JP3048032B2 - Butterfly valve - Google Patents

Butterfly valve

Info

Publication number
JP3048032B2
JP3048032B2 JP6201730A JP20173094A JP3048032B2 JP 3048032 B2 JP3048032 B2 JP 3048032B2 JP 6201730 A JP6201730 A JP 6201730A JP 20173094 A JP20173094 A JP 20173094A JP 3048032 B2 JP3048032 B2 JP 3048032B2
Authority
JP
Japan
Prior art keywords
valve
pipe
valve body
flow path
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6201730A
Other languages
Japanese (ja)
Other versions
JPH0861519A (en
Inventor
紀雄 安ヶ平
和雄 池内
修一 久下沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6201730A priority Critical patent/JP3048032B2/en
Publication of JPH0861519A publication Critical patent/JPH0861519A/en
Application granted granted Critical
Publication of JP3048032B2 publication Critical patent/JP3048032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加圧流動層複合発電プ
ラントなどのガスタービン入口弁に適用する高温バタフ
ライ弁構造に係り、特に前記の高温バタフライ弁に好適
な弁棒冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature butterfly valve structure applied to a gas turbine inlet valve of a pressurized fluidized bed combined cycle power plant or the like, and more particularly to a valve rod cooling structure suitable for the high temperature butterfly valve.

【0002】[0002]

【従来の技術】最近、図2に示すような加圧流動層発電
プラントなどでは、プラントの緊急時に流動層ボイラ1
と空気圧縮機2及びガスタービン3を隔離する目的で、
ガスタービン入口弁であるバタフライ弁9,圧縮機吐出
弁10及びバイパス弁11などの高温弁が発電プラント
にも適用されようとしている。これらの高温弁の中で、
特にバタフライ弁9は最も高温の燃焼ガスを高速で緊急
遮断するために、機能,信頼性ともに高度なものが要求
される。
2. Description of the Related Art Recently, in a pressurized fluidized-bed power plant as shown in FIG.
In order to isolate the air compressor 2 and the gas turbine 3,
High-temperature valves such as a butterfly valve 9, a compressor discharge valve 10, and a bypass valve 11, which are gas turbine inlet valves, are being applied to power plants. Among these high temperature valves,
In particular, the butterfly valve 9 is required to be highly functional and highly reliable in order to quickly shut off the hottest combustion gas at high speed.

【0003】従来、このような高温の燃焼ガスに適用さ
れる緊急遮断弁として、図3及び図4に示すバタフライ
弁が、特願平5−281551 号公報に提案されている。該バ
タフライ弁9は、高温の燃焼ガス配管と連結するフラン
ジ13a,13bを含む弁箱12の内周に断熱部材21
と内筒14を有し、該内筒12の内側には弁棒16によ
って開閉作動する弁体15を有して、プラントの緊急時
に図示のごとく内筒14に具備した弁座17a,17b
と該弁体15とが接して燃焼ガスを遮断する。
Conventionally, as an emergency shutoff valve applied to such a high-temperature combustion gas, a butterfly valve shown in FIGS. 3 and 4 has been proposed in Japanese Patent Application No. 5-281551. The butterfly valve 9 has a heat insulating member 21 on the inner periphery of the valve box 12 including the flanges 13a and 13b connected to the high-temperature combustion gas pipe.
And an inner cylinder 14. A valve body 15 which is opened and closed by a valve rod 16 is provided inside the inner cylinder 12, and valve seats 17a and 17b provided in the inner cylinder 14 as shown in FIG.
And the valve body 15 come into contact with each other to shut off the combustion gas.

【0004】また、高温の燃焼ガス中で高速で作動する
弁棒16は両端が軸受22a,22bで支持されている
が、弁棒材の高温強度は図5に示すように600℃以上
の高温になると、クリープラプチャー強度が著しく低下
する。したがって、弁棒材の高温強度を維持するため
に、弁棒16の内部を中空構造として、該中空部に空気
などの冷却媒体を導入する方法が実願平3−85669号に提
案されている。
The valve stem 16 which operates at high speed in a high-temperature combustion gas is supported at both ends by bearings 22a and 22b, and the high-temperature strength of the valve stem is 600 ° C. or higher as shown in FIG. , The creep rupture strength is significantly reduced. Therefore, in order to maintain the high-temperature strength of the valve rod material, a method of introducing a cooling medium such as air into the hollow part of the valve rod 16 in a hollow structure has been proposed in Japanese Utility Model Application No. 3-85669. .

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の公知技
術は弁棒冷却の高性能化技術や冷却媒体の省エネルギ化
について言及していない。
However, the above-mentioned prior art does not mention a technique for improving the performance of valve stem cooling or energy saving of a cooling medium.

【0006】すなわち、実際の発電プラントでは、プラ
ントの熱効率を高めるために最小の冷却媒体を用いて最
大の冷却効果が達成できる冷却方式が要求されることは
いうまでもないが、前記の公知技術は弁棒の冷却効果を
上げる手段,冷却媒体を低減する手段が講じられていな
い。また、実際の発電プラントに適用される高温のバタ
フライ弁は、燃焼ガスの処理量が膨大になるために、弁
口径がかなり大きくなりこれに伴って弁棒の軸長もまた
長大化することになる。したがって、弁棒の熱応力など
の信頼性を考えれば、弁棒の軸方向にできるだけ一様に
冷却する方式が必要である。
That is, in order to increase the thermal efficiency of the plant, it is needless to say that an actual power generation plant requires a cooling system that can achieve the maximum cooling effect by using the minimum cooling medium. No measures have been taken to increase the cooling effect of the valve stem and to reduce the cooling medium. In addition, the high-temperature butterfly valve applied to an actual power generation plant requires a considerably large valve diameter due to the huge amount of combustion gas to be processed, and the axial length of the valve stem also increases accordingly. Become. Therefore, in consideration of the reliability such as the thermal stress of the valve stem, a method of cooling as uniformly as possible in the axial direction of the valve stem is required.

