JP3039308B2 - Refractory thickness measurement method using elastic waves - Google Patents

Refractory thickness measurement method using elastic waves

Info

Publication number
JP3039308B2
JP3039308B2 JP7027791A JP2779195A JP3039308B2 JP 3039308 B2 JP3039308 B2 JP 3039308B2 JP 7027791 A JP7027791 A JP 7027791A JP 2779195 A JP2779195 A JP 2779195A JP 3039308 B2 JP3039308 B2 JP 3039308B2
Authority
JP
Japan
Prior art keywords
refractory
vibration
thickness
vibration response
frequency spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7027791A
Other languages
Japanese (ja)
Other versions
JPH08219751A (en
Inventor
正樹 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7027791A priority Critical patent/JP3039308B2/en
Publication of JPH08219751A publication Critical patent/JPH08219751A/en
Application granted granted Critical
Publication of JP3039308B2 publication Critical patent/JP3039308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、工業用炉、特に製鉄用
高炉の鉄皮内側にライニングされた耐火レンガ等の厚み
を弾性波を用いて鉄皮表面から高精度に測定する厚み測
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thickness measuring method for measuring the thickness of a refractory brick or the like lined inside a steel furnace of an industrial furnace, particularly a steelmaking blast furnace, from the surface of the steel shell using an elastic wave with high accuracy. About.

【0002】[0002]

【従来の技術】例えば、製鉄用の高炉は、その外郭は鉄
皮で構成され、その内側には耐火レンガがライニングさ
れている。高炉炉底部の耐火レンガは溶銑に常にさらさ
れているため、高炉操業にともない徐々に損耗してゆ
き、火入れ時に2000mm以上あった耐火物の厚みが十
数年後の吹き止め時には300mm程度にまで減少してい
る場合がある。耐火物の残存厚みの推移を高炉操業中に
精度良く測定し、高炉の余命を的確に推定することは、
溶銑による鉄皮の溶損あるいは溶銑の流出等の重大事故
防止および高炉資産の有効活用のために非常に重要であ
る。
2. Description of the Related Art For example, a blast furnace for steelmaking has an outer shell made of a steel shell and a refractory brick lining inside. Since the refractory brick at the bottom of the blast furnace is constantly exposed to hot metal, it gradually wears out with the operation of the blast furnace. May be decreasing. It is necessary to accurately measure the change in the remaining thickness of refractory during blast furnace operation and accurately estimate the life expectancy of the blast furnace.
This is very important for preventing serious accidents such as erosion of iron shell or outflow of hot metal by hot metal and effective utilization of blast furnace assets.

【0003】従来、高炉の耐火レンガの残存厚みを測定
する方法は数多く提案されてきている。その内主要な方
法を次に例示する。
Hitherto, many methods have been proposed for measuring the remaining thickness of refractory bricks in blast furnaces. The main methods are exemplified below.

【0004】(1)最も簡単な方法としては、高炉の鉄
皮表面をハンマー等にて打撃し、この打撃によって発生
した弾性波が耐火物中を伝搬し、炉心側表面で反射をお
こし、再び鉄皮表面まで戻ってくる往復時間を測定し、
予め求めてある耐火物中の弾性波の伝搬速度と往復時間
とから耐火レンガの厚みを測定する方法が挙げられる。
(1) The simplest method is to strike the surface of the steel shell of the blast furnace with a hammer or the like, and the elastic waves generated by the strike propagate through the refractory, reflect on the surface of the core side, and again. Measure the round trip time to return to the steel surface,
There is a method of measuring the thickness of the refractory brick from the propagation speed of the elastic wave in the refractory and the reciprocation time obtained in advance.

【0005】(2)特開昭49−50961号公報に
は、可聴周波の正弦波加振力を周波数を変えて被測定レ
ンガに印可し、その機械インピーダンスを測定し、その
機械インピーダンスのピーク値からレンガ厚みを測定す
る、工業炉用レンガ厚みを炉外より非破壊的に測定する
方法が提案されている。
(2) Japanese Patent Application Laid-Open No. 49-50961 discloses that a sine wave exciting force of an audio frequency is applied to a brick to be measured by changing the frequency, the mechanical impedance is measured, and the peak value of the mechanical impedance is measured. A method for non-destructively measuring the thickness of a brick for an industrial furnace from outside the furnace has been proposed.

【0006】(3)特開昭58−27002号公報に
は、鉄皮の一部に開孔を形成し、金属棒を耐火物に直結
させ、金属棒の一端を打撃することで効率よく耐火物中
に弾性波を発生させ、弾性波が耐火物中の往復に要する
時間を測定し、往復時間と耐火物中の弾性波の伝搬速度
から耐火物の厚みを測定する方法が提案されている。
(3) Japanese Patent Application Laid-Open No. 58-27002 discloses that an opening is formed in a part of a steel shell, a metal rod is directly connected to a refractory, and one end of the metal rod is hit efficiently to refractory fire. A method has been proposed in which an elastic wave is generated in an object, the time required for the elastic wave to reciprocate in the refractory is measured, and the thickness of the refractory is measured from the round-trip time and the propagation speed of the elastic wave in the refractory. .

【0007】(4)炉壁の厚さ方向に埋設した相互に絶
縁された金属同軸線または金属平行線に電位パルスを印
可し、電位パルスの金属導線の先端からの反射時間を測
定することで金属導線長さおよび炉壁厚さを求めるTD
R(Time Domain Response)法と呼ばれる方法も提案され
ている。
(4) A potential pulse is applied to mutually insulated metal coaxial wires or parallel metal wires embedded in the thickness direction of the furnace wall, and the reflection time of the potential pulse from the tip of the metal conductor is measured. TD for metal wire length and furnace wall thickness
A method called an R (Time Domain Response) method has also been proposed.

【0008】[0008]

【発明が解決しようとする課題】前述(1)の反射波を
用いる方法は装置構成および測定データより耐火レンガ
厚みを算出する処理内容が極めて簡単であり、任意の場
所にて測定可能という利点を持っているが、次の問題点
のため現在のところ実用化に至っていない。
The method (1) using a reflected wave has the advantage that the processing contents for calculating the thickness of the refractory brick from the apparatus configuration and the measurement data are extremely simple, and the measurement can be performed at an arbitrary place. However, it has not been put into practical use at present because of the following problems.

【0009】打撃による振動エネルギーの殆どが鉄皮
自身の振動エネルギーとして消費され、耐火レンガ中を
伝搬する弾性波に変換される効率が極めて低い。このた
め、耐火レンガ内を伝搬して反射してくる弾性波の振動
に比べて鉄皮自身の振動の方が大きい。従って、これら
に混ざりこんだ、耐火レンガ中を伝搬し、反射して帰っ
てくる微弱な弾性波を鉄皮表面で検出し、反射波として
識別することは非常に困難である。
Most of the vibration energy due to the impact is consumed as the vibration energy of the iron shell itself, and the efficiency of conversion into elastic waves propagating through the refractory brick is extremely low. For this reason, the vibration of the iron shell itself is larger than the vibration of the elastic wave propagating in the refractory brick and reflected. Therefore, it is very difficult to detect a weak elastic wave that propagates through the refractory brick mixed with the above and returns by detecting it on the surface of the steel skin and identify it as a reflected wave.

【0010】レンガ内伝搬の往復時間測定方法におけ
る測定精度は波長の約4分の1程度とされている。耐火
物中を伝搬する弾性波の波長はかなり長く、この方法で
の耐火物厚さの測定精度はかなり悪くなる(周波数10
00Hzの時には約600mm程度)。これにともない、
耐火レンガ中に存在する亀裂の検出能も極めて低いもの
となる。
[0010] The measurement accuracy in the method for measuring the round-trip time of propagation in bricks is about one-fourth of the wavelength. The wavelength of the elastic wave propagating in the refractory is considerably long, and the accuracy of measuring the thickness of the refractory by this method is considerably deteriorated (frequency 10).
About 600mm at 00Hz). Along with this,
The ability to detect cracks in refractory bricks is also very low.

【0011】上述(2)の特開昭49−50961号公
報に記載の測定方法においては、可聴周波の正弦波加振
力を被測定レンガに加え、その機械インピーダンスのピ
ーク値を求めるためには、十分大きな正弦波加振力を印
可する必要があると同時に、加振力の周波数を所定の範
囲で掃引する必要がある。従って、この方法を実施する
装置は極めて複雑かつ大型になる。
In the measuring method described in Japanese Patent Application Laid-Open No. 49-50961 (2), in order to apply a sine wave exciting force of an audio frequency to a brick to be measured and obtain a peak value of a mechanical impedance of the brick. In addition, it is necessary to apply a sufficiently large sine wave exciting force, and it is necessary to sweep the frequency of the exciting force within a predetermined range. Therefore, the apparatus for performing this method is extremely complicated and large.

【0012】上述(3)の特開昭58−27002号公
報に記載の耐火物の厚み測定方法は、測定箇所の鉄皮を
開孔し、耐火物と金属棒とを直結させる必要があるた
め、測定作業が極めて煩雑であり、測定に要する時間と
費用が膨大なものとなる。また、耐火物と金属棒との結
合状態およびハンマーによる金属棒の打撃状態(打撃強
度、打撃位置等)を常に一定に保つことが困難であり、
測定結果の再現性に乏しい。
The method for measuring the thickness of a refractory described in JP-A-58-27002 described in (3) above requires that a steel shell at the measurement point be opened and the refractory and a metal rod be directly connected. In addition, the measurement operation is extremely complicated, and the time and cost required for the measurement are enormous. In addition, it is difficult to always keep the state of connection between the refractory and the metal rod and the state of hitting of the metal rod by the hammer (strength, hitting position, etc.) constant,
Poor reproducibility of measurement results.

【0013】更に、上述(4)のTDR法においては、
炉壁の厚さを測定するためには予め測定箇所に金属導線
を埋設しておく必要があるため、高炉火入れ前に金属導
線を埋設した場所に測定箇所が限定される。しかも、例
えば10数年間という高炉操業の期間中に金属導線の断
線および絶縁不良が発生した場合、以後その場所での測
定が不可能になるという難点もある。
Further, in the TDR method of the above (4),
In order to measure the thickness of the furnace wall, it is necessary to embed a metal wire in a measurement place in advance, so that the measurement place is limited to a place where the metal wire is buried before burning in the blast furnace. In addition, for example, if the metal wire breaks and insulation failure occurs during the operation of the blast furnace for, for example, over 10 years, there is a disadvantage that the measurement at that location becomes impossible thereafter.

【0014】本発明は、係る従来技術の問題点に鑑みて
なされたものであり、鉄皮内側にライニングされた耐火
レンガ等の厚みを弾性波を用いて鉄皮表面から高精度に
測定する厚み測定方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and has a thickness for accurately measuring the thickness of a refractory brick or the like lining the inside of a steel shell from the surface of the steel shell using an elastic wave. It is intended to provide a measuring method.

【0015】[0015]

【課題を解決するための手段】本発明は、鉄皮内面に張
りめぐらされた耐火物の厚みを弾性波を伝搬させた際に
得られる共振周波数成分から測定する方法であって、下
記(1)から(3)までの方法を要旨とする。
The present invention relates to a method for measuring the thickness of a refractory stretched on the inner surface of a steel shell from a resonance frequency component obtained when an elastic wave is propagated. The methods from (3) to (3) are summarized.

【0016】(1)第1の方法 次のからまでの手順で行うことを特徴とする耐火物
の厚み測定方法。
(1) First method A method for measuring the thickness of a refractory, which is performed according to the following procedures.

【0017】振動を鉄皮に加える。Vibration is applied to the skin.

【0018】前記の振動に対する振動応答から鉄皮
もしくは鉄皮とスタンプ材の振動応答信号を除去した振
動応答周波数スペクトルを測定する。
[0018] The iron skin from the vibration response to the vibration of the
Alternatively, the vibration response frequency spectrum from which the vibration response signals of the iron shell and the stamp material are removed is measured.

【0019】前記の振動応答周波数スペクトルのピ
ーク周波数から耐火物の厚みを算出する。
The thickness of the refractory is calculated from the peak frequency of the vibration response frequency spectrum.

【0020】(2)第2の方法 次のからまでの手順で行うことを特徴とする耐火物
の厚み測定方法。
(2) Second method A method for measuring the thickness of a refractory, which is performed according to the following procedures.

【0021】加振強度の異なる複数の振動を鉄皮に加
える。
A plurality of vibrations having different excitation strengths are applied to the steel.

【0022】前記の複数の加振強度に対応する振動
応答周波数スペクトルを測定する。
A vibration response frequency spectrum corresponding to the plurality of excitation intensities is measured.

【0023】前記の加振強度毎の振動応答周波数ス
ペクトルの値について差分処理を行う。
The difference processing is performed on the value of the vibration response frequency spectrum for each excitation intensity.

【0024】前記の差分処理された振動応答周波数
スペクトルのピーク周波数から耐火物の厚みを算出す
る。
The thickness of the refractory is calculated from the peak frequency of the vibration response frequency spectrum subjected to the difference processing.

【0025】(3)第3の方法 次のからまでの手順で行うことを特徴とする耐火物
の厚み測定方法。
(3) Third Method A method for measuring the thickness of a refractory, which is performed according to the following procedures.

【0026】振動を鉄皮に加える。Vibration is applied to the skin.

【0027】前記の鉄皮に加えた振動およびそれに
対する振動応答の各々から所定の周波数を除去した加振
周波数スペクトルおよび振動応答周波数スペクトルを測
定する。
A vibration frequency spectrum and a vibration response frequency spectrum obtained by removing a predetermined frequency from each of the vibration applied to the above-mentioned steel and the vibration response thereto are measured.

【0028】前記の振動応答周波数スペクトルと加
振周波数スペクトルとの比をとることで振動応答周波数
スペクトルを正規化する。
The vibration response frequency spectrum is normalized by taking the ratio between the vibration response frequency spectrum and the excitation frequency spectrum.

【0029】前記の正規化振動応答周波数スペクト
ルのピーク周波数から耐火物の厚みを算出する。
The thickness of the refractory is calculated from the peak frequency of the normalized vibration response frequency spectrum.

【0030】なお、前記において用いられる正規化振
動応答周波数スペクトルとしては、前記第2の方法で行
った、複数の加振振動による差分処理が施されたものを
用いることが望ましい。
As the normalized vibration response frequency spectrum used in the above, it is desirable to use the one that has been subjected to the difference processing by a plurality of excitation vibrations performed by the second method.

【0031】[0031]

【作用】図1は、本発明方法(第1の方法から第3の方
法)を実施するための装置の構成を模式的に示す図であ
る。なお、図中の破線囲み部は第3の方法を実施する際
に用いる。
FIG. 1 is a diagram schematically showing the configuration of an apparatus for carrying out the method of the present invention (first to third methods). Note that a portion surrounded by a broken line in the figure is used when implementing the third method.

【0032】1は炉(例えば高炉)の鉄皮、3は耐火レ
ンガ、2はその中間にあるスタンプ材である。本発明方
法では、この耐火レンガ3の厚みを測定するのである。
Reference numeral 1 denotes an iron shell of a furnace (for example, a blast furnace), reference numeral 3 denotes a refractory brick, and reference numeral 2 denotes a stamp material in the middle. In the method of the present invention, the thickness of the refractory brick 3 is measured.

【0033】まず、図1に基づき、本発明第1の方法か
ら第3の方法の実施に共通な手順および装置構成を説明
する。
First, a procedure and a device configuration common to the implementation of the first to third methods of the present invention will be described with reference to FIG.

【0034】厚みを測定すべき耐火レンガ3の上の鉄皮
1の表面に振動を加える。この加振の方法としては、弾
性波を耐火レンガ内に再現性よく伝搬させるため、エア
ーハンマまたは電動ハンマからなるハンマ4での打撃に
て行う。ハンマ4の先端部には、測定に必要とする周波
数帯域(例えば、500〜3000Hz)の弾性波を発
生させるために、適当な硬質プラスチックの打撃チップ
5が取り付けてある。
A vibration is applied to the surface of the steel shell 1 on the refractory brick 3 whose thickness is to be measured. In order to propagate the elastic wave into the refractory brick with good reproducibility, the vibration is applied by hitting with a hammer 4 composed of an air hammer or an electric hammer. A hitting tip 5 made of a suitable hard plastic is attached to the tip of the hammer 4 in order to generate an elastic wave in a frequency band required for measurement (for example, 500 to 3000 Hz).

【0035】また、前記打撃チップ5の後部には、打撃
強度計6が取り付けてあり、ハンマ4による鉄皮への打
撃強度をモニターしている。このハンマ打撃時の鉄皮
1、スタンプ材2および耐火レンガ3の振動応答は、鉄
皮表面にとりつけられた振動センサ7により採取され
る。振動センサ7としては、加速度計を用いているが、
その外に変位計等の振動を測定するセンサも使用でき
る。振動センサ7により採取された振動応答信号は、ア
ンプ8aで所定の倍率で増幅したのち、フィルタ9aを
介して周波数解析装置10に入力され、振動応答周波数
スペクトルy(f)が算出される。
A striking strength meter 6 is attached to the rear of the striking tip 5 to monitor the striking strength of the hammer 4 against the steel bar. The vibration response of the steel 1, the stamp material 2 and the refractory brick 3 at the time of hammering is sampled by a vibration sensor 7 attached to the surface of the steel. Although an accelerometer is used as the vibration sensor 7,
In addition, a sensor for measuring vibration such as a displacement meter can be used. The vibration response signal collected by the vibration sensor 7 is amplified at a predetermined magnification by the amplifier 8a, and then input to the frequency analysis device 10 via the filter 9a to calculate the vibration response frequency spectrum y (f).

【0036】算出された振動応答周波数スペクトルはメ
モリ12の所定の位置に記憶されたのち、信号処理器1
1で後述の演算処理に供される。
After the calculated vibration response frequency spectrum is stored at a predetermined position in the memory 12, the signal processor 1
At 1, it is provided to the arithmetic processing described later.

【0037】なお、図1の実施例では、周波数解析装置
10としてA/D変換器とA/D変換された振動応答信
号をフーリエ変換して周波数スペクトルを算出するフー
リエ変換部とを備えた装置を用いた。その外、周波数解
析装置10として、市販されているFFTアナライザー
(内蔵プログラムを変更することで解析する周波数帯域
を可変とすることができるもの)を用いることも可能で
ある。また、A/D変換器とA/D変換された信号をコ
ンピュータ内に取り込みソフトウェアにて周波数スペク
トルを算出する装置であってもよい。更に帯域制限を施
された振動信号をヘテロダイン検波器等を用いてアナロ
グ信号のまま周波数解析するアナログ周波数解析装置を
用いてもよい。
In the embodiment shown in FIG. 1, the frequency analysis device 10 includes an A / D converter and a Fourier transform unit for Fourier transforming the A / D converted vibration response signal to calculate a frequency spectrum. Was used. In addition, a commercially available FFT analyzer (which can change the frequency band to be analyzed by changing a built-in program) can be used as the frequency analysis device 10. Further, an A / D converter and a device which takes in the A / D converted signal into a computer and calculates a frequency spectrum by software may be used. Further, an analog frequency analysis device that analyzes the frequency of the band-limited vibration signal as an analog signal using a heterodyne detector or the like may be used.

【0038】以下、本発明の第1の方法から第3の方法
まで、その原理と具体的な実施の態様を、同じく図1に
基づき説明する。
Hereinafter, the principles and specific embodiments of the first to third methods of the present invention will be described with reference to FIG.

【0039】〔第1の方法〕鉄皮もしくは鉄皮とスタン
プ材(以下、表皮材と称す)の振動応答信号は、500
〜700Hz程度の周波数帯域に顕著に出現する。この
方法は、前記周波数帯域での振動応答信号をあらかじめ
調査しておき、前述のフィルタ9aにバンドパスフィル
タを用いることにより、この周波数帯域の信号を除去し
耐火レンガのみの振動応答信号を透過させる実施形態で
ある。この方法は耐火レンガの振動応答周波数スペクト
ルの共振ピークが明確であり、かつ表皮材の振動応答周
波数スペクトルの共振ピークと充分離れた位置に出現す
る場合に有効である。
[First Method] The vibration response signal of the iron shell or the iron shell and the stamp material (hereinafter referred to as the skin material) is 500
Appears remarkably in a frequency band of about 700 Hz. In this method, a vibration response signal in the frequency band is investigated in advance, and a band-pass filter is used as the above-described filter 9a, thereby removing the signal in this frequency band and transmitting a vibration response signal of only the refractory brick. It is an embodiment. This method is effective when the resonance peak of the vibration response frequency spectrum of the refractory brick is clear and appears at a position sufficiently separated from the resonance peak of the vibration response frequency spectrum of the skin material.

【0040】まず、鉄皮1の表面に耐火レンガの厚み測
定に必要な強さと周波数帯域を持つ加振力をハンマ4の
打撃により加える。この打撃時の振動応答を振動センサ
7で採取し、アンプ8aで増幅した後、前記バンドパス
フィルタ9aにおいて振動応答信号から前述の鉄皮材の
振動応答信号および高炉操業時に発生する機械的ノイズ
および電気的ノイズを除去する。この帯域制限を施した
振動応答信号を周波数解析装置10に入力し、振動応答
周波数スペクトルy(f)を算出する。
First, an exciting force having a strength and a frequency band necessary for measuring the thickness of the refractory brick is applied to the surface of the steel shell 1 by hitting the hammer 4. The vibration response at the time of the impact is sampled by the vibration sensor 7 and amplified by the amplifier 8a. Then, the above-mentioned vibration response signal of the steel material and the mechanical noise and the noise generated during the operation of the blast furnace are obtained from the vibration response signal in the band-pass filter 9a. Eliminate electrical noise. The vibration response signal subjected to the band limitation is input to the frequency analysis device 10, and the vibration response frequency spectrum y (f) is calculated.

【0041】次いで、信号処理器11にて前記振動応答
周波数スペクトルy(f)のピークを与える周波数fp
を用いてレンガ厚みdを次の(1)式により算出する。
Next, the signal processor 11 sets the frequency fp at which the peak of the vibration response frequency spectrum y (f) is given.
Is used to calculate the brick thickness d according to the following equation (1).

【0042】 d=(n・v)/(2・fp )−dm −ds ・・・・(1) ここで、dm :鉄皮厚み、 ds :スタンプ材厚み、
n:整数、v:鉄皮、スタンプ材およびレンガ内の弾性
波伝搬速度関数 以上により、第1の方法は下記の効果を発揮する。
D = (n · v) / (2 · fp) −dm−ds (1) where, dm: steel shell thickness, ds: stamp material thickness,
n: integer, v: elastic wave propagation velocity function in steel, stamp material and brick As described above, the first method has the following effects.

【0043】(1)エアーハンマ等を用いて鉄皮表面を
打撃することで、必要な強度および周波数範囲(例え
ば、500〜3000Hz)の弾性波を耐火レンガ内に
再現性良く伝搬できる。
(1) By striking the surface of the steel skin with an air hammer or the like, elastic waves having a required intensity and a frequency range (for example, 500 to 3000 Hz) can be propagated within the refractory brick with good reproducibility.

【0044】(2)周波数軸上での振動信号のピークを
与える周波数を用いてレンガの厚み測定をおこなうこと
で、低周波弾性波(周波数:500〜3000Hz)を
耐火レンガ内に伝搬させた際の測定精度低下を抑制す
る。
(2) When the thickness of the brick is measured using the frequency that gives the peak of the vibration signal on the frequency axis, when a low-frequency elastic wave (frequency: 500 to 3000 Hz) is propagated into the refractory brick Of measurement accuracy is suppressed.

【0045】(3)振動応答信号から測定の妨げとなる
鉄皮材の振動応答信号および高炉操業時に発生する機械
的ノイズおよび電気的ノイズを除去し、耐火レンガのみ
の振動応答信号を検出するので測定精度が向上する。
(3) Since the vibration response signal of the iron shell material and the mechanical noise and the electric noise generated during the operation of the blast furnace which are obstructive to the measurement are removed from the vibration response signal, the vibration response signal of only the refractory brick is detected. Measurement accuracy is improved.

【0046】〔第2の方法〕この方法は、第1の方法に
於ける耐火レンガのみの振動応答の抽出に際し、複数強
度の加振と、それらから得られるそれぞれの振動応答周
波数スペクトル間の差分処理で行うものである。この方
法は、振動応答周波数スペクトルにおいて、表皮材と耐
火レンガの共振ピークが比較的近い位置に出現する場
合、比較的耐火レンガの測定領域が広い場合ならびに表
皮材の共振ピークが測定位置によって変化する場合に有
効である。
[Second Method] In this method, when extracting the vibration response of only the refractory bricks in the first method, a plurality of vibrations and the difference between the respective vibration response frequency spectra obtained therefrom are extracted. This is performed in processing. In the vibration response frequency spectrum, the resonance peak of the skin material and the refractory brick appear at a relatively close position, the measurement area of the refractory brick is relatively wide, and the resonance peak of the skin material changes depending on the measurement position. It is effective in the case.

【0047】以下、第1の方法と同様に、図1の装置構
成を用い、複数強度の加振として強・弱2種類の強度で
鉄皮表面を打撃した例に基づき説明する。 なお、打撃
強度・強とは、表皮材を介して耐火レンガを十分に振動
させられる程度の強度(例えば、2000Kgf程
度)、打撃強度・弱とは、表皮材のみを振動させられる
程度の強度(200Kgf程度)を意味する。
Hereinafter, similarly to the first method, a description will be given based on an example in which the steel surface is hit with two types of strong and weak intensities as a plurality of strengths using the apparatus configuration of FIG. The impact strength / strength means strength enough to vibrate the refractory brick through the skin material (for example, about 2000 Kgf), and hitting strength / weak strength means strength enough to vibrate only the skin material ( (About 200 kgf).

【0048】また、フィルタ9aとしては、高炉操業時
に発生する機械的ノイズおよび電気的ノイズを除去ため
の大まかな周波数帯域制限を行うもの(例えば、ローパ
スフィルタ)を用いる。この帯域制限を施しておくと、
周波数解析装置10で周波数スペクトルを算出する際の
演算時間が短縮でき、またA/D変換時のエリアスノイ
ズを抑制できるというメリットも有している。
As the filter 9a, a filter (for example, a low-pass filter) for roughly limiting the frequency band for removing mechanical noise and electric noise generated during the operation of the blast furnace is used. With this band limitation,
There are advantages that the calculation time for calculating the frequency spectrum by the frequency analyzer 10 can be reduced, and that alias noise during A / D conversion can be suppressed.

【0049】まず、第1の方法と同様にして、強・弱2
種類の打撃強度で鉄皮表面に打撃を加えた時に得られる
それぞれの振動応答周波数スペクトルys (f),yw
(f)を算出し、メモリ12に記憶させる。次いで、信
号処理器11において、下記の(2)式により差分処理
を行い差分振動応答周波数スペクトルy2 (f) y2 (f)=ys (f)−c・yw (f) ・・・・(2) ここで、c:定数 差分処理結果の差分振動応答周波数スペクトルy2
(f)のピークを与える周波数fp を用いてレンガ厚み
dを前述の(1)式で算出する。 以上により、この方
法を適用すると、第1の方法に対し、更に次の効果が加
わる。
First, similarly to the first method, strong / weak 2
Vibration response frequency spectra ys (f), yw obtained when the steel surface is hit with different types of impact strength
(F) is calculated and stored in the memory 12. Next, in the signal processor 11, the difference processing is performed by the following equation (2), and the difference vibration response frequency spectrum y2 (f) y2 (f) = ys (f) -c.yw (f) (2) Here, c: constant The difference vibration response frequency spectