JP3047693B2 - Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof - Google Patents

Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Info

Publication number
JP3047693B2
JP3047693B2 JP5202661A JP20266193A JP3047693B2 JP 3047693 B2 JP3047693 B2 JP 3047693B2 JP 5202661 A JP5202661 A JP 5202661A JP 20266193 A JP20266193 A JP 20266193A JP 3047693 B2 JP3047693 B2 JP 3047693B2
Authority
JP
Japan
Prior art keywords
lithium
particles
positive electrode
active material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5202661A
Other languages
Japanese (ja)
Other versions
JPH0737576A (en
Inventor
薫 井上
一広 岡村
純一 山浦
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP5202661A priority Critical patent/JP3047693B2/en
Publication of JPH0737576A publication Critical patent/JPH0737576A/en
Application granted granted Critical
Publication of JP3047693B2 publication Critical patent/JP3047693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にその正極の活物質材料であるリチウム複合酸化物の
改良に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to improvement of a lithium composite oxide which is an active material of the positive electrode.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のホータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。このような点
で非水系二次電池、特にリチウム二次電池は、とりわけ
高電圧、高エネルギー密度を有する電池として期待が大
きい。
2. Description of the Related Art In recent years, electronic devices such as AV devices and personal computers have been rapidly becoming hot and cordless, and there has been a demand for a small, lightweight secondary battery having a high energy density as a power supply for driving these devices. high. From such a viewpoint, non-aqueous secondary batteries, particularly lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】上記の要望を満たす正極活物質材料として
リチウムをインターカレート、デインターカレートする
ことのできる層状化合物、たとえば米国特許第4302
518号明細書に示されているLi(1-x)NiO2(ただ
し0≦x<1)や特開平4−267053号公報に示さ
れているLiMM′O2(ただしM:F e,Co,N
i、M′:Ti,V,Cr,Mn)などリチウムと遷移
金属を主体とする複合酸化物が提案されている。
A layered compound capable of intercalating and deintercalating lithium as a positive electrode active material satisfying the above demand, for example, US Pat.
Li (1-x) NiO 2 (0 ≦ x <1) described in the specification of US Pat. No. 518,518, and LiMM′O 2 (M: Fe, Co , N
(i, M ': Ti, V, Cr, Mn), and composite oxides mainly composed of lithium and a transition metal have been proposed.

【0004】これらの正極活物質、たとえば一般式Li
NiO2で表わされるニッケル 酸リチウムは次のように
して作製されている。
[0004] These positive electrode active materials, for example, the general formula Li
Lithium nickelate represented by NiO 2 is produced as follows.

【0005】原材料の水酸化ニッケル(Ni(OH)2
は所定の濃度の硫酸ニッケルと 水酸化ナトリウムとを
混合し、これらを撹拌することなく中和反応させてこの
ときに沈殿析出するNi(OH)2の塊状物を得る。この
塊状物を乾燥、固化し た後、粉砕してさまざまな粒子
形状を有する不定形のNi(OH)2粒子を得 る。つい
で、このNi(OH)2粒子と水酸化リチウム(LiO
H)とを所定 の混合比に混合し、これらを酸素雰囲気
中で500〜800℃で所定時間熱処理してLiNiO
2を得る。そして、このLiNiO2を所定の粒子径にな
るように粉砕して不定形のLiNiO2粒子を得てい
る。図4にその走査型 電子顕微鏡写真を示した。
Nickel hydroxide (Ni (OH) 2 ) as a raw material
Mixes a predetermined concentration of nickel sulfate and sodium hydroxide, and performs a neutralization reaction without stirring to obtain a mass of Ni (OH) 2 which precipitates at this time. The mass is dried and solidified, and then pulverized to obtain amorphous Ni (OH) 2 particles having various particle shapes. Then, the Ni (OH) 2 particles and lithium hydroxide (LiO
H) at a predetermined mixing ratio, and heat-treat them at 500 to 800 ° C. for a predetermined time in an oxygen atmosphere to obtain LiNiO 2.
Get two . Then, the LiNiO 2 is pulverized to a predetermined particle size to obtain amorphous LiNiO 2 particles. FIG. 4 shows a scanning electron microscope photograph.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ようにして得られるLiNiO2粒子では、次のよ うな
問題が生じていた。
However, the LiNiO 2 particles obtained as described above have the following problems.

【0007】すなわち、水酸化ニッケル(Ni(O
H)2)はニッケルイオンと水酸化物 イオンとが結合し
た層状の化合物であり、この層状構造の層間部分に熱で
溶融したリチウム化合物のリチウムが入り込む反応によ
りニッケル酸リチウム(LiNiO2)が生成される。
このニッケル酸リチウム(LiNiO2)の生成に用い
られていた水酸化ニッケル(Ni(OH)2)のこれまで
の代表的な粒 子構造を図5(A)(B)に示す。
That is, nickel hydroxide (Ni (O
H) 2 ) is a layered compound in which nickel ions and hydroxide ions are bonded, and lithium nickelate (LiNiO 2 ) is generated by a reaction in which lithium of a lithium compound melted by heat enters into an interlayer portion of the layered structure. Is done.
FIGS. 5A and 5B show a typical particle structure of nickel hydroxide (Ni (OH) 2 ) used for producing lithium nickel oxide (LiNiO 2 ).

【0008】図5(A)は、このNi(OH)2粒子の倍
率1000倍の走査型電子顕微 鏡写真(以下、SEM
写真)であり、(B)はその粒子表面の部分拡大写真で
ある。
FIG. 5A is a scanning electron micrograph (hereinafter, SEM) of the Ni (OH) 2 particles at a magnification of 1000 times.
(B) is a partially enlarged photograph of the particle surface.

【0009】図5(A)(B)に示したようにNi(O
H)2粒子は製造条件によって、 その単結晶粒が板状で
規則正しく積層した層状構造になるまで成長しないで、
非常に微細な層状構造をもった単結晶粒がさまざまな方
向に核成長することがある。そして、これらの微細な単
結晶粒の集合によって、さまざまな形を有する不定形の
二次粒子が生成されていた。
As shown in FIGS. 5A and 5B, Ni (O
H) Due to the manufacturing conditions, the 2 grains do not grow until the single crystal grains have a plate-like and regularly laminated layered structure.
Single crystal grains having a very fine layered structure may grow nuclei in various directions. And, by the aggregation of these fine single crystal grains, amorphous secondary particles having various shapes have been generated.

【0010】また、このNi(OH)2の二次粒子では、
単結晶粒がさまざまな方向に成 長するため、単結晶粒
の層状構造面が、前記二次粒子の外側に向かって露出す
ることは少なかった。
[0010] In the Ni (OH) 2 secondary particles,
Since the single crystal grains grow in various directions, the layer structure surface of the single crystal grains was rarely exposed toward the outside of the secondary particles.

【0011】したがって、このNi(OH)2粒子を出発
材料としたLiNiO2粒子では、リチウムがインター
カレート、デインターカレートする層状構造面が粒子の
外側に向かって露出していないので、電池の充放電時
に、正極活物質でリチウムがインターカレート、デイン
ターカレートする反応が効率良く行われなかった。
Therefore, in the LiNiO 2 particles using the Ni (OH) 2 particles as a starting material, the layer structure surface on which lithium is intercalated and deintercalated is not exposed to the outside of the particles, so that the battery During the charging and discharging of, the reaction of intercalating and deintercalating lithium in the positive electrode active material was not efficiently performed.

【0012】したがって、前記のLiNiO2やリチウ
ム複合酸化物であるLiNiM nO2などを正極活物質
に用いた場合には、活物質の層間にインターカレー ト
されるリチウムの量が少なく、容量が低いという問題が
生じていた。
Therefore, when the above-mentioned LiNiO 2 or LiNiMnO 2 which is a lithium composite oxide is used for the positive electrode active material, the amount of lithium intercalated between the layers of the active material is small and the capacity is low. The problem had arisen.

【0013】本発明は、このような課題を解決するもの
であり、複合酸化物におけるリチウムのインターカレー
ト、デインターカレート反応が円滑に進み、高容量で充
放電効率にも優れた非水電解液二次電池およびそのため
の正極活物質を提供するものである。
The present invention has been made to solve the above-mentioned problems, and a non-aqueous solution having a high capacity and excellent charge / discharge efficiency in which a lithium intercalate / deintercalate reaction in a composite oxide proceeds smoothly. It is intended to provide an electrolyte secondary battery and a positive electrode active material therefor.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池は、正極活物質を一
般式LiNiO2で表わされるニッケル酸リチウムまた
はLiNi(1-x)Mnx2(ただし、0<x<0.3)
で表わされるニッケルマンガン酸リチウムとし、その単
結晶粒は、薄片が規則正しく積層した層状構造を有する
板状結晶であって、前記板状の結晶粒が多数集合した二
次粒子の形状は、球状、ほぼ球状あるいは楕円体状であ
るとともに、前記二次粒子の表面部分を構成するほとん
どあるいはすべての板状結晶粒は、その層状構造面を外
側に向けているものである。
In order to solve the above-mentioned problems, a nonaqueous electrolyte secondary battery of the present invention uses a lithium nickelate or LiNi (1-x) represented by the general formula LiNiO 2 as a positive electrode active material. ) Mn x O 2 (however, 0 <x <0.3)
In the lithium nickel manganate represented by, the single crystal grains are plate crystals having a layered structure in which flakes are regularly stacked, and the shape of the secondary particles in which a large number of the plate crystal grains are aggregated is spherical, In addition to being substantially spherical or ellipsoidal, most or all of the plate-like crystal grains constituting the surface portion of the secondary particles have their layered structure faces outward.

【0015】[0015]

【作用】本発明の非水電解液二次電池では、正極活物質
であるLiNiO2または LiNi(1-x)Mnx2(た
だし、0<x<0.3)の単結晶粒は 、規則正しく配
向して積層した板状結晶となっている。
[Action] In a non-aqueous electrolyte secondary battery of the present invention is a positive electrode active material LiNiO 2 or LiNi (1-x) Mn x O 2 ( however, 0 <x <0.3) of the single crystal grains, It is a plate-like crystal that is stacked with regular orientation.

【0016】この板状結晶粒は、これらが集合して二次
粒子を形成した際、その二次粒子の形状が、球状、ほぼ
球状あるいは楕円体状になるように、また前記板状結晶
の層状構造部分が前記二次粒子の外側すなわち表面に向
かって露出するように集合している。
The plate-like crystal grains are formed so that when they are aggregated to form secondary particles, the shape of the secondary particles is spherical, almost spherical or ellipsoidal. The layered structure parts are assembled so as to be exposed to the outside, that is, toward the surface of the secondary particles.