【0007】本発明は、上記の課題を考慮してなされた
もので、その目的とするところは、加圧流動層複合発電
プラントなどに適用されるものであって、より冷却効率
が高く、かつ熱応力の発生を抑制させることができる構
造を有するバタフライ弁を提供することにある。
The present invention has been made in consideration of the above problems, and has as its object to be applied to a pressurized fluidized bed combined cycle power plant and the like, which has higher cooling efficiency and An object of the present invention is to provide a butterfly valve having a structure capable of suppressing generation of thermal stress.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るバタフライ弁の第1の特徴は、弁箱の内
周に断熱材層を配設し、該断熱材層の内周に耐熱材料か
らなる内筒を配設し、前記内筒の内部に軸心周りに回転
して流路を開閉する弁体を有し、かつ前記弁体と弁箱を
貫通して両端が外部に突出する弁棒を設けたバタフライ
弁において、前記弁棒は、円形流路の内管と環状流路を
有する外管で構成され、前記内管は、管軸方向及び管周
方向に多数の円形の開口部を有するとともに、該円形の
開口部を、軸方向の配列ピッチが弁体中心側で密に、弁
体外周側で粗になるように配設し、前記弁棒内管の両端
から冷却媒体を導入して前記内管の円形開口部より前記
外管内壁に噴出,衝突されるようにしたことにある。
A first feature of a butterfly valve according to the present invention for achieving the above object is that a heat insulating material layer is provided on an inner periphery of a valve box, and an inner circumferential surface of the heat insulating material layer is provided. An inner cylinder made of a heat-resistant material is disposed on the inner cylinder. The inner cylinder has a valve body that rotates around an axis to open and close a flow path, and both ends penetrate the valve body and the valve box, and both ends are external. In a butterfly valve provided with a valve stem protruding into the valve, the valve stem is constituted by an inner pipe having a circular flow path and an outer pipe having an annular flow path, and the inner pipe has a large number of pipes in a pipe axial direction and a pipe circumferential direction. With a circular opening, the circular openings are arranged so that the arrangement pitch in the axial direction is dense on the valve body center side and coarse on the valve body outer peripheral side, and both ends of the valve stem inner tube. The cooling medium is introduced from above, and is ejected from the circular opening of the inner tube to the inner wall of the outer tube so as to collide.

【0009】また、本発明に係るバタフライ弁の第2の
特徴は、前記環状流路を有する外管の内壁に、軸方向に
複数の乱流促進体の機能を有する突起体を配設し、前記
弁棒内管の両端から冷却媒体を導入して内管の円形開口
部より外管内壁に噴出,衝突せしめて前記乱流促進体と
接触させるようにしたことにある。
[0009] A second feature of the butterfly valve according to the present invention is that a plurality of protrusions having a function of a turbulence promoter are disposed in an axial direction on an inner wall of the outer pipe having the annular flow path. A cooling medium is introduced from both ends of the inner pipe of the valve stem, is jetted from the circular opening of the inner pipe to the inner wall of the outer pipe, and collides with the turbulence promoting body.

【0010】更に、本発明に係るバタフライ弁の第3の
特徴は、前記環状流路を有する外管の外壁と弁体の内壁
間に一定の隙間を有する空気の隔離層を設けるととも
に、該弁体と弁棒外管が軸方向に接触する外管内壁部に
乱流促進体の機能を有する突起体を配設し、前記弁棒内
管の両端から冷却媒体を導入して内管の円形開口部より
外管内壁に噴出,衝突せしめて前記乱流促進体と接触さ
せるようにしたことにある。
A third feature of the butterfly valve according to the present invention is that an air separation layer having a certain gap is provided between the outer wall of the outer tube having the annular flow passage and the inner wall of the valve body, A protrusion having the function of a turbulence promoter is disposed on the inner wall of the outer tube where the body and the valve stem outer tube are in axial contact with each other, and a cooling medium is introduced from both ends of the valve stem inner tube to form a circular inner tube. The reason is that the blast is jetted from the opening to the inner wall of the outer tube and collides with the turbulence promoting body.

【0011】更にまた、本発明に係るバタフライ弁の第
4の特徴は、前記内管の管軸径を、弁体の中心部が大き
く、弁体の外周部側に漸次小さくして、該内管の管軸と
内管の内壁で構成される環状流路の断面積を軸方向に変
化させて形成し、かつ前記内管に、管軸方向及び管周方
向に多数の円形の開口部を配設し、前記弁棒内管の両端
から冷却媒体を導入して前記の内管の円形開口部より前
記外管内壁に噴出,衝突されるようにしたことにある。
Further, a fourth feature of the butterfly valve according to the present invention is that the pipe shaft diameter of the inner pipe is made larger at the center of the valve body and gradually smaller toward the outer peripheral side of the valve body, thereby reducing the inner diameter. The cross-sectional area of the annular flow path formed by the pipe axis of the pipe and the inner wall of the inner pipe is formed by changing the cross-sectional area in the axial direction, and the inner pipe has a large number of circular openings in the pipe axis direction and the pipe circumferential direction. The cooling medium is introduced from both ends of the valve stem inner pipe so that the cooling medium is ejected from the circular opening of the inner pipe and collides with the inner wall of the outer pipe.

【0012】更にまた、前記弁棒内管の内壁に配設する
円形開口部の開口軸角度は、弁体中心側でほぼ直角に
し、弁体外周側に向かって漸次鋭角に変化させるように
形成してもよい。
Furthermore, the opening axis angle of the circular opening provided on the inner wall of the valve stem inner pipe is formed to be substantially right at the center of the valve body and to be gradually increased toward the outer periphery of the valve body. May be.

【0013】更にまた、前記冷却媒体は、前記環状流路
の弁体中心側から弁体外周側に排出されるようにしても
よい。
Further, the cooling medium may be discharged from the center of the valve body to the outer periphery of the valve body in the annular flow path.

【0014】更にまた、前記弁体外周側に排出された冷
却媒体は、加圧流動層複合発電プラントの排熱回収給水
加熱器に回収するようにしてもよい。
Further, the cooling medium discharged to the outer peripheral side of the valve body may be recovered to a waste heat recovery / feed water heater of the pressurized fluidized bed combined cycle power plant.

【0015】更にまた、前記弁体外周側に排出された冷
却媒体の温度を検出し、この検出温度を用いて該冷却媒
体出口温度が規定の温度範囲に入るように冷却媒体量を
制御する手段を設けてもよい。
Further, means for detecting the temperature of the cooling medium discharged to the outer peripheral side of the valve body and controlling the amount of the cooling medium using the detected temperature so that the cooling medium outlet temperature falls within a specified temperature range. May be provided.

【0016】[0016]

【作用】本発明は、上記の手段を講じることによって冷
却性能が高い弁棒冷却方式を提供し、高温バタフライ弁
の信頼性の向上と発電プラントの高効率化に寄与でき
る。すなわち、単に弁棒内部の中空室の開口部から冷却
媒体を噴射して弁棒外管の内壁を冷却するだけでは、冷
却媒体の噴出量を軸方向に均一化することが難しいが、
本発明のように弁棒内管に設けた開口部の軸方向ピッチ
を、弁体の外周部から中心部に向かって密になるように
配列することによって冷却媒体の排出量すなわちインピ
ンジ速度を均一化でき、これによって弁棒外管の内壁を
ほぼ一様に冷却することが可能である。
The present invention provides a valve cooling system having high cooling performance by taking the above measures, and can contribute to the improvement of the reliability of the high-temperature butterfly valve and the efficiency of the power plant. In other words, it is difficult to equalize the amount of the cooling medium jetted in the axial direction by simply injecting the cooling medium from the opening of the hollow chamber inside the valve stem to cool the inner wall of the valve stem outer tube.
The discharge amount of the cooling medium, that is, the impingement speed is made uniform by arranging the axial pitches of the openings provided in the valve stem inner pipe so as to be denser from the outer peripheral portion toward the central portion as in the present invention. This makes it possible to cool the inner wall of the valve stem outer tube almost uniformly.

【0017】さらに、弁棒外管の内壁面に乱流促進体を
付設すると、噴出後の冷却媒体が環状流路の外管をリタ
ーンする過程で乱流促進効果が作用して冷却媒体の熱伝
達がさらに向上する。したがって、本発明の手段では、
インピンジ冷却と乱流促進による重畳効果が効果的に作
用して弁棒をより効率よく冷却することができる。
Further, when a turbulence promoting member is provided on the inner wall surface of the outer stem of the valve stem, a turbulent flow promoting effect acts in a process in which the cooling medium after jetting returns to the outer pipe of the annular flow passage, and the heat of the cooling medium is increased. Communication is further improved. Therefore, in the means of the present invention,
The superimposition effect of the impingement cooling and the promotion of the turbulent flow effectively acts, so that the valve stem can be cooled more efficiently.

【0018】また、弁棒外管の外壁と弁体の内壁間に一
定の隙間を有する空気の隔離層を設けることによって、
該隔離層が断熱作用をもたらし弁体から弁棒への熱伝導
を抑制でき、冷却媒体の冷却効果をより一層高めること
が可能である。
Further, by providing an air separation layer having a certain gap between the outer wall of the valve stem outer tube and the inner wall of the valve body,
The isolation layer provides a heat insulating effect, can suppress heat conduction from the valve body to the valve stem, and can further enhance the cooling effect of the cooling medium.

【0019】一方、弁棒内管に軸径が漸次変化する管軸
を設け、内管を流れる冷却媒体の流路面積が弁中心部で
大きく、弁外周部で小さくなるように配設することによ
って、弁外周部から中心部に向かって冷却媒体の圧力が
上昇し、弁棒内管の開口部が軸方向に同一ピッチに配列
されていても、開口部からの冷却媒体の噴出量を軸方向
に制御することができ、弁棒外管の内壁を軸方向に一様
なインピンジ冷却が可能である。
On the other hand, the inner pipe of the valve stem is provided with a pipe shaft whose diameter gradually changes, and the cooling medium flowing through the inner pipe is arranged so that the flow passage area is large at the center of the valve and small at the outer periphery of the valve. As a result, the pressure of the cooling medium increases from the outer periphery of the valve toward the center, and even if the openings of the inner pipe of the valve stem are arranged at the same pitch in the axial direction, the amount of the cooling medium ejected from the openings is controlled by the axis. In this manner, the impingement cooling can be uniformly performed in the axial direction on the inner wall of the valve stem outer tube.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明を適用した高温バタフライ
弁の一実施例である。
FIG. 1 shows an embodiment of a high-temperature butterfly valve to which the present invention is applied.

【0022】バタフライ弁の弁体24の内部に弁棒26
が収納され、前記の弁棒26は外管25と内管27及び
弁体中心部の仕切板30から構成され、該内管27は中
央の仕切板30を対称として管軸方向及び管周方向に多
数の円形開口部28a,28b,28c…と29a,29
b,29c…が配設されており、該円形開口部28a,
28b,28c…の開口面積はほぼ同一である。
A valve stem 26 is provided inside the valve body 24 of the butterfly valve.
The valve stem 26 is composed of an outer tube 25, an inner tube 27, and a partition plate 30 at the center of the valve body. And a large number of circular openings 28a, 28b, 28c.
b, 29c... are provided, and the circular openings 28a,
The opening areas of 28b, 28c ... are almost the same.

【0023】しかし、内管27に配設する円形開口部の
軸方向ピッチは、図6に詳述したように弁体中心部、即
ち仕切板30に近づくほど密に、仕切板30から離れる
ほど粗に配列する。この理由については、後で詳しく説
明する。一方、環状流路を有する弁棒の外管25の内壁
面には、仕切板30を対称にして乱流促進体の機能を有
する突起体34a,34b,34c…及び35a,35
b,35c…を付設する。該突起体35a,35b,3
5c…は、前記の内管27の円形開口部28a,28
b,28c…の軸方向ピッチの中間に配設する。
However, the axial pitch of the circular openings provided in the inner tube 27 is, as described in detail in FIG. Arrange coarsely. The reason will be described later in detail. On the other hand, on the inner wall surface of the outer pipe 25 of the valve stem having the annular flow path, the projections 34a, 34b, 34c,...
b, 35c ... are attached. The projections 35a, 35b, 3
5c are circular openings 28a, 28 of the inner tube 27.
are arranged in the middle of the axial pitches of b, 28c.

【0024】弁棒の冷却媒体は、弁棒26の両端から矢
印31a,31bのごとく内管27に導入され、前記の
円形開口部28,29から外管25の内壁面に向かって
噴出し、該内壁面を冷却媒体の衝突噴流によって冷却す
る、いわゆるインピンジメント冷却を行う。しかし、前
記の円形開口部28,29が軸方向に等ピッチで配列さ
れた場合、我々の実験によれば図7に示したように、外
管25の内壁面の温度T0 は、弁体の中心側で高く弁体
の外周側で低くなり、軸方向にかなり不均一な温度分布
になる。これに伴って、冷却媒体の熱伝達率α0 は、弁
体の中心側で低く弁体の外周側で高くなる。この結果
は、内管27の円形開口部28,29によるインピンジ
冷却は、弁棒の熱応力,冷却性能の一様化を考慮した上
で、冷却構造を選定すべきであることを示している。
The cooling medium of the valve stem is introduced into the inner pipe 27 from both ends of the valve stem 26 as shown by arrows 31a and 31b, and is jetted from the circular openings 28 and 29 toward the inner wall surface of the outer pipe 25. The so-called impingement cooling, in which the inner wall surface is cooled by a collision jet of a cooling medium, is performed. However, if the circular opening 28, 29 are arranged at equal pitches in the axial direction, according to our experiments, as shown in FIG. 7, the temperature T 0 of the inner wall surface of the outer tube 25, the valve body The temperature is high on the center side and low on the outer peripheral side of the valve body, and the temperature distribution becomes considerably uneven in the axial direction. Accordingly, the heat transfer coefficient α 0 of the cooling medium decreases at the center of the valve body and increases at the outer periphery of the valve body. This result indicates that the cooling structure should be selected in consideration of the thermal stress of the valve stem and the uniform cooling performance in the impingement cooling by the circular openings 28 and 29 of the inner pipe 27. .

【0025】したがって、本発明は前述したように弁体
中心部、即ち仕切板30に近づくほど密に、仕切板30
から離れるほど粗に配列する冷却構造を提案する。本冷
却構造は、弁体中心側に向かうほど円形開口部28,2
9から噴出する冷却媒体量、すなわちインピンジ流速を
増加することが可能である。これによって、図7に付記
したように外管25の内壁面の温度T1 及び熱伝達率α
1 を軸方向に一様化でき、弁棒の熱応力や冷却性能の不
均一化を回避できる。
Therefore, as described above, according to the present invention, the closer to the center of the valve element, that is, the closer to the partition plate 30, the closer the partition plate 30 is.
We propose a cooling structure that is arranged more coarsely as the distance from the cooling system increases. In the present cooling structure, the circular openings 28, 2 become closer to the center of the valve body.
It is possible to increase the amount of the cooling medium ejected from the nozzle 9, that is, the impingement flow velocity. As a result, as shown in FIG. 7, the temperature T 1 and the heat transfer coefficient α of the inner wall surface of the outer tube 25 are increased.
1 can be made uniform in the axial direction, and unevenness in the thermal stress and cooling performance of the valve stem can be avoided.

【0026】さらに、外管25の内壁面に付設した突起
体34,35は、前記の外管内壁面に衝突した後の冷却
媒体の流れに、渦流などの乱流を促進する機能が作用す
るために、前述の衝突噴流によるインピンジ冷却効果に
加え、さらに乱流強制対流による冷却効果が付加され、
弁棒の冷却性能が一層高くなる。
Further, the projections 34 and 35 attached to the inner wall surface of the outer tube 25 have a function of promoting a turbulent flow such as a vortex flow on the flow of the cooling medium after colliding with the inner wall surface of the outer tube. In addition to the impingement cooling effect by the impinging jet described above, a cooling effect by turbulent forced convection is added,
The cooling performance of the valve stem is further improved.

【0027】図8から図11は、本発明の応用実施例,
変形実施例を示すものである。
FIGS. 8 to 11 show application examples of the present invention.
13 shows a modified embodiment.

【0028】図8は本発明の他の実施例であり、弁体2
4の内周部と外管25の外周部とは軸方向に全面で接触
せず、スリット状の隔離層39a,39b…を配設し、
弁体24と弁棒の外管25とは40a,40b…のごと
く軸方向に部分的に接触している場合である。これによ
って、該隔離層39は空気による断熱層を形成し、弁体
24から弁棒の外管25へ熱伝導で伝わる熱流を抑制で
き、弁棒の保護をより確実に行うことができる。
FIG. 8 shows another embodiment of the present invention.
The inner peripheral portion of the outer tube 4 and the outer peripheral portion of the outer tube 25 are not in contact with each other in the entire axial direction, and slit-shaped isolation layers 39a, 39b.
The valve body 24 and the outer tube 25 of the valve stem are in partial contact with each other in the axial direction as indicated by 40a, 40b, and so on. Thereby, the isolation layer 39 forms a heat insulating layer by air, and can suppress the heat flow transmitted by heat conduction from the valve body 24 to the outer pipe 25 of the valve stem, thereby more reliably protecting the valve stem.

【0029】さらに、弁体24と弁棒の外管25が接触
する40a,40b…と対向する弁棒外管25の内壁面
に乱流促進体の機能を有する突起体38a,38b…を
付設して両者の接触部分の冷却性能の向上を図る。
Further, projections 38a, 38b having a turbulence promoting function are provided on the inner wall surface of the valve stem outer tube 25 which faces the valve stem 24 and the valve stem outer tube 25 in contact with the valve stem outer tube 25. Thus, the cooling performance of the contact portion between the two is improved.

【0030】図9は、本発明の更に他の実施例である。FIG. 9 shows still another embodiment of the present invention.

【0031】この実施例は、内管27a及び27bの内
側に管軸41a,41bを付設し、該管軸41の軸径を
弁体の中心側で大きく、弁体の外周側で小さくした場合
の実施例である。これによって、内管27と該管軸41
で形成される環状流路41a,41bの面積を軸方向に
順次変化させることが可能となり、前記の環状流路41
a,41bにおける冷却媒体の圧力は、弁体中心に向か
うほど高くなる。
In this embodiment, pipe shafts 41a and 41b are provided inside the inner pipes 27a and 27b, and the diameter of the pipe shaft 41 is large at the center of the valve body and small at the outer periphery of the valve body. This is an embodiment of the present invention. Thereby, the inner pipe 27 and the pipe shaft 41
It is possible to sequentially change the areas of the annular flow paths 41a and 41b formed in the axial direction.
The pressure of the cooling medium at a and 41b increases toward the center of the valve body.

【0032】したがって、内管27の円形開口部28,
29が軸方向に等ピッチで配列された場合でも、弁体中
心側の円形開口部28c,29cから噴出する冷却媒体
量を増加でき、軸方向の冷却性能の不均一化を防ぐこと
ができる。
Therefore, the circular openings 28,
Even when the fuel cells 29 are arranged at equal pitches in the axial direction, the amount of the cooling medium ejected from the circular openings 28c and 29c on the valve element center side can be increased, and the cooling performance in the axial direction can be prevented from becoming uneven.

【0033】図10は、本発明の更に他の実施例であ
り、内管27に配設する円形開口部の開口軸角度θを弁
体中心側で直角にし、弁体外周側に向かって漸次鋭角に
変化させた場合の実施例である。これによって、外管2
5の内壁面への衝突噴流45a,45b…が環状流路か
ら排出する冷却媒体のクロス流47による偏向を抑制で
き、衝突噴流の冷却性能の劣化を防ぐことが可能であ
る。
FIG. 10 shows still another embodiment of the present invention, in which the opening axis angle θ of the circular opening provided in the inner pipe 27 is made perpendicular at the center of the valve body, and gradually toward the outer periphery of the valve body. This is an embodiment in a case where the angle is changed to an acute angle. Thereby, the outer tube 2
5 can be suppressed from being deflected by the cross flow 47 of the cooling medium discharged from the annular flow path, and the cooling performance of the collision jet can be prevented.

【0034】図11は、本発明の更に他の実施例であ
り、前述の弁棒冷却媒体の加圧流動層発電プラントにお
ける排熱回収法と冷却媒体量の制御法に関する実施例で
ある。弁棒冷却媒体49は、補助圧縮機あるいはブロア
(図示せず)から弁棒16に導入され、その排気冷却媒
体52を弁箱外周部冷却室48に導かれる。さらに、前
記の弁箱外周部冷却室48で弁箱を冷却した後の冷却媒
体56は、排熱回収給水加熱器8に導入されガスタービ
ンからの排気ガス58と混合して蒸気タービンの給水6
0,61を加熱する。したがって、弁棒の冷却によって
温度上昇した冷却媒体の排熱を有効に回収することが可
能となって、加圧流動層発電プラントなど適用プラント
の熱効率向上に寄与することができる。一方、冷却媒体
量は弁棒冷却後の冷却媒体52の温度を温度センサーに
よって検出し、上記の温度が規定の温度範囲(すなわち
目標とする冷却性能が達成できる温度レベル)に入るよ
うに、冷却媒体流量調節弁50の開度を調整して、冷却
媒体量を制御する。これによって、冷却媒体量の適性化
と効果的な弁棒冷却を行うことが可能となる。
FIG. 11 shows still another embodiment of the present invention, which relates to a method of recovering exhaust heat and a method of controlling the amount of cooling medium in a pressurized fluidized-bed power plant using a valve rod cooling medium. The valve stem cooling medium 49 is introduced into the valve stem 16 from an auxiliary compressor or a blower (not shown), and the exhaust cooling medium 52 is guided to the valve box outer peripheral part cooling chamber 48. Further, the cooling medium 56 after cooling the valve box in the valve box outer peripheral cooling chamber 48 is introduced into the exhaust heat recovery feed water heater 8 and mixed with the exhaust gas 58 from the gas turbine to supply water 6 for the steam turbine.
Heat 0,61. Therefore, the exhaust heat of the cooling medium whose temperature has increased due to the cooling of the valve stem can be effectively recovered, which can contribute to the improvement of the thermal efficiency of an applied plant such as a pressurized fluidized-bed power plant. On the other hand, the amount of the cooling medium is detected by a temperature sensor of the temperature of the cooling medium 52 after cooling the valve stem, and the cooling medium is cooled so that the above-mentioned temperature falls within a specified temperature range (that is, a temperature level at which a target cooling performance can be achieved). The opening degree of the medium flow control valve 50 is adjusted to control the amount of the cooling medium. This makes it possible to optimize the amount of cooling medium and perform effective valve stem cooling.

【0035】[0035]

【発明の効果】以上説明してきたように、本発明は高温
バタフライ弁の弁棒冷却方式として、より冷却性能の高
い方式を提供することができ、前記の加圧流動層複合発
電プラントなどの新型プラントに適用する高温バタフラ
イ弁の信頼性の向上と高効率化に貢献することができ
る。
As described above, the present invention can provide a cooling system having a higher cooling performance as a valve stem cooling system for a high-temperature butterfly valve. This can contribute to the improvement of the reliability and the efficiency of the high-temperature butterfly valve applied to the plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したバタフライ弁の一実施例。FIG. 1 shows an embodiment of a butterfly valve to which the present invention is applied.

【図2】従来の加圧流動層複合発電プラントの典型例。FIG. 2 is a typical example of a conventional pressurized fluidized bed combined cycle power plant.

【図3】従来の高温バタフライ弁の縦断面図。FIG. 3 is a longitudinal sectional view of a conventional high-temperature butterfly valve.

【図4】図3の側面図。FIG. 4 is a side view of FIG. 3;

【図5】弁材の高温強度特性説明図。FIG. 5 is an explanatory diagram of high-temperature strength characteristics of a valve material.

【図6】本発明の高温バタフライ弁の弁棒冷却の作用説
明図。
FIG. 6 is an explanatory view of the operation of cooling the stem of the high-temperature butterfly valve of the present invention.

【図7】弁棒内の温度分布特性。FIG. 7 shows temperature distribution characteristics in a valve stem.

【図8】本発明の他の実施例の弁棒冷却構造。FIG. 8 shows a valve stem cooling structure according to another embodiment of the present invention.

【図9】本発明の他の実施例の弁棒冷却構造。FIG. 9 is a valve stem cooling structure according to another embodiment of the present invention.

【図10】本発明の他の実施例の弁棒冷却の開口部構
造。
FIG. 10 is an opening structure of a valve stem cooling according to another embodiment of the present invention.

【図11】本発明を適用した冷却媒体回収法及び制御シ
ステム。
FIG. 11 is a cooling medium recovery method and control system to which the present invention is applied.

【符号の説明】[Explanation of symbols]

8…排熱回収給水加熱器、9…高温バタフライ弁、1
5,24…弁体、16,26…弁棒、25…外管、27
…内管、28,29…円形開口部、30…仕切板、32
…冷却媒体の噴流、34,35…乱流促進体付き突起
体、39…空気の隔離層、41…弁棒内管の管軸、48
…弁箱外周冷却室、50…冷却媒体流量調節弁。
8: Waste heat recovery feed water heater, 9: High temperature butterfly valve, 1
5, 24: valve body, 16, 26: valve stem, 25: outer tube, 27
... inner pipe, 28, 29 ... circular opening, 30 ... partition plate, 32
... jet of cooling medium, 34, 35 ... projection with turbulence promoting body, 39 ... air separation layer, 41 ... tube axis of valve stem inner tube, 48
... Valve box outer peripheral cooling chamber, 50... Cooling medium flow control valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久下沼 修一 茨城県日立市幸町三丁目2番2号 株式 会社 日立エンジニアリングサービス内 (56)参考文献 実開 昭53−148331(JP,U) 実開 平3−36170(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16K 1/16 - 1/54 F16K 49/00 F16K 51/00 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shuichi Kukunuma 3-2-2, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi Engineering Services Co., Ltd. (56) References Mikai Sho53-148331 (JP, U) Kaihei 3-36170 (JP, U) (58) Fields studied (Int. Cl. 7 , DB name) F16K 1/16-1/54 F16K 49/00 F16K 51/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁箱の内周に断熱材層を配設し、該断熱材
層の内周に耐熱材料からなる内筒を配設し、前記内筒の
内部に軸心周りに回転して流路を開閉する弁体を有し、
かつ前記弁体と弁箱を貫通して両端が外部に突出する弁
棒を設けたバタフライ弁において、 前記弁棒は、円形流路の内管と環状流路を有する外管で
構成され、前記内管は、管軸方向及び管周方向に多数の
円形の開口部を有するとともに、該円形の開口部を、軸
方向の配列ピッチが弁体中心側で密に、弁体外周側で粗
になるように配設し、前記弁棒内管の両端から冷却媒体
を導入して前記内管の円形開口部より前記外管内壁に噴
出,衝突されるようにしたことを特徴とするバタフライ
弁。
1. A heat insulating material layer is provided on an inner periphery of a valve box, an inner cylinder made of a heat-resistant material is provided on an inner periphery of the heat insulating material layer, and the inner cylinder is rotated around an axis. Having a valve body that opens and closes the flow path,
And in a butterfly valve provided with a valve stem that penetrates the valve body and the valve box and both ends protrude to the outside, the valve stem is configured by an inner pipe having a circular flow path and an outer pipe having an annular flow path, The inner pipe has a number of circular openings in the pipe axis direction and the pipe circumferential direction, and the circular openings are arranged such that the axial arrangement pitch is dense on the valve element center side and coarse on the valve element outer peripheral side. A butterfly valve, wherein a cooling medium is introduced from both ends of the valve stem inner pipe so that the cooling medium is ejected from the circular opening of the inner pipe to the inner wall of the outer pipe to collide with the butterfly valve.
【請求項2】弁箱の内周に断熱材層を配設し、該断熱材
層の内周に耐熱材料からなる内筒を配設し、前記内筒の
内部に軸心周りに回転して流路を開閉する弁体を有し、
かつ前記の弁体と弁箱を貫通して両端が外部に突出する
弁棒を設けたバタフライ弁において、 前記弁棒は、円形流路の内管と環状流路を有する外管で
構成され、前記内管は、管軸方向及び管周方向に多数の
円形の開口部を有するとともに、該円形の開口部を、軸
方向の配列ピッチが弁体中心側で密に、弁体外周側で粗
になるように配設し、さらに前記環状流路を有する外管
の内壁に、軸方向に複数の乱流促進体の機能を有する突
起体を配設し、前記弁棒内管の両端から冷却媒体を導入
して内管の円形開口部より外管内壁に噴出,衝突せしめ
て前記乱流促進体と接触させるようにしたことを特徴と
するバタフライ弁。
2. A heat insulating material layer is disposed on the inner periphery of the valve box, an inner cylinder made of a heat-resistant material is disposed on the inner periphery of the heat insulating layer, and the inner cylinder is rotated around an axis. Having a valve body that opens and closes the flow path,
And in a butterfly valve provided with a valve stem that penetrates the valve body and the valve box and both ends protrude to the outside, the valve stem is configured by an inner pipe having a circular flow path and an outer pipe having an annular flow path, The inner pipe has a number of circular openings in the pipe axis direction and the pipe circumferential direction, and the circular openings are arranged such that the axial arrangement pitch is dense at the valve element center side and rough at the valve element outer peripheral side. And a plurality of projections having the function of a plurality of turbulence promoters in the axial direction are disposed on the inner wall of the outer pipe having the annular flow path, and cooling is performed from both ends of the valve stem inner pipe. A butterfly valve, wherein a medium is introduced, and is ejected from the circular opening of the inner tube to the inner wall of the outer tube so as to collide with the medium and come into contact with the turbulence promoter.
【請求項3】弁箱の内周に断熱材層を配設し、該断熱材
層の内周に耐熱材料からなる内筒を配設し、前記内筒の
内部に軸心周りに回転して流路を開閉する弁体を有し、
かつ前記の弁体と弁箱を貫通して両端が外部に突出する
弁棒を設けた高温バタフライ弁において、 前記弁棒は、円形流路の内管と環状流路を有する外管で
構成され、該内管は、管軸方向及び管周方向に多数の円
形の開口部を有するとともに、かつ軸方向配列ピッチが
弁体中心側で密に、弁体外周側で粗になるように配設
し、更に前記環状流路を有する外管の外壁と弁体の内壁
間に一定の隙間を有する空気の隔離層を設けるととも
に、該弁体と弁棒外管が軸方向に接触する外管内壁部に
乱流促進体の機能を有する突起体を配設し、前記弁棒内
管の両端から冷却媒体を導入して内管の円形開口部より
外管内壁に噴出,衝突せしめて前記乱流促進体と接触さ
せるようにしたことを特徴とするバタフライ弁。
3. A heat insulating material layer is disposed on the inner periphery of the valve box, an inner cylinder made of a heat-resistant material is disposed on the inner periphery of the heat insulating layer, and the inner cylinder is rotated around an axis. Having a valve body that opens and closes the flow path,
And in the high-temperature butterfly valve provided with a valve stem that penetrates the valve body and the valve box and both ends protrude to the outside, the valve stem includes an inner pipe having a circular flow path and an outer pipe having an annular flow path. The inner pipe has a large number of circular openings in the pipe axial direction and the pipe circumferential direction, and is arranged so that the axial arrangement pitch is dense on the valve body center side and coarse on the valve body outer peripheral side. Further, an air separation layer having a certain gap is provided between the outer wall of the outer tube having the annular flow path and the inner wall of the valve body, and the inner wall of the outer tube in which the valve body and the valve stem outer tube are in axial contact with each other. A protrusion having the function of a turbulence promoter is disposed in the portion, and a cooling medium is introduced from both ends of the valve stem inner pipe, and is ejected from the circular opening of the inner pipe to the inner wall of the outer pipe to collide with the turbulent flow. A butterfly valve, wherein the butterfly valve is brought into contact with an accelerator.
【請求項4】弁箱の内周に断熱材層を配設し、該断熱材
層の内周に耐熱材料からなる内筒を配設し、前記内筒の
内部に軸心周りに回転して流路を開閉する弁体を有し、
かつ前記の弁体と弁箱を貫通して両端が外部に突出する
弁棒を設けた高温バタフライ弁において、 前記弁棒は、環状流路の内部に管軸を有する内管と二重
環状流路を有する外管で構成され、該内管の管軸径は、
弁体の中心部が大きく、弁体の外周部側に漸次小さくし
て、該内管の管軸と内管の内壁で構成される環状流路の
断面積を軸方向に変化させて形成し、かつ前記内管に、
管軸方向及び管周方向に多数の円形の開口部を配設し、
前記弁棒内管の両端から冷却媒体を導入して前記の内管
の円形開口部より前記外管内壁に噴出,衝突されるよう
にしたことを特徴とするバタフライ弁。
4. A heat insulating material layer is provided on the inner periphery of the valve box, an inner cylinder made of a heat-resistant material is provided on the inner periphery of the heat insulating material layer, and the inner cylinder is rotated around an axis. Having a valve body that opens and closes the flow path,
And a high-temperature butterfly valve provided with a valve stem penetrating the valve body and the valve box and projecting outward at both ends, wherein the valve stem includes an inner pipe having a pipe shaft inside the annular flow path and a double annular flow. The outer tube having a passage, the inner tube diameter of the inner tube,
The central portion of the valve body is large, and is gradually reduced toward the outer peripheral side of the valve body, and is formed by changing the cross-sectional area of the annular flow path formed by the pipe axis of the inner pipe and the inner wall of the inner pipe in the axial direction. , And in the inner tube,
Arrange a large number of circular openings in the pipe axis direction and pipe circumferential direction,
A butterfly valve, wherein a cooling medium is introduced from both ends of the valve stem inner pipe so as to be ejected from the circular opening of the inner pipe to the inner wall of the outer pipe to collide therewith.
【請求項5】請求項1乃至4のいずれかに記載のバタフ
ライ弁において、前記弁棒内管の内壁に配設する円形開
口部の開口軸角度は、弁体中心側でほぼ直角にし、弁体
外周側に向かって漸次鋭角に変化させるように形成した
ことを特徴とするバタフライ弁。
5. The butterfly valve according to claim 1, wherein an opening axis angle of a circular opening provided on an inner wall of the valve stem inner pipe is substantially perpendicular to a center of the valve body. A butterfly valve formed so as to gradually change its acute angle toward a body outer peripheral side.
【請求項6】請求項1乃至5のいずれかに記載のバタフ
ライ弁において、前記冷却媒体は、前記環状流路の弁体
中心側から弁体外周側に排出されるようにしたことを特
徴とするバタフライ弁。
6. The butterfly valve according to claim 1, wherein the cooling medium is discharged from a center of the valve body of the annular flow path to an outer peripheral side of the valve body. Butterfly valve.
【請求項7】請求項6に記載のバタフライ弁において、
前記弁体外周側に排出された冷却媒体は、加圧流動層複
合発電プラントの排熱回収給水加熱器に回収するように
したことを特徴とするバタフライ弁。
7. The butterfly valve according to claim 6, wherein
The butterfly valve is characterized in that the cooling medium discharged to the outer peripheral side of the valve body is collected in an exhaust heat recovery / feed water heater of the pressurized fluidized bed combined cycle power plant.
【請求項8】請求項1乃至7のいずれかに記載のバタフ
ライ弁において、前記弁体外周側に排出された冷却媒体
の温度を検出し、この検出温度を用いて前記冷却媒体出
口温度が規定の温度範囲に入るように冷却媒体量を制御
する手段を設けたことを特徴とするバタフライ弁。
8. The butterfly valve according to claim 1, wherein a temperature of the cooling medium discharged to an outer peripheral side of the valve body is detected, and the temperature of the cooling medium outlet is defined using the detected temperature. A means for controlling the amount of the cooling medium so as to fall within the temperature range described above.
JP6201730A 1994-08-26 1994-08-26 Butterfly valve Expired - Lifetime JP3048032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201730A JP3048032B2 (en) 1994-08-26 1994-08-26 Butterfly valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201730A JP3048032B2 (en) 1994-08-26 1994-08-26 Butterfly valve

Publications (2)

Publication Number Publication Date
JPH0861519A JPH0861519A (en) 1996-03-08
JP3048032B2 true JP3048032B2 (en) 2000-06-05

Family

ID=16445988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201730A Expired - Lifetime JP3048032B2 (en) 1994-08-26 1994-08-26 Butterfly valve

Country Status (1)

Country Link
JP (1) JP3048032B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861528B2 (en) * 2007-08-21 2011-01-04 General Electric Company Fuel nozzle and diffusion tip therefor
US20110026048A1 (en) 2009-07-31 2011-02-03 Silverbrook Research Pty Ltd Printing system with aerosol collection from both sides of media path
US20110279559A1 (en) * 2010-05-17 2011-11-17 Silverbrook Research Pty Ltd Printing system having pressure control at printhead
US8770711B2 (en) 2010-05-17 2014-07-08 Zamtec Limited Printhead maintenance system having wiper module
CN114508626B (en) * 2022-03-08 2024-03-29 铜陵山海智能制造有限公司 Thermal insulation valve rod and use method thereof

Also Published As

Publication number Publication date
JPH0861519A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP5080076B2 (en) Thermal control of gas turbine engine ring for active clearance control
US4826397A (en) Stator assembly for a gas turbine engine
US4805397A (en) Combustion chamber structure for a turbojet engine
KR100391744B1 (en) Crash Steam Cooling System for Turbine, Turbine Silo Cooling System, Turbine Silo Cooling Method by Steam Crash and Turbine Silo
EP0239020B1 (en) Gas turbine combustion apparatus
CA2266449C (en) Gas turbine airfoil cooling
US4293275A (en) Gas turbine blade cooling structure
US3388888A (en) Cooled turbine nozzle for high temperature turbine
US5351732A (en) Gas turbine engine clearance control
JP2007162698A (en) System and method to exhaust spent cooling air of gas turbine engine active clearance control
JP4185476B2 (en) Device for controlling clearance in a gas turbine
US6082962A (en) Turbine shaft and method for cooling a turbine shaft
JP2015522762A (en) Active gap control system
JP2926694B2 (en) Turbojet engine
US3528751A (en) Cooled vane structure for high temperature turbine
US5127795A (en) Stator having selectively applied thermal conductivity coating
JPH05240064A (en) Integrated steam/air cooling system for gas turbine and method for actuating same
JP2002534627A (en) Recuperator for gas turbine engine
JPH0524337B2 (en)
JP3048032B2 (en) Butterfly valve
JP2006189028A (en) Exhaust gas liner assembly
US8403637B2 (en) Thermal control system for turbines
JPH0373722B2 (en)
WO2002048527A1 (en) Combustor turbine successive dual cooling
JPH06221562A (en) Combustor of gas turbine