - Artificial prosthetic materials - Google Patents

Artificial prosthetic materials

Info

Publication number
JP3064470B2
JP3064470B2 JP3088670A JP8867091A JP3064470B2 JP 3064470 B2 JP3064470 B2 JP 3064470B2 JP 3088670 A JP3088670 A JP 3088670A JP 8867091 A JP8867091 A JP 8867091A JP 3064470 B2 JP3064470 B2 JP 3064470B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
porous
phosphate compound
pores
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3088670A
Other languages
Japanese (ja)
Other versions
JPH04319358A (en
Inventor
杉郎 大谷
定勝 ▲柳▼澤
邦雄 新島
一志 杉浦
洋 町野
亨 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Japan Science and Technology Agency
Original Assignee
Mitsubishi Chemical Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Japan Science and Technology Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3088670A priority Critical patent/JP3064470B2/en
Priority to SE9201128A priority patent/SE9201128L/en
Priority to DE4212801A priority patent/DE4212801A1/en
Publication of JPH04319358A publication Critical patent/JPH04319358A/en
Priority to US08/459,630 priority patent/US5697980A/en
Application granted granted Critical
Publication of JP3064470B2 publication Critical patent/JP3064470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Composite Materials (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、人工補填補綴材料、即
ち、歯や骨の欠損部分を補填、補綴する材料に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial prosthetic material, that is, a material for filling and prosthetic teeth or bone defects.

【0002】[0002]

【従来の技術】歯や骨の欠損部分を人工材料で補填、補
綴することは古くから行われている。即ち、従来より生
体に適用されてきた人工補填補綴材料としては、金属材
料、有機材料、無機材料等があるが、強度、安全性、生
体との親和性、接着性等でより改善すべき点を有してお
り、より生体に近似した材料の開発が現在も継続してい
るのが現状である。
2. Description of the Related Art It has long been practiced to replace and prosthetic teeth and bone defects with artificial materials. That is, artificial prosthetic materials that have been conventionally applied to living organisms include metal materials, organic materials, inorganic materials, and the like. However, strength, safety, affinity with living organisms, adhesion, and the like should be further improved. At present, the development of materials more similar to living organisms is ongoing.

【0003】特に、人工材料を用い歯や骨の欠損部を補
填補綴する際の課題として生体と材料との接着性があ
り、これは人工材料の埋入後2〜3ケ月経過した後に、
人工材料と生体組織が安定的状態を形成することである
が、かかる接着性を改良するために水酸化アパタイト、
三リン酸カルシウム等の生体活性材料が知られている。
これらの生体活性材料では生体中の骨芽細胞が自ら生産
するアパタイトと該材料とが一体化し骨癒着を生じるも
のといわれているが、かかる材料は主としてセミラック
スであるため生体骨組織と比較すると強度の点で相対的
に低く、かつ材料表面に傷等が生じると極端に強度が低
下するという欠点を有している。
[0003] In particular, one of the problems in repairing and repairing a tooth or bone defect using an artificial material is adhesion between a living body and the material.
It is that the artificial material and the living tissue form a stable state, but in order to improve such adhesion, hydroxyapatite,
Bioactive materials such as calcium triphosphate are known.
In these bioactive materials, it is said that apatite produced by osteoblasts in the living body and the material are integrated to cause bone adhesion.However, such a material is mainly semi-luxed and compared with living bone tissue. It has the disadvantage that the strength is relatively low, and that if the surface of the material is scratched, the strength is extremely reduced.

【0004】これに対し、金属材料、炭素材料、アルミ
ナ、ジルコニア等の生体不活性材料では強度の点で生体
骨組織を凌ぐものがあるものの、生体との接着性の点で
生体活性材料に劣る。そこでかかる接着性を改善するた
めに材料表面に凸凹を設けたり、あるいは生体と同様の
結合組織を形成させるように材料表面に多孔構造層を設
け、強固な接着性を生体との反応により生じさせる方法
(特公昭61−9859号公報)等が知られている。
On the other hand, bioactive materials such as metal materials, carbon materials, alumina, and zirconia are superior in strength to living bone tissue, but are inferior to bioactive materials in adhesion to living bodies. . Therefore, in order to improve such adhesiveness, the surface of the material is provided with irregularities, or a porous structure layer is provided on the surface of the material so as to form a connective tissue similar to that of a living body, and a strong adhesiveness is generated by reaction with the living body. A method (Japanese Patent Publication No. 61-9859) and the like are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
生体活性材料あるいは生体不活性材料は生体との接着性
にそれぞれの特徴があるものの、かかる接着が一応完了
するための期間はいずれも約2〜3ケ月という長期間を
要し、かかる期間人工補填補綴材料を埋入部に静置保持
する必要がある。そして静置保持が不十分であると、接
着に要する期間が更に延びたり、あるいは炎症等により
接着不能となったりする等の問題点を有していた。
However, although such a bioactive material or a bioinert material has its own characteristics in terms of adhesion to a living body, the period for completing such adhesion is about 2 to 3 in all cases. It takes a long period of a month, and it is necessary to keep the artificial prosthesis material in the implanted portion for such a period. If the standing and holding is insufficient, there is a problem that the period required for bonding is further extended or the bonding becomes impossible due to inflammation or the like.

【0006】こで、本発明者等はかかる課題を解決す
べく鋭意検討した結果、多孔質の基材表面に、基材表面
の多孔性を失わせることなく細孔内部までリン酸カルシ
ウム化合物を、生分解性バインダーポリマーとともに添
着させることにより、人工補填補綴材料の接着力が高ま
り、接着に要する期間も飛躍的に短縮できることを見出
し、本発明に到達した。即ち、本発明の目的は、短時間
で強固に接着可能な高特性の人工補填補綴材料を提供す
ることにある。
[0006] In its this, the present inventors have result of intensive studies to solve such a problem, the substrate surface of the porous substrate surface
By attaching calcium phosphate compound together with biodegradable binder polymer to the inside of the pores without losing the porosity of the artificial prosthetic material, the adhesive strength of the artificial prosthetic prosthesis material is increased and the time required for adhesion is also increased The present inventors have found that they can be shortened in time, and arrived at the present invention. That is, an object of the present invention is to provide an artificial prosthetic prosthetic material with high properties that can be firmly adhered in a short time.

【0007】[0007]

【課題を解決するための手段】然して、かかる本発明の
目的は、多孔質の基材表面に、基材表面の多孔性を失わ
せることなく細孔内部までリン酸カルシウム化合物を、
生分解性バインダーポリマーとともに添着させたことを
特徴とする人工補填補綴材料により容易に達成される。
SUMMARY OF THE INVENTION An object of the present invention, however, is to provide a porous base material having a porous surface with a reduced surface porosity.
Calcium phosphate compound up to the inside of the pores without causing
It is easily achieved by an artificial prosthetic material characterized in that it has been impregnated with a biodegradable binder polymer.

【0008】以下、本発明をより詳細に説明する。本発
明に用いられる基材は、従来この分野に用いられている
いずれの基材も使用可能で、特に限定されるものではな
いが、通常、各種の炭素繊維強化炭素材料、焼結型炭素
材料又はガラス状炭素材料等の炭素材料、あるいは白
金、チタン、タンタル、タングステン等の金属、更には
アルミナ、ジルコニア、リン酸カルシウム、チタニア、
生体性ガラス等のセラミック等が挙げられる。中でも、
人工補填補綴材としての強度及び生体親和性の点で、炭
素繊維強化炭素材料、チタン、アルミナ等を用いるのが
好ましい。
Hereinafter, the present invention will be described in more detail. The substrate used in the present invention may be any substrate conventionally used in this field, and is not particularly limited. Usually, various types of carbon fiber reinforced carbon materials and sintered carbon materials are used. Or a carbon material such as a glassy carbon material, or a metal such as platinum, titanium, tantalum, tungsten, and further, alumina, zirconia, calcium phosphate, titania,
Ceramics such as biological glass may be used. Among them,
It is preferable to use a carbon fiber reinforced carbon material, titanium, alumina, or the like in view of strength and biocompatibility as an artificial prosthetic material.

【0009】基材表面が多孔質となっていると、生体内
に埋入された場合、生体組織が多孔質部分の細孔内に侵
入して強固な結合組織が形成され好ましい。基材表面を
多孔質とすると、かりに生分解性バインダーポリマー及
びリン酸カルシウム化合物が基材表面付近から脱落した
場合でも、細孔内には残留し、所期の効果を失わないか
ら、取り扱いが容易になるという利点もある。
When the surface of the base material is porous, when implanted in a living body, a living tissue penetrates into the pores of the porous portion to form a strong connective tissue, which is preferable. If the surface of the substrate is porous, even if the biodegradable binder polymer and the calcium phosphate compound fall off from the vicinity of the substrate surface, they remain in the pores and do not lose the intended effect, making it easy to handle. There is also the advantage of becoming.

【0010】中でも、生体との結合組織が石灰化して骨
組織に変化し得るような多孔質であるとより好ましく、
その様な多孔質材料としては、具体的には、アルミナか
らなる多孔質層または炭素繊維等の不織布上に熱分解炭
素を析出させてなる炭素質多孔質層等が挙げられる。ア
ルミナからなる多孔質層としては、例えば実公昭56−
34731号公報に記載されているようなものが用いら
れる。即ち、Al2 3 粉末等に有機バインダー(ポリ
ビニルアルコール、ポリエチレン等の球状体、チョップ
ドファイバー等)を混入し、セラミックの焼結または準
焼結温度に至るまでに該有機バインダーを燃焼気化させ
焼失せしめ、連続気孔からなる多孔質層を得る方法であ
る。
[0010] Above all, the connective tissue with the living body is calcified and bones
It is more preferable that the porous material can be changed into a tissue,
As such a porous material, specifically, alumina or
Pyrolytic carbon on a porous layer made of
And a carbonaceous porous layer formed by depositing carbon. A
As a porous layer made of lumina, for example,
No. 34731 is used.
It is. That is, AlTwoO ThreeOrganic binder (poly)
Spherical objects such as vinyl alcohol and polyethylene, chops
Mixed fiber, etc.)
The organic binder is burned and vaporized until the sintering temperature is reached.
It is a method of burning out and obtaining a porous layer composed of continuous pores.
You.

【0011】また、炭素質多孔質層としては、特公昭6
1−9859号公報に詳細に記載されているものが具体
的に用いられるが、例えば炭素繊維の比較的長繊維を用
いた編織布、不織布、フェルト、紙、あるいは比較的短
繊維のチョップドストランド等を上記の芯材表面上に被
覆固定する。その際、編織布、不織布、フェルト、紙等
を用いる場合にはこれらを適宜の大きさに切断して必要
に応じて有機質接着剤を用いて付着させ、更に必要なら
ば長繊維をもって巻き付け固定する。チョップドストラ
ンドを用いる場合には基材表面の必要部分に有機質接着
剤を塗布しておき、これにチョップドストランドをまぶ
すように付着固定する方式が採用される。次いで得られ
たもの(以下、これを堆積用炭素材と呼ぶ。)に熱分解
炭素を析出させて一体化させる。この熱分解炭素処理
は、基材の温度が600℃以上2300℃以下、望まし
くは700〜1100℃、基材から表面に向かって負の
温度勾配を持つ状態をつくるようにして、熱分解炭素を
析出させることが優れた炭素質多孔質層を形成させるた
めに好適である。
As the carbonaceous porous layer, Japanese Patent Publication No. Sho 6
Specific examples described in Japanese Patent Application Laid-Open No. 1-9859 are specifically used. For example, knitted fabrics, nonwoven fabrics, felts, papers using relatively long fibers of carbon fibers, chopped strands of relatively short fibers, etc. On the surface of the core material. At this time, when using a woven fabric, a nonwoven fabric, felt, paper, or the like, cut them into appropriate sizes and attach them using an organic adhesive as necessary, and further, if necessary, wind and fix them with long fibers. . In the case of using chopped strands, a method is adopted in which an organic adhesive is applied to a necessary portion of the substrate surface, and the chopped strands are adhered and fixed so as to cover the organic adhesive. Next, pyrolytic carbon is deposited on the obtained material (hereinafter referred to as a deposition carbon material) to be integrated. In this pyrolytic carbon treatment, the temperature of the base material is set to 600 ° C. or more and 2300 ° C. or less, desirably 700 to 1100 ° C., so that a state having a negative temperature gradient from the base material toward the surface is formed, Precipitation is suitable for forming an excellent carbonaceous porous layer.

【0012】かかる炭素質多孔質層は典型的には例えば
繊維がランダムな方向に多数重なり合って、しかも互い
に強固に結着している構造であって、形成される細孔の
大きさは基材表面付近で孔径が100μm以上、好まし
くは200μm以上の細孔が含まれており、基材の内部
方向に向かって孔径が小さくなっている。即ち、内部に
向かって次第に空隙率が小さくなるような空隙率分布を
有する多孔質層が好ましい。また、人工歯根材の場合に
は、基材の一部にネジ切り構造または非ネジ切り構造の
非円形断面部分を設けると、脱落を物理的に防止でき好
ましい。
[0012] Such a carbonaceous porous layer typically has a structure in which, for example, a large number of fibers overlap in a random direction and are firmly bound to each other. In the vicinity of the surface, pores having a pore size of 100 μm or more, preferably 200 μm or more are included, and the pore size decreases toward the inside of the substrate. That is, a porous layer having a porosity distribution in which the porosity gradually decreases toward the inside is preferable. Further, in the case of an artificial root material, it is preferable to provide a non-circular cross-sectional portion having a threaded structure or a non-threaded structure in a part of the base material because falling can be physically prevented.

【0013】本発明は、基材表面に、リン酸カルシウム
化合物を、生分解性のバインダーポリマーとともに添着
させたことを特徴とする。リン酸カルシウム化合物とし
ては、例えば無水リン酸二石灰(CaHPO4 )、ピロ
リン酸石灰(Ca2 2 7 )、ブルシャイト(CaH
PO4 2H2 O)、リン酸三カルシウム(Ca3 (PO
4 2 )、ハイドロキシアパタイト(Ca 10(PO4
6 (OH)2 )等が挙げられ、中でもその骨誘導作用の
強さ故、リン酸三カルシウム、ハイドロキシアパタイト
またはそれらの混合物が好ましいが、これらに限定され
るものではない。
[0013] The present invention relates to a method for preparing calcium phosphate on a substrate surface.
Impregnate compound with biodegradable binder polymer
It is characterized by having made it. As a calcium phosphate compound
For example, anhydrous dicalcium phosphate (CaHPOFour), Piro
Phosphate lime (CaTwoPTwoO7), Brushite (CaH
POFour2HTwoO), tricalcium phosphate (CaThree(PO
Four)Two), Hydroxyapatite (Ca Ten(POFour)
6(OH)Two) And the like, of which
Due to strength, tricalcium phosphate, hydroxyapatite
Or mixtures thereof, but are not limited thereto.
Not something.

【0014】リン酸カルシウム化合物の有する骨誘導作
用とは、繊維状の生体組織が基材表面で成長し、骨組織
に変化するのを促進する作用である。特にこの作用は、
基材表面が多孔質となっている場合に、該多孔質を形成
する繊維と生体組織が互いにからみあった二重編目構造
を形成するので、強固な接着を実現するのに有効であ
る。リン酸カルシウム化合物は、上記骨誘導作用を発現
させるのに必要十分な量使用すればよく、具体的には、
基材表面に0.1μm以上の層を形成できる量使用する
のが適当である。
The osteoinductive action of the calcium phosphate compound is an action that promotes the growth of fibrous biological tissue on the surface of the base material and changes into bone tissue. In particular, this effect
When the surface of the base material is porous, the fibers forming the porous material and the living tissue form a double stitch structure entangled with each other, which is effective for realizing strong adhesion. The calcium phosphate compound may be used in an amount necessary and sufficient to express the above-mentioned osteoinductive action. Specifically,
It is appropriate to use an amount capable of forming a layer of 0.1 μm or more on the substrate surface.

【0015】基材表面が多孔質の場合、基材表面付近の
細孔表面に、約0.1μm以上の層をなす程度以上の量
使用するのが適当で、より好ましくは、基材の表面及び
内部の全細孔表面に厚さ0.1μm以上のリン酸カルシ
ウム化合物を形成させるのがよい。ただし、添着させる
リン酸カルシウム化合物の量が多すぎて細孔を閉塞させ
ると、生体組織の侵入に悪影響を及ぼす恐れがある。
When the surface of the substrate is porous, it is appropriate to use the layer in an amount of about 0.1 μm or more on the surface of the pores near the surface of the substrate. It is preferable to form a calcium phosphate compound having a thickness of 0.1 μm or more on the surface of all the internal pores. However, if the amount of the calcium phosphate compound to be impregnated is too large to close the pores, it may adversely affect invasion of living tissue.

【0016】また、生分解性バインダーポリマーとして
は、公知のいずれのものも使用可能で、例えば、ポリ
(3ヒドロキシブチレート−4ヒドロキシブチレー
ト)、ポリ3ヒドロキシブチレート、ポリ(3ヒドロキ
シブチレート−3ヒドロキシバリレート、ポリ乳酸、ポ
リグリコール酸、ポリカプロラクトン、ポリエチレナジ
ペート、ポリブチレナジペート、ポリヒドロキシアルカ
ノエート等が例示できる。
As the biodegradable binder polymer, any known polymer can be used, and examples thereof include poly (3-hydroxybutyrate-4 hydroxybutyrate), poly-3-hydroxybutyrate, and poly (3-hydroxybutyrate). Examples thereof include -3 hydroxyvalerate, polylactic acid, polyglycolic acid, polycaprolactone, polyethylenerenadipate, polybutylenadipate, and polyhydroxyalkanoate.

【0017】中でもポリヒドロキシブチレート(PH
B)やポリ乳酸等は、クロロホルム等の有機溶媒に容易
に溶解し、且つ水に不溶である点で特に好ましい。これ
らは、有機溶媒に溶解させて塗布することにより基材表
面に容易に添着させることができる。また、バインダー
ポリマーが水溶性だと、生体液に溶解し、リン酸カルシ
ウム化合物が基材表面から遊離して、骨誘導作用等所期
の効果を発揮しないことがあるが、PHB、ポリ乳酸等
はその恐れが全くない。
Among them, polyhydroxybutyrate (PH)
B), polylactic acid and the like are particularly preferred in that they are easily dissolved in an organic solvent such as chloroform and are insoluble in water. These can be easily attached to the substrate surface by dissolving in an organic solvent and applying. Also, if the binder polymer is water-soluble, it may dissolve in biological fluids, and the calcium phosphate compound may be released from the surface of the base material, and may not exhibit the intended effects such as osteoinductive action. There is no fear at all.

【0018】生分解性バインダーポリマーの使用量は、
リン酸カルシウム化合物粒子同士およびリン酸カルシウ
ム化合物粒子と基材とを結着させるのに十分な量で、且
つリン酸カルシウム化合物の表面を覆い尽くして骨誘導
作用を損なうことがない程度の量が好ましい。具体的に
は、リン酸カルシウム化合物量の2〜50wt%、好まし
くは5〜30wt%が適当である。
The amount of the biodegradable binder polymer used is
An amount sufficient to bind the calcium phosphate compound particles to each other and to bind the calcium phosphate compound particles to the base material and to such an extent that the surface of the calcium phosphate compound is not completely covered and the osteoinductive action is not impaired is preferable. Specifically, 2 to 50% by weight, preferably 5 to 30% by weight of the amount of the calcium phosphate compound is appropriate.

【0019】本発明においては、生分解性バインダーポ
リマーを用いることにより、リン酸カルシウム化合物を
単独で使用した場合と比較して、より接着に要する期間
が短縮されるが、これは、生分解性バインダーポリマー
が、生体分解吸収されることにより速やかに生体組織を
置き変わるためであると考えられる。リン酸カルシウム
を生分解性バインダーポリマーとともに基材表面に添着
させる方法は特に限定されないが、生分解性バインダー
ポリマーを溶媒に溶解してなる溶液に、リン酸カルシウ
ム化合物を分散させたスラリーを、基材表面に浸漬塗
布、スプレー塗布等の方法で塗布する方法が、特に基材
の表面状態に影響されることなく、容易かつ効率的であ
る。更に基材表面が多孔質である場合は、上記スラリー
を浸漬塗布する方法によれば、一旦スラリーが細孔内部
まで入り込んだ後、溶媒のみ蒸発するから、基材表面の
多孔性を失わせることなく細孔内部まで塗布可能であっ
て、好ましく、更に基材を容器内に入れ、減圧すること
により細孔内部の空気等を吸出し、その後常圧又は高圧
にして、含浸させる真空含浸法がより好適である。
In the present invention, the use of the biodegradable binder polymer shortens the time required for adhesion as compared with the case where the calcium phosphate compound is used alone. It is considered that this is because the living tissue is quickly replaced by being absorbed by biodegradation. The method of adhering calcium phosphate to the substrate surface together with the biodegradable binder polymer is not particularly limited, but a slurry in which a calcium phosphate compound is dispersed in a solution obtained by dissolving the biodegradable binder polymer in a solvent is immersed in the substrate surface. A method of applying by a method such as application or spray application is easy and efficient without being particularly affected by the surface condition of the substrate. Further, when the surface of the base material is porous, according to the method of dip coating the slurry, once the slurry enters the inside of the pores, only the solvent evaporates. It is possible to apply to the inside of the pores without, preferably, further, a vacuum impregnation method in which the substrate is placed in a container, air or the like inside the pores is sucked out by reducing the pressure, and then normal pressure or high pressure is applied. It is suitable.

【0020】また、本発明人工補填補綴材は、基材表面
に、リン酸カルシウム化合物を、生分解性バインダーポ
リマーとともに添着させたことが特徴だが、基材表面に
添着させる成分はリン酸カルシウム化合物及び生分解性
バインダーポリマーだけに限定されるものではなく、必
要に応じて、他の成分も併用してよい。例えばスラリー
を製造する場合には、リン酸カルシウム化合物の不均一
な付着や、凝集塊による表面細孔の閉塞等を防止するた
め、必要に応じて、ショ糖脂肪酸エステル、モノテアリ
ン酸グリセリン(MSG)やセスキオレイン酸ソルビタ
ン等の分散剤を用いてもよい。
Further, the artificial prosthetic prosthesis of the present invention is characterized in that a calcium phosphate compound and a biodegradable binder polymer are attached to the surface of a base material. It is not limited only to the binder polymer, and other components may be used together if necessary. For example, in the case of manufacturing a slurry, sucrose fatty acid ester, glyceryl monotearate (MSG), sesquisulfate, etc. may be used as necessary to prevent uneven attachment of the calcium phosphate compound and blockage of surface pores due to agglomerates. A dispersant such as sorbitan oleate may be used.

【0021】さらに、スラリーを作成するときにはバイ
ンダー、分散剤の混合順序も燐酸カルシウム化合物の分
散性に影響を及ぼすため重要である。燐酸カルシウム化
合物と分散剤を溶解させた一部の分散媒を分散容器内
で、所定時間分散、粉砕処理を行なった後、バインダー
を溶解した分散媒を添加しさらに分散、粉砕処理を行
う。分散、粉砕処理には通常用いられるボールミルや振
動ボールミル、ペイントシェイカーなどがもちいられ
る。
Furthermore, when preparing a slurry, the order of mixing the binder and the dispersant is also important because it affects the dispersibility of the calcium phosphate compound. A dispersion medium in which a calcium phosphate compound and a dispersant are dissolved is partially dispersed and pulverized in a dispersion container for a predetermined time, and then a dispersion medium in which a binder is dissolved is added, followed by further dispersion and pulverization. A ball mill, a vibrating ball mill, a paint shaker and the like which are usually used are used for the dispersion and pulverization.

【0022】こうして分散処理されたスラリーを炭素多
孔層中に含浸する。具体的には、このとき歯根材を減圧
にした後スラリーを導入し、所定時間後常圧に戻すこと
によりスラリーは多孔層内部にまで含浸される。なお、
分散媒が水の場合には、スラリーと多孔質炭素との濡れ
が悪いため含浸に先立ち炭素表面の親水化処理を行うこ
とが好ましい。親水化処理には、酸による湿式酸化や酸
素による乾式酸化などの手法がとられるが、芯材に対し
てマイルドであるという点から酸素、空気プラズマによ
る処理が望ましい。
The slurry thus dispersed is impregnated into the carbon porous layer. Specifically, at this time, the pressure is reduced to the root material, the slurry is introduced, and the pressure is returned to the normal pressure after a predetermined time, whereby the slurry is impregnated into the inside of the porous layer. In addition,
When the dispersion medium is water, it is preferable to perform a hydrophilic treatment on the carbon surface prior to impregnation because the wettability between the slurry and the porous carbon is poor. For the hydrophilization treatment, techniques such as wet oxidation with acid and dry oxidation with oxygen are used, but treatment with oxygen and air plasma is desirable because the core material is mild.

【0023】[0023]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明は、その要旨を超えない限りこれらの
実施例に限定されるものではない。実施例1 直径3.2mm、長さ1.5mmの柱状頭部とその下に直径
1.9mm、長さ9.5mmの柱状の足を設けたチタン製の
芯材の足の部分に炭素繊維のフェルトを厚さ5mmに巻き
付ける。このサンプルを反応器内で高周波誘導加熱によ
り700℃に加熱したのち、アルゴンガスをキャリアー
ガスとしてジクロルエチレンの蒸気を反応器内に導入し
て熱分解炭素を生成させる。1時間の反応の後、チタン
芯材と炭素繊維が熱分解炭素で接着され一体化した、表
面が開気孔である多孔構造層をもつ材料を得る。この材
料の表面状態を細工用グラインダーにて整え、直径3.
2mm、全長11.6mmのチタン製の頭部をもち、その下
に表面が開気孔である炭素質多孔構造層をもつ基材を作
製する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist. Example 1 Carbon fiber was used for a titanium core material with a pillar head having a diameter of 3.2 mm and a length of 1.5 mm and a pillar foot having a diameter of 1.9 mm and a length of 9.5 mm. Wind the felt to a thickness of 5 mm. After heating this sample to 700 ° C. by high-frequency induction heating in the reactor, dichloroethylene vapor is introduced into the reactor using argon gas as a carrier gas to generate pyrolytic carbon. After the reaction for one hour, a material having a porous structure layer having open pores on the surface is obtained in which the titanium core material and the carbon fiber are bonded and integrated with pyrolytic carbon. The surface condition of this material was adjusted with a grinder for work, and the diameter was 3.
A base material having a titanium head having a length of 2 mm and a total length of 11.6 mm and having a carbonaceous porous structure layer having open pores on its surface is prepared.

【0024】平均粒径2μmのヒドロキシアパタイト
(HAP)粒子2g、モノステアリン酸グリセリン(M
SG)0.1g、クロロホルム40g、PHB(ポリヒ
ドロキシブチレート)0.4g、クロロホルム57.5
gを分散球70gと共に内容積140mlの容器にいれペ
イントシェイカー処理を6時間行い、HAPをクロロホ
ルム中に分散させた後、HAP2/MSG0.1/PH
B0.4/クロロホルム97.5(各重量%)のスラリ
ーを得た。
2 g of hydroxyapatite (HAP) particles having an average particle size of 2 μm and glycerin monostearate (M
SG) 0.1 g, chloroform 40 g, PHB (polyhydroxybutyrate) 0.4 g, chloroform 57.5
g in a container having an inner volume of 140 ml together with 70 g of dispersion spheres, and a paint shaker treatment was carried out for 6 hours to disperse HAP in chloroform, and then HAP2 / MSG0.1 / PH.
A slurry of B0.4 / chloroform 97.5 (% by weight) was obtained.

【0025】このスラリーを炭素質多孔層を有する上記
の基材に真空含浸、乾燥し、HAPを点着させて人工補
填補綴材を製造した。この補填補綴材の多孔層の表面及
び内部を走査方電子顕微鏡(SEM)により観察したと
ころ、表面付近では厚さ約2μm、内部では厚さ0.1
μmのHAP層が形成されており、気孔の閉塞は見られ
なかった。また、該補填補綴材をニホンザルの大腿骨に
埋入し、一定期間経過後屠殺し、該大腿骨を取り出し
て、該補填補綴材との剪断接着強度をミネベア社製機械
的特性解析装置、“TCM5000A”を用いて測定し
た。その結果を表1に示す。
This slurry was vacuum impregnated into the above-mentioned base material having a carbonaceous porous layer, dried, and HAP was spotted to produce an artificial prosthetic material. When the surface and the inside of the porous layer of the prosthetic material were observed with a scanning electron microscope (SEM), the thickness was about 2 μm near the surface and 0.1 mm inside.
A μm HAP layer was formed, and no pore blockage was observed. Further, the prosthetic prosthetic material was embedded in the femur of a Japanese macaque, sacrificed after a certain period of time, the femur was taken out, and the shear adhesive strength with the prosthetic prosthetic material was measured using a mechanical property analyzer manufactured by Minebea, It measured using TCM5000A ". Table 1 shows the results.

【0026】比較例 実施例1と全く同様にして製造した基材に、HAPを添
着させないでそのままニホンザルの大腿骨に埋入した以
外前記実施例1と全く同様にした結果を表1に示す。
[0026] Comparative Example Example 1 and exactly the same way substrates were prepared, Table 1 shows the result of in the same manner as in Example 1 except that the implanted directly into the femur of a Japanese monkey is not impregnated with HAP.

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の人工補填補綴材料は、生体に、
従来品より短期間で強固に接着可能で、且つ容易に製造
可能であって、多大な工業的利益を提供するものであ
る。
The artificial prosthetic material of the present invention can be used
It can be firmly bonded in a shorter time than conventional products, can be easily manufactured, and offers great industrial benefits.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000005968 三菱化学株式会社 東京都千代田区丸の内二丁目5番2号 (72)発明者 大谷 杉郎 群馬県桐生市菱町黒川2010番の2 (72)発明者 ▲柳▼澤 定勝 東京都港区三田二丁目3番34−407号 (72)発明者 新島 邦雄 埼玉県大宮市上小町563番地 (72)発明者 杉浦 一志 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (72)発明者 町野 洋 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (72)発明者 布施 亨 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (56)参考文献 特開 昭61−33660(JP,A) 特開 平2−241461(JP,A) 特公 昭61−9859(JP,B2) 実公 昭56−34731(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) A61L 27/00 ────────────────────────────────────────────────── ─── Continued on the front page (73) Patent holder 000005968 Mitsubishi Chemical Corporation 2-5-2, Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Suguro Otani 2010-2, Hishimachi Kurokawa 2010-2 (72 Inventor ▲ Yanagi ▼ Sadakatsu Sawa 2-34-3, Mita, Minato-ku, Tokyo (72) Inventor Kunio Niijima 563, Kamikomachi, Omiya City, Saitama Prefecture No. 1000, Mitsubishi Kasei Research Institute (72) Inventor Hiroshi Machino 1000, Kamoshita-cho, Midori-ku, Yokohama, Kanagawa Prefecture, Japan Inside (72) Inventor Tohru Fuse 1000, Kamoshita-cho, Midori-ku, Yokohama, Kanagawa Address Mitsubishi Chemical Corporation Research Laboratory (56) References JP-A-61-33660 (JP, A) JP-A-2-241461 (JP, A) JP-B-61-9598 (JP, B ) Real public Akira 56-34731 (JP, Y2) (58 ) investigated the field (Int.Cl. 7, DB name) A61L 27/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質の基材表面に、基材表面の多孔性
を失わせることなく細孔内部までリン酸カルシウム化合
物を、生分解性バインダーポリマーとともに添着させた
ことを特徴とする人工補填補綴材料。
To 1. A porous substrate surface of a porous substrate surface
An artificial prosthetic material comprising a calcium phosphate compound and a biodegradable binder polymer attached to the inside of pores without losing water.
JP3088670A 1991-04-19 1991-04-19 Artificial prosthetic materials Expired - Lifetime JP3064470B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3088670A JP3064470B2 (en) 1991-04-19 1991-04-19 Artificial prosthetic materials
SE9201128A SE9201128L (en) 1991-04-19 1992-04-08 ARTIFICIAL FILLING AND PROTEST MATERIAL
DE4212801A DE4212801A1 (en) 1991-04-19 1992-04-16 Synthetic bone-tooth filler for artificial limb and denture material - comprises water insoluble, biodegradable coating applied to substrate with porous surface layer
US08/459,630 US5697980A (en) 1991-04-19 1995-06-02 Artificial filling and prosthetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088670A JP3064470B2 (en) 1991-04-19 1991-04-19 Artificial prosthetic materials

Publications (2)

Publication Number Publication Date
JPH04319358A JPH04319358A (en) 1992-11-10
JP3064470B2 true JP3064470B2 (en) 2000-07-12

Family

ID=13949255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088670A Expired - Lifetime JP3064470B2 (en) 1991-04-19 1991-04-19 Artificial prosthetic materials

Country Status (4)

Country Link
US (1) US5697980A (en)
JP (1) JP3064470B2 (en)
DE (1) DE4212801A1 (en)
SE (1) SE9201128L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117042C (en) * 1998-02-27 2003-08-06 Tdk株式会社 Piezoelectric ceramics and piezoelectric device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073138A (en) * 1993-06-15 1995-01-06 Uni Charm Corp Resin composition, porous film obtained therefrom, and production of the same film
SG49096A1 (en) * 1994-01-28 1998-05-18 Procter & Gamble Biodegradable 3-polyhydtoxybuyrate/3- polyhydroxyhexanoate copolymer films
ES2251716T3 (en) * 1994-01-28 2006-05-01 THE PROCTER & GAMBLE COMPANY BIODEGRADABLE COPOLYMERS AND PLASTIC ITEMS THAT INCLUDE BIODEGRADABLE COPOLYMERS OF 3-HYDROXIHEXANOATE.
ID23491A (en) * 1994-01-28 1995-09-07 Procter & Gamble COOPOLYMERS WHICH CAN BE DIODODEGRADED AND PLASTIC MATERIALS CONTAINED FROM CO-COLLIMERS WHICH CAN BE DIBIODEGRADED
ZA95627B (en) * 1994-01-28 1995-10-05 Procter & Gamble Biodegradable copolymers and plastic articles comprising biodegradable copolymers
US6828376B2 (en) 1994-07-25 2004-12-07 Imperial Chemical Industries Plc Aqueous coating composition giving coatings having improved early hardness and tack-resistance
GB2291648B (en) * 1994-07-25 1998-11-25 Ici Plc Aqueous coating composition giving coatings having improved early hardness and tack-resistance
AU3795395A (en) * 1994-11-30 1996-06-06 Ethicon Inc. Hard tissue bone cements and substitutes
US5776193A (en) * 1995-10-16 1998-07-07 Orquest, Inc. Bone grafting matrix
US6143947A (en) * 1996-01-29 2000-11-07 The Procter & Gamble Company Fibers, nonwoven fabrics and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate
US5977204A (en) * 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
US7524335B2 (en) * 1997-05-30 2009-04-28 Smith & Nephew, Inc. Fiber-reinforced, porous, biodegradable implant device
AT407484B (en) * 1997-11-12 2001-03-26 Bio Prod & Bio Eng Ag MEDICINES FOR PROMOTING Wound Healing
US6497422B1 (en) * 1999-06-25 2002-12-24 William B. Bellis, Jr. Sulky with removable foot plate
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
CA2435248A1 (en) * 2001-01-18 2002-07-25 Johann Eibl Drug composition for the promotion of tissue regeneration
US7776085B2 (en) 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
US7695521B2 (en) * 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
PT2055267E (en) * 2001-05-01 2013-07-15 Amedica Corp Radiolucent bone graft
EP1408874B1 (en) 2001-06-14 2012-08-08 Amedica Corporation Metal-ceramic composite articulation
FR2833495B1 (en) * 2001-11-02 2004-09-24 Coent Fernand Le COATING METHOD FOR A METAL PROSTHESIS INTENDED TO BE IMPLANTED IN A BODY AND THE COVERING ITSELF
GB0222291D0 (en) * 2002-09-26 2002-10-30 Smith & Nephew Adhesive bone cement
EP1572042A4 (en) 2002-12-17 2010-12-08 Amedica Corp Total disc implant
WO2005011536A1 (en) * 2003-07-31 2005-02-10 Riken Artificial bone forming method by powder lamination method
US20050154285A1 (en) * 2004-01-02 2005-07-14 Neason Curtis G. System and method for receiving and displaying information pertaining to a patient
US20050228251A1 (en) * 2004-03-30 2005-10-13 General Electric Company System and method for displaying a three-dimensional image of an organ or structure inside the body
DE102005022176B4 (en) * 2005-05-09 2009-06-25 Martin-Luther-Universität Halle-Wittenberg Process for the preparation of bioresorbable composite materials and their use as implant material and bioresorbable composite materials
US8252058B2 (en) 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
GB0623065D0 (en) * 2006-11-18 2006-12-27 Smith & Nephew Annular ring
US20100125335A1 (en) * 2008-11-20 2010-05-20 Daley Robert J Methods and apparatus for replacing biological joints using bone cement in a suspended state
US20100125303A1 (en) * 2008-11-20 2010-05-20 Daley Robert J Methods and apparatus for replacing biological joints using bone mineral substance in a suspended state
DE102009039102B4 (en) * 2009-08-27 2022-01-27 Wdt-Wolz-Dental-Technik Gmbh Process for the production of tooth parts from dental metal powder
JP5728321B2 (en) * 2011-07-21 2015-06-03 日本特殊陶業株式会社 Manufacturing method of biological implant
EP3238751B1 (en) * 2012-05-21 2020-07-08 Tepha, Inc. Resorbable bioceramic compositions of poly-4-hydroxybutyrate and copolymers
CN108653816A (en) * 2018-03-16 2018-10-16 江阴金泰克生物技术有限公司 A method of double-layer artificial antibacterial repair membrane is prepared using electrostatic spinning
CN111214698B (en) * 2020-01-22 2021-10-22 潍坊医学院附属医院 Composite bone repair material and preparation method thereof
CN111921011B (en) * 2020-09-08 2022-07-19 西安点云生物科技有限公司 Artificial bone coated with coating and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070514A (en) * 1973-06-05 1978-01-24 The United States Of America As Represented By The United States Department Of Energy Method of fabricating graphite for use as a skeletal prosthesis and product thereof
AT352867B (en) * 1976-05-12 1979-10-10 Battelle Institut E V BONE REPLACEMENT, BONE COMPOUND OR PROSTHESIS ANCHORING MATERIAL AND PROCESS FOR ITS PRODUCTION
JPS57134154A (en) * 1981-02-12 1982-08-19 Otani Sugirou Carbonacious artificial filler and prosthetic material and production thereof
DE3325111A1 (en) * 1983-07-12 1985-01-24 Merck Patent Gmbh, 6100 Darmstadt IMPLANTATION MATERIALS
DE3414924A1 (en) * 1984-04-19 1985-10-31 Klaus Dr.med. Dr.med.habil. 8000 München Draenert COATED ANCHORAGE PART FOR IMPLANTS
US4863475A (en) * 1984-08-31 1989-09-05 Zimmer, Inc. Implant and method for production thereof
JPS61135671A (en) * 1984-12-04 1986-06-23 三菱鉱業セメント株式会社 Implant material
US4842604A (en) * 1985-02-19 1989-06-27 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4636526A (en) * 1985-02-19 1987-01-13 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4645503A (en) * 1985-08-27 1987-02-24 Orthomatrix Inc. Moldable bone-implant material
JPS6324952A (en) * 1986-07-18 1988-02-02 ペルメレツク電極株式会社 Production of composite material coated with calcium phosphate compound
FI81010C (en) * 1986-09-05 1990-09-10 Biocon Oy Benomplaceringsimplants
JPS6399867A (en) * 1986-10-17 1988-05-02 ペルメレツク電極株式会社 Composite material coated with calcium phosphate and its production
US5064439A (en) * 1987-01-20 1991-11-12 Richards Medical Company Orthopedic device of biocompatible polymer with oriented fiber reinforcement
US4795472A (en) * 1987-01-28 1989-01-03 Zimmer, Inc. Prosthesis with enhanced surface finish
US4990163A (en) * 1989-02-06 1991-02-05 Trustees Of The University Of Pennsylvania Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement
US4976736A (en) * 1989-04-28 1990-12-11 Interpore International Coated biomaterials and methods for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117042C (en) * 1998-02-27 2003-08-06 Tdk株式会社 Piezoelectric ceramics and piezoelectric device

Also Published As

Publication number Publication date
JPH04319358A (en) 1992-11-10
SE9201128L (en) 1992-10-20
DE4212801A1 (en) 1992-11-19
US5697980A (en) 1997-12-16
SE9201128D0 (en) 1992-04-08

Similar Documents

Publication Publication Date Title
JP3064470B2 (en) Artificial prosthetic materials
Yang et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation
US5049074A (en) Dental implant
Schneider et al. Cotton wool‐like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells
Kasuga et al. Siloxane-poly (lactic acid)-vaterite composites with 3D cotton-like structure
EP2251049A2 (en) Methods and devices for bone attachment
JP2010507413A (en) Implant material
JP2006501887A (en) Implantable medical device coated with calcium phosphate and method of manufacturing the same
Emadi et al. Nanostructured forsterite coating strengthens porous hydroxyapatite for bone tissue engineering
WO2007032390A1 (en) Composite porous material
AU2009251989A1 (en) Osteoinductive nanocomposites
Balasundaram et al. Increased osteoblast adhesion on nanograined Ti modified with KRSR
Jang et al. Topography‐supported nanoarchitectonics of hybrid scaffold for systematically modulated bone regeneration and remodeling
US20140212469A1 (en) Surface functional bioactive glass scaffold for bone regeneration
US7416564B2 (en) Porous bioceramics for bone scaffold and method for manufacturing the same
Furkó et al. Comparative study on preparation and characterization of bioactive coatings for biomedical applications—A review on recent patents and literature
Das et al. Osteogenic nanofibrous coated titanium implant results in enhanced osseointegration: in vivo preliminary study in a rabbit model
CN101829358A (en) Preparation method of calcium phosphate ceramics/chitosan-hydroxyapatite composite coating porous material
JP2852305B2 (en) Artificial prosthesis materials
Jodati et al. 3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering
Maeda et al. Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology
JP3008586B2 (en) Method for producing artificial prosthetic material
Xu et al. Development, in-vitro characterization and in-vivo osteoinductive efficacy of a novel biomimetically-precipitated nanocrystalline calcium phosphate with internally-incorporated bone morphogenetic protein-2
Cai et al. Fabrication of hydroxyapatite/tantalum composites by pressureless sintering in different atmosphere
JP5400317B2 (en) Implant material