【0017】このように本発明は正極活物質粒子は、リ
チウムがインターカレート、デインターカレートする単
結晶粒子の層状構造部分が規則正しく配向して積層した
板状構造をなしているとともに、前記層状構造部分は単
結晶粒が集合した二次粒子の表面に露出して存在してい
る。このような粒子構造は、活物質にリチウムをインタ
ーカレート、デインターカレートさせる反応を進める上
で極めて有効である。このため、この正極活物質を用い
た電池では、電池の充放電時に正極においてリチウムが
インターカレート、デインターカレートする反応が円滑
に進み、活物質の充放電効率が高まり、電池容量を増大
させることができる。
As described above, according to the present invention, the positive electrode active material particles have a plate-like structure in which layered portions of single crystal particles in which lithium is intercalated and deintercalated are regularly oriented and laminated. The layered structure portion is exposed on the surface of the secondary particles in which the single crystal grains are aggregated. Such a particle structure is extremely effective in promoting a reaction of intercalating and deintercalating lithium into the active material. For this reason, in the battery using this positive electrode active material, the reaction in which lithium intercalates and deintercalates in the positive electrode during charging and discharging of the battery proceeds smoothly, the charge and discharge efficiency of the active material increases, and the battery capacity increases. Can be done.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)正極活物質として一般式Li
NiO2で表わされるニッケル酸リチウムを 用いた場合
について説明する。
Example 1 As a positive electrode active material, a general formula Li was used.
The case where lithium nickel oxide represented by NiO 2 is used will be described.

【0020】最初に、原材料となる水酸化ニッケル(N
i(OH)2)粒子を以下のよう にして作製した。撹拌槽
内に濃度約1Nの硫酸ニッケル水溶液と濃度約1Nの水
酸化ナトリウム水溶液を所定量投入し、これらを撹拌翼
を高速回転させることにより撹拌した。溶液は撹拌状態
でpHを約11に維持して温度を40℃に保った。
First, nickel hydroxide (N
i (OH) 2 ) particles were prepared as follows. Predetermined amounts of an aqueous solution of about 1N nickel sulfate and an aqueous solution of about 1N sodium hydroxide were charged into a stirring tank, and these were stirred by rotating a stirring blade at a high speed. The solution was kept at a temperature of 40 ° C. while stirring, maintaining the pH at about 11.

【0021】この撹拌時に硫酸ニッケルと水酸化ナトリ
ウムとの中和反応で沈殿析出した水酸化ニッケル(Ni
(OH)2)の粒子構造を図1(A)(B)に示す。図1
(A)はNi(OH)2粒子の倍率1000倍のSEM写
真であり、(B)は その一部表面の拡大写真である。
At the time of this stirring, nickel hydroxide (Ni) precipitated by a neutralization reaction between nickel sulfate and sodium hydroxide.
The particle structure of (OH) 2 ) is shown in FIGS. FIG.
(A) is an SEM photograph of Ni (OH) 2 particles at a magnification of 1000, and (B) is an enlarged photograph of a partial surface thereof.

【0022】図1(A)(B)に示したように、このN
i(OH)2粒子は、薄片が多数 積層した板状結晶からな
る単結晶粒が集合して、球状、ほぼ球状あるいは楕円体
状の二次粒子を形成しており、前記二次粒子の表面部分
を構成するほとんどあるいはすべての板状結晶粒は、そ
の槽状構造が臨める面が二次粒子の外側に向かって露出
している。
As shown in FIGS. 1A and 1B, this N
The i (OH) 2 particles are formed by collecting single crystal grains composed of plate-like crystals in which a large number of flakes are stacked to form spherical, substantially spherical or ellipsoidal secondary particles, and the surface of the secondary particles Most or all of the plate-like crystal grains constituting the portion have a surface on which the tank-like structure can be exposed, which is exposed toward the outside of the secondary particles.

【0023】次に、硫酸ニッケルと水酸化ナトリウムと
の反応熟成時間を変化させることによって、Ni(OH)
2の粒子径を制御し、平均粒子径がそれぞれ1,2,5
,10,15,20,25μmのNi(OH)2粒子を作
製した。
Next, by changing the reaction aging time between nickel sulfate and sodium hydroxide, Ni (OH)
The average particle diameter is controlled to 1, 2, 5
, 10, 15, 20, and 25 μm Ni (OH) 2 particles were produced.

【0024】得られた水酸化ニッケル粒子は水洗した
後、デカンテーションにより粒子に残留するアルカリイ
オンを除去した。
After washing the obtained nickel hydroxide particles with water, decantation was performed to remove alkali ions remaining on the particles.

【0025】そして、それぞれの平均粒子径の水酸化ニ
ッケル(Ni(OH)2)粒子と 、水酸化リチウム(Li
OH)とを所定の混合比に混合し、これらを酸素雰囲気
中で750℃で20時間熱処理して本発明のニッケル酸
リチウム(LiNiO2)粒子を得た。本発明のLiN
iO2粒子の構造を図2および図3に示す。図2はLi
NiO2粒子の表面状態の拡大モデル図であり、図3は
その倍率10000倍のSEM写真である。図2および
図3に示したように本発明のLiNiO2粒子は、原材
料であるNi(OH)2粒子の形状を生かした構造をも
ち、薄片が積層した板状結晶からなる単結晶粒1が、球
状、ほぼ球状あるいは楕円体状に集合した二次粒子2で
ある。
Then, nickel hydroxide (Ni (OH) 2 ) particles having respective average particle diameters and lithium hydroxide (Li)
OH) at a predetermined mixing ratio, and heat-treated at 750 ° C. for 20 hours in an oxygen atmosphere to obtain lithium nickelate (LiNiO 2 ) particles of the present invention. LiN of the present invention
The structure of the iO 2 particles is shown in FIGS. FIG. 2 shows Li
FIG. 3 is an enlarged model diagram of the surface state of the NiO 2 particles, and FIG. 3 is a SEM photograph at a magnification of 10,000 times. As shown in FIGS. 2 and 3, the LiNiO 2 particles of the present invention have a structure utilizing the shape of Ni (OH) 2 particles as a raw material, and a single crystal grain 1 composed of a plate-like crystal in which flakes are laminated is used. , Spherical, substantially spherical or elliptical secondary particles 2.

【0026】また、この二次粒子2の表面部分を構成す
るほとんどあるいはすべての板状結晶粒1は、リチウム
がインターカレート、デインターカレートする反応面で
ある層状構造部分が二次粒子の外側に向いて露出してい
る。
Almost or all of the plate-like crystal grains 1 constituting the surface portion of the secondary particles 2 have a layered structure portion, which is a reaction surface where lithium intercalates and deintercalates, of secondary particles. It is exposed to the outside.

【0027】ついで、このようにして得られた平均粒子
径1,2,5,10,15,20,25μmのLiNi
2を用いて試験極を作製し、LiNiO2の容量を測定
した。
Next, the thus obtained LiNi particles having an average particle diameter of 1, 2, 5, 10, 15, 20, 25 μm are obtained.
A test electrode was prepared using O 2, and the capacity of LiNiO 2 was measured.

【0028】なお、試験極3は、ニッケル酸リチウム
(LiNiO2)とアセチレンブ ラック、グラファイト
およびフッ素樹脂系結着剤を重量比100:4:4:7
で混合し、これに所定の有機溶媒を加えてペースト状に
した後、このペーストをアルミニウム箔の両面に塗布し
て作製した。
The test electrode 3 is composed of lithium nickelate (LiNiO 2 ), acetylene black, graphite and a fluororesin binder in a weight ratio of 100: 4: 4: 7.
And a predetermined organic solvent was added to the mixture to form a paste, and then this paste was applied to both surfaces of an aluminum foil to produce a paste.

【0029】図6に示したようにこの試験極3をリチウ
ムからなる対極4および参照極5とともにガラス容器6
内に収納し、炭酸プロピレン、炭酸エチレンの等体積混
合溶媒に過塩素酸リチウムを1モル/lの割合で溶解し
た電解液を用いて簡易セルを構成した。
As shown in FIG. 6, the test electrode 3 is connected to a glass container 6 together with a counter electrode 4 made of lithium and a reference electrode 5.
And a simple cell was constructed using an electrolytic solution in which lithium perchlorate was dissolved in an equal volume mixed solvent of propylene carbonate and ethylene carbonate at a ratio of 1 mol / l.

【0030】そして、この簡易セルを用いて充放電試験
を行った。充放電試験は、前記試験極に対する電流密度
を0.5mA/cm2として定電流で参照極に対し4.
3Vまで充電し、3.0Vまで放電して行った。
Then, a charge / discharge test was performed using this simple cell. In the charge / discharge test, the current density for the test electrode was 0.5 mA / cm 2 , and the current density for the reference electrode was 4.
The test was performed by charging to 3 V and discharging to 3.0 V.

【0031】また、水酸化ニッケル(Ni(OH)2)粒
子として硫酸ニッケルと水酸化 ナトリウムとを撹拌せ
ずに中和反応させ、このときに沈殿析出するNi(OH)
2の塊状物を乾燥、固化および粉砕して得た粉末を用
い、これを水酸化リチウ ム(LiOH)とともに本発
明と同様の条件で熱処理して図4に示したような不定形
のLiNiO2粒子を作製し、これを従来のLiNiO2
粒子とした。そして、このLiNiO2粒子を用いてそ
れ以外は本発明と同様の簡易 セルを構成し、上記と同
様の充放電試験を各50個につき行った。これらの結果
を図7に示す。
In addition, nickel sulfate (Na (OH) 2 ) particles are subjected to a neutralization reaction without stirring with nickel sulfate (Ni (OH) 2 ) particles.
Dried 2 lumps, solidified and ground using a powder obtained, which lithium hydroxide (LiOH) with the present invention and amorphous as shown in FIG. 4 was heat-treated at the same conditions LiNiO 2 Particles were prepared, which were converted to conventional LiNiO 2
Particles. A simple cell similar to that of the present invention was constructed using the LiNiO 2 particles except for the above, and the same charge / discharge test as above was performed for each of 50 cells. These results are shown in FIG.

【0032】図7に示したよう従来のLiNiO2粒子
に対して本発明のLiNiO2粒子では、リチウムがイ
ンターカレート、デインターカレートする結晶の層状構
造部分が、粒子の表面に露出しているため、リチウムの
インターカレート、デインターカレート反応が円滑に進
み、活物質の充放電容量が増大した。特に平均粒子径が
2〜20μmの本発明のLiNiO2粒子では平均15
0mAh/ g以上の高い容量値を示した。図7中、上
下幅は容量のバラツキを示す。
[0032] In LiNiO 2 particles of the present invention over conventional LiNiO 2 particles as shown in FIG. 7, lithium intercalated lamellar structure portion of the de-intercalating crystals exposed on the surface of the particles Therefore, the intercalation and deintercalation reactions of lithium proceeded smoothly, and the charge / discharge capacity of the active material increased. Particularly, in the case of the LiNiO 2 particles of the present invention having an average particle diameter of 2 to 20 μm, the average is 15 μm.
It showed a high capacity value of 0 mAh / g or more. In FIG. 7, the upper and lower widths indicate variations in capacitance.

【0033】(実施例2)正極活物質として一般式Li
Ni0.8Mn0.22で表わされるニ ッケルマンガン酸リ
チウムを用いた場合について説明する。
Example 2 As a positive electrode active material, a general formula Li was used.
The case where lithium nickel manganate represented by Ni 0.8 Mn 0.2 O 2 is used will be described.

【0034】原材料となる水酸化ニッケル(Ni(OH)
2)は実施例1と同様にして作 製し、平均粒子径が1,
2,5,10,15,20,25μmの水酸化ニッケル
粒子を得た。そして、それぞれの平均粒子径の水酸化ニ
ッケル(Ni(OH)2 )粒子に、水酸化リチウム(Li
OH)と炭酸マンガン(MnCO3)と を所定の混合比
に混合し、これらを酸素雰囲気中で750℃で20時間
熱処理して本発明のニッケルマンガン酸リチウム(Li
Ni0.8Mn0.22 )粒子を得た。
Nickel hydroxide (Ni (OH)
2 ) was prepared in the same manner as in Example 1 and had an average particle diameter of 1
Nickel hydroxide particles of 2, 5, 10, 15, 20, 25 μm were obtained. Then, lithium hydroxide (Li) is added to nickel hydroxide (Ni (OH) 2 ) particles having respective average particle diameters.
OH) and manganese carbonate (MnCO 3 ) are mixed at a predetermined mixing ratio, and these are heat-treated at 750 ° C. for 20 hours in an oxygen atmosphere, and then subjected to lithium nickel manganate (Li) of the present invention.
Ni 0.8 Mn 0.2 O 2 ) particles were obtained.

【0035】また、水酸化ニッケル(Ni(OH)2)粒
子として、硫酸ニッケルと水酸 化ナトリウムとを撹拌
せずに中和反応させ、このときに沈殿析出するNi(O
H)2の塊状物を乾燥、固化した後、これを粋砕した粉末
を用い、これを水酸化 リチウム(LiOH)および炭
酸マンガン(MnCO3)とともに本発明と 同様の条件
で熱処理して不定形のLiNi0.8Mn0.22粒子を作
製し、これを従来のLiNi0.8Mn0.22粒子とし
た。
As nickel hydroxide (Ni (OH) 2 ) particles, nickel sulfate and sodium hydroxide are subjected to a neutralization reaction without stirring, and Ni (O) precipitates at this time.
H) The lump of 2 was dried and solidified, and then a powder obtained by crushing the solid was used. The powder was heat-treated together with lithium hydroxide (LiOH) and manganese carbonate (MnCO 3 ) under the same conditions as in the present invention to obtain an amorphous form. LiNi 0.8 Mn 0.2 O 2 particles
And used as conventional LiNi 0.8 Mn 0.2 O 2 particles.

【0036】そして、本発明と従来のLiNi0.8Mn
0.22粒子を用いて実 施例1と同様の試験極および簡
易セルを各50個構成し、実施例1と同様の充放電試験
を行った。この結果を図8に示す。
The present invention and the conventional LiNi 0.8 Mn
Using 50 test electrodes and 50 simple cells similar to those in Example 1 using 0.2 O 2 particles, the same charge / discharge test as in Example 1 was performed. The result is shown in FIG.

【0037】図8に示したように従来のLiNi0.8
0.22粒子に対して 本発明のLiNi0.8Mn0.22
粒子では、リチウムがインターカ レート、デインター
カレートする結晶の層状構造部分が粒子表面に露出して
いるため、リチウムインターカレート、デインターカレ
ート反応が円滑に進み、活物質の充放電容量が大きくな
った。特に平均粒子径が2〜20μmの本発明のLiN
0.8Mn0.22粒子では高い容量値を示した。
As shown in FIG. 8, the conventional LiNi 0.8 M
LiNi 0.8 Mn 0.2 O 2 of the present invention with respect to n 0.2 O 2 particles
In the particles, since the layer structure of the crystal in which lithium intercalates and deintercalates is exposed on the particle surface, the lithium intercalation and deintercalation reactions proceed smoothly, and the charge and discharge capacity of the active material is reduced. It has grown. Particularly, the LiN of the present invention having an average particle diameter of 2 to 20 μm.
The i 0.8 Mn 0.2 O 2 particles showed a high capacity value.

【0038】ついで、一般式LiNi(1-x)Mnx2
表わされるニッケルマ ンガン酸リチウムのxの最適範
囲を、この正極活物質を用いた円筒形電池の充放電サイ
クル寿命特性を評価することによって検討した。
[0038] Then, the optimum range of the general formula LiNi (1-x) Mn x O 2 in represented by Nikkeruma manganese acid lithium x, evaluating the charge-discharge cycle life characteristics of the cylindrical battery using the cathode active material Considered by:

【0039】平均粒子径10μmの本発明のLiNi
(1-x)Mnx2粒子(た だし、xは0,0.1,0.
2,0.3,0.4)とアセチレンブラック、グラファ
イトおよびフッ素樹脂系結着剤とを重量比100:4:
4:7で混合し、これに所定の有機溶媒を加えてペース
ト状にした後、この正極合剤をアルミニウム箔の両面に
塗布し、乾燥後圧延して正極板を作製した。
LiNi of the present invention having an average particle size of 10 μm
(1-x) Mn x O 2 particles (although, x is 0,0.1,0.
2,0.3,0.4) and acetylene black, graphite and a fluororesin binder in a weight ratio of 100: 4:
The mixture was mixed at 4: 7, and a predetermined organic solvent was added to the mixture to form a paste. The positive electrode mixture was applied to both sides of an aluminum foil, dried, and then rolled to prepare a positive electrode plate.

【0040】負極板は、コークスを2700℃程度以上
の高温で焼成した炭素材と、フッ素樹脂系結着剤とを重
量比100:10で混合し、これをカルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にし、このペー
ストを銅箔の両面に塗着し、乾燥後圧延して作製した。
For the negative electrode plate, a carbon material obtained by calcining coke at a high temperature of about 2700 ° C. or more and a fluororesin binder are mixed at a weight ratio of 100: 10, and the mixture is suspended in an aqueous solution of carboxymethylcellulose. The paste was applied to both sides of a copper foil, dried and rolled.

【0041】図9にこれらの正、負極板を用いて構成し
た円筒形電池の縦断面図を示す。電池の構成は帯状の
正、負極板それぞれにリードを取りつけ、ポリプロピレ
ン製のセパレータを介して全体を渦巻き状に巻回し、電
池ケース内に収納した。電解液にはプロピレンカーボネ
ートとエチレンカーボネートとの等容積混合溶媒に、過
塩素酸リチウムを1モル/lの割合で溶解したものを用
い、これを所定量注入し、封口したものを試験電池とし
た。
FIG. 9 is a longitudinal sectional view of a cylindrical battery constituted by using these positive and negative electrode plates. The battery was configured such that leads were attached to strip-shaped positive and negative plates, and the whole was spirally wound via a polypropylene separator, and housed in a battery case. As the electrolyte, a solution prepared by dissolving lithium perchlorate at a ratio of 1 mol / l in an equal volume mixed solvent of propylene carbonate and ethylene carbonate, injecting a predetermined amount of the solution, and sealing the resultant was used as a test battery. .

【0042】図9において、7は耐有機電解液性のステ
ンレス綱板を加工した電池ケース、8は安全弁を設けた
封口板、9は絶縁パッキングを示す。
In FIG. 9, reference numeral 7 denotes a battery case formed by processing a stainless steel plate having resistance to an organic electrolytic solution, 8 denotes a sealing plate provided with a safety valve, and 9 denotes an insulating packing.

【0043】また、正極板10および負極板11はセパ
レータ12を介して渦巻き状に巻回されてケース7内に
収納されている。そして上記正極板10からは正極リー
ド13が引き出されて封口板8に接続され、負極板11
からは負極リード14が引き出されて電池ケース7の底
部に接続されている。
The positive electrode plate 10 and the negative electrode plate 11 are spirally wound via a separator 12 and housed in a case 7. Then, the positive electrode lead 13 is pulled out from the positive electrode plate 10 and connected to the sealing plate 8 to form the negative electrode plate 11.
The negative electrode lead 14 is pulled out from the battery case 7 and connected to the bottom of the battery case 7.

【0044】これらの試験電池を用いて充放電電流10
0mA、充電終止電圧4.1V、充電終止電圧3.0V
の条件下での定電流放電試験を50サイクルまで常温で
行った。
Using these test batteries, a charge / discharge current of 10
0 mA, charge end voltage 4.1 V, charge end voltage 3.0 V
The constant current discharge test under the conditions described above was performed at room temperature up to 50 cycles.

【0045】この結果を図10に示す。図10に示した
ように、LiNi(1-x)Mnx2におけるMnの 置換原
子数xが0.1〜0.3の範囲ではx=0のLiNiO
2に比べてサ イクル寿命を向上させることができる。し
かし、xが0.4になると活物質内でリチウムのインタ
ーカレート、デインターカレート反応に有効な合金相が
減少するため、結果的に活物質の容量が小さくなり、サ
イクル寿命特性が低下した。
FIG. 10 shows the result. As shown in FIG. 10, when the number x of substituted atoms of Mn in LiNi (1-x) Mn x O 2 is in the range of 0.1 to 0.3, Li = 0 (x = 0)
The cycle life can be improved as compared with 2 . However, when x becomes 0.4, the alloy phase effective for the lithium intercalation and deintercalation reactions in the active material decreases, so that the capacity of the active material decreases and the cycle life characteristics deteriorate. did.

【0046】したがって、本発明のLiNi(1-x)Mnx
2のxの範囲は、0 <x<0.3であることが好まし
い。
Accordingly, the LiNi (1-x) Mn x of the present invention
The range of x of O 2 is preferably 0 <x <0.3.

【0047】また、本発明の一般式LiNiO2および
LiNi(1-x)Mnx2(ただし0<x<0.3)で表
わされる正極活物質粒子では、図7および 図8に示し
たように、従来の正極活物質粒子に比べて上下幅で示し
た容量のバラツキが少なかった。
The positive electrode active material particles of the present invention represented by the general formulas LiNiO 2 and LiNi (1-x) Mn x O 2 (where 0 <x <0.3) are shown in FIGS. 7 and 8. As described above, the variation in the capacity indicated by the vertical width was smaller than that of the conventional positive electrode active material particles.

【0048】これは、従来の正極活物質粒子では、単結
晶粒の層状構造の配向性が不均一であり、粒子形状も不
定形で粒子径の制御も難しいのに対して、本発明の正極
活物質粒子では単結晶粒の層状構造の配向性が均一で、
粒子形状や粒子径の制御が容易であることによると考え
られる。
This is because, in the conventional positive electrode active material particles, the orientation of the layered structure of single crystal grains is non-uniform, the particle shape is irregular, and the control of the particle diameter is difficult. In the active material particles, the orientation of the layer structure of single crystal grains is uniform,
It is considered that the control of particle shape and particle diameter is easy.

【0049】なお、本実施例では、リチウム化合物とし
て水酸化リチウムを用いたが、これ以外に硝酸リチウ
ム、炭酸リチウム、酸化リチウムのいずれかであれば同
様の効果が得られる。
In the present embodiment, lithium hydroxide was used as the lithium compound. However, the same effect can be obtained if any of lithium nitrate, lithium carbonate and lithium oxide is used.

【0050】また、マンガン化合物としては炭酸マンガ
ン以外に硝酸マンガン、酸化マンガンのいずれかであれ
ば同様の効果が得られる。
The same effect can be obtained if the manganese compound is manganese nitrate or manganese oxide in addition to manganese carbonate.

【0051】[0051]

【発明の効果】以上のように、本発明の非水電解液二次
電池は、正極活物質を一般式LiNiO2で表わされる
ニッケル酸リチウムまたはLiNi(1-x)Mnx2(た
だし、0<x<0.3)で表わされるニッケルマンガン
酸リチウムと し、その単結晶粒は層状構造をもった板
状結晶であって、この板状結晶粒が多数集合した二次粒
子の形状は、球状、ほぼ球状あるいは楕円体状であると
ともに、二次粒子の表面部分を構成するほとんどあるい
はすべての板状結晶粒は、リチウムがインターカレー
ト、デインターカレートする層状構造面が二次粒子の外
側に向いている。
As it is evident from the foregoing description, the non-aqueous electrolyte secondary battery of the present invention, lithium nickelate or LiNi represented a positive electrode active material by formula LiNiO 2 (1-x) Mn x O 2 ( where 0 <x <0.3), and the single crystal grains thereof are plate-like crystals having a layered structure. In addition to being spherical, almost spherical or ellipsoidal, most or all of the plate-like crystal grains constituting the surface of the secondary particles have lithium-intercalated and de-intercalated layered structure surfaces with secondary particles. Facing outside.

【0052】このため、この正極活物質粒子ではリチウ
ムのインターカレート、デインターカレート反応が極め
て円滑に進み、正極活物質の充放電容量を増大させるこ
とができる。
Therefore, in the positive electrode active material particles, the intercalation and deintercalation reactions of lithium proceed extremely smoothly, and the charge / discharge capacity of the positive electrode active material can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)本発明で用いる水酸化ニッケルの粒子構
造を示す電子顕微鏡写真 (B)同部分拡大写真
1A is an electron micrograph showing the particle structure of nickel hydroxide used in the present invention, and FIG.

【図2】本発明のニッケル酸リチウム粒子の代表的な表
面状態を示す拡大モデル図
FIG. 2 is an enlarged model diagram showing a typical surface state of the lithium nickelate particles of the present invention.

【図3】同ニッケル酸リチウムの粒子構造を示す電子顕
微鏡写真
FIG. 3 is an electron micrograph showing the particle structure of the lithium nickelate.

【図4】従来のニッケル酸リチウムの粒子構造を示す電
子顕微鏡写真
FIG. 4 is an electron micrograph showing the particle structure of a conventional lithium nickelate.

【図5】(A)従来の水酸化ニッケルの粒子構造を示す
電子顕微鏡写真 (B)同部分拡大写真
FIG. 5A is an electron micrograph showing the particle structure of a conventional nickel hydroxide, and FIG.

【図6】本発明で用いた簡易セルの断面図FIG. 6 is a sectional view of a simplified cell used in the present invention.

【図7】本発明と従来のニッケル酸リチウム粒子の平均
粒子径と容量との関係を示す図
FIG. 7 is a diagram showing the relationship between the average particle size and the capacity of the present invention and conventional lithium nickelate particles.

【図8】本発明と従来のニッケルマンガン酸リチウム粒
子の平均粒子径と容量との関係を示す図
FIG. 8 is a diagram showing the relationship between the average particle diameter and the capacity of the present invention and conventional lithium nickel manganate particles.

【図9】本発明で用いた円筒形電池の断面図FIG. 9 is a sectional view of a cylindrical battery used in the present invention.

【図10】本発明のニッケルマンガン酸リチウムLiN
(1-x)Mnx2粒 子のマンガンの置換原子数xと充放
電サイクル寿命特性との関係を示す図
FIG. 10 shows lithium nickel manganate LiN of the present invention.
i (1-x) diagram illustrating the relationship between the Mn x O substituted atoms of manganese 2 grains element x and the charge-discharge cycle life characteristics

【符号の説明】[Explanation of symbols]

1 単結晶粒 2 二次粒子 3 試験極 4 対極 5 参照極 6 ガラス容器 7 電池ケース 8 封口板 9 絶縁パッキング 10 正極板 11 負極板 12 セパレータ 13 正極リード 14 負極リード DESCRIPTION OF SYMBOLS 1 Single crystal grain 2 Secondary particle 3 Test electrode 4 Counter electrode 5 Reference electrode 6 Glass container 7 Battery case 8 Sealing plate 9 Insulating packing 10 Positive electrode plate 11 Negative electrode plate 12 Separator 13 Positive electrode lead 14 Negative electrode lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−267539(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/04 H01M 4/36 - 4/62 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Kobayashi 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-267539 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/02 H01M 4/04 H01M 4/36-4/62 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活物質が一般式LiNi (1-x) Mn x 2
(ただし、0<x<0.3)で表わされるニッケルマン
ガン酸リチウムでありその微小な結晶粒が多数集合し
て球状、ほぼ球状あるいは楕円体状の二次粒子を形成し
ている正極と、リチウム、リチウム合金およびリチウム
をインターカレート、デインターカレートできる炭素材
料のうちのいずれかを用いた負極と、 非水電解液とからなる構成とした非水電解液二次電池。
1. A active material formula LiNi (1-x) Mn x O 2
(However, nickel man represented by 0 <x <0.3)
A lithium cancer acids that fine monocrystal grains are a number set to spherical, a positive electrode forming a substantially spherical or ellipsoidal secondary particles, lithium, lithium alloys and lithium intercalation, deintercalation A non-aqueous electrolyte secondary battery comprising a negative electrode using any of the carbon materials that can be used and a non-aqueous electrolyte.
【請求項2】 二次粒子の平均粒子径は、2〜20μm
である請求項1記載の非水電解液二次電池。
2. The secondary particles have an average particle diameter of 2 to 20 μm.
The non-aqueous electrolyte secondary battery according to claim 1, wherein
【請求項3】 正極と、 リチウム、リチウム合金およびリチウムをインターカレ
ート、デインターカレートできる炭素材料のいずれかを
用いた負極と、 非水電解液とからなり、 前記正極は、活物質が一般式LiNi (1-x) Mn x
2 (ただし、0<x<0.3)で表わされるニッケル
ンガン酸リチウムであり、 その単結晶粒は層状構造を有する板状であって、 前記板状の結晶粒が多数集合した二次粒子の形状は球
状、ほぼ球状あるいは楕円体状であるとともに、その少
なくとも表面部分を構成するほとんどの板状結晶粒はそ
の層状構造面を外側に向けている非水電解液二次電池。
3. A positive electrode, intercalated with lithium, a lithium alloy and lithium.
Carbon material that can be deintercalated
The negative electrode used comprises a non-aqueous electrolyte, and the positive electrode has an active material represented by a general formulaLiNi (1-x) Mn x O
Two (However, 0 <x <0.3)Nickel represented byMa
NganLithium oxide, the single crystal grains of which are plate-like having a layered structure, and the shape of secondary particles in which a large number of the plate-like crystal grains are aggregated is spherical
Shape, almost spherical or ellipsoidal shape,
At least most of the plate-like grains that make up the surface
Non-aqueous electrolyte secondary battery with the layered structure surface facing outward.
【請求項4】 二次粒子の平均粒子径は、2〜20μm
である請求項3記載の非水電解液二次電池。
4. The secondary particles have an average particle size of 2 to 20 μm.
The non-aqueous electrolyte secondary battery according to claim 3, wherein
【請求項5】 ニッケル塩水溶液とアルカリ水溶液との
中和反応により析出する水酸化ニッケルの板状単結晶粒
を、球状、ほぼ球状あるいは楕円体状に集合させて二次
粒子を形成する工程と、 前記水酸化ニッケルの二次粒子と、 炭酸マンガン、硝酸マンガン、酸化マンガンよりなる群
から選ばれたいずれかのマンガン化合物と、水酸化リチ
ウム、硝酸リチウム、炭酸リチウムおよび酸化リチウム
よりなる群から選ばれたいずれかのリチウム化合物とを
酸素雰囲気下で熱処理してニッケル酸リチウムを得る工
程とからなる非水電解液二次電池の正極 活物質の製造
法。
5. The method of claim 1 wherein the nickel salt aqueous solution and the alkali aqueous solution
Plate-like single crystal grains of nickel hydroxide precipitated by neutralization reaction
Into a spherical, nearly spherical or ellipsoidal shape
A step of forming particles, secondary particles of the nickel hydroxide, and a group consisting of manganese carbonate, manganese nitrate, and manganese oxide
A manganese compound selected from
, Lithium nitrate, lithium carbonate and lithium oxide
Any lithium compound selected from the group consisting of
Heat treatment under oxygen atmosphere to obtain lithium nickelate
Preparation of the positive electrode active material of the nonaqueous electrolyte secondary battery comprising a degree
Law.
【請求項6】 マンガン化合物は炭酸マンガンであり、
リチウム化合物は水酸化リチウムである請求項5記載の
非水電解液二次電池の正極活物質の製造法。
6. The manganese compound is manganese carbonate,
The lithium compound according to claim 5, wherein the lithium compound is lithium hydroxide.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP5202661A 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof Expired - Lifetime JP3047693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202661A JP3047693B2 (en) 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202661A JP3047693B2 (en) 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Publications (2)

Publication Number Publication Date
JPH0737576A JPH0737576A (en) 1995-02-07
JP3047693B2 true JP3047693B2 (en) 2000-05-29

Family

ID=16461053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202661A Expired - Lifetime JP3047693B2 (en) 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Country Status (1)

Country Link
JP (1) JP3047693B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849343A1 (en) 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
JP2001167762A (en) * 1999-12-08 2001-06-22 Tohoku Techno Arch Co Ltd Lithium ion battery
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
JP4986098B2 (en) * 2001-03-15 2012-07-25 日立金属株式会社 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR100489509B1 (en) 2001-03-22 2005-05-16 마쯔시다덴기산교 가부시키가이샤 Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP4510331B2 (en) 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004265806A (en) * 2003-03-04 2004-09-24 Canon Inc Lithium metal composite oxide particle, manufacturing method thereof, electrode structure containing the composite oxide, manufacturing method of the electrode structure and lithium secondary battery having the electrode structure
JP4740409B2 (en) 2003-06-11 2011-08-03 株式会社日立製作所 Lithium secondary battery for electric vehicle or hybrid vehicle
KR100616475B1 (en) * 2005-05-07 2006-08-29 한국과학기술연구원 Precursor for cathode active materials for lithium secondary battery, cathode active materials and lithium secondary battery using the same, and preparation method thereof
US7513402B2 (en) 2005-10-19 2009-04-07 Makita Corporation Power tool
JP2012003880A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Plate-like particle for positive electrode active material of lithium secondary battery and film of the same, as well as lithium secondary battery
WO2012137391A1 (en) * 2011-04-07 2012-10-11 日本碍子株式会社 Cathode active material for lithium secondary battery and lithium secondary battery
JP5634362B2 (en) * 2011-09-15 2014-12-03 本田技研工業株式会社 Electrode active material and method for producing the same
JP6728618B2 (en) * 2015-10-07 2020-07-22 セイコーエプソン株式会社 Method for manufacturing battery electrode
CN115215384B (en) * 2021-04-20 2024-05-10 华友新能源科技(衢州)有限公司 High-nickel ternary precursor and preparation method thereof
WO2023068229A1 (en) 2021-10-22 2023-04-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2023074427A1 (en) 2021-10-28 2023-05-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023120493A1 (en) * 2021-12-21 2023-06-29 パナソニックエナジ-株式会社 Positive electrode for secondary batteries, and secondary battery

Also Published As

Publication number Publication date
JPH0737576A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP3997702B2 (en) Nonaqueous electrolyte secondary battery
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4491946B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP2004087299A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3532016B2 (en) Organic electrolyte secondary battery
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3446639B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP3996554B2 (en) Lithium secondary battery
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPH06267539A (en) Lithium secondary battery
JP4491947B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP2855912B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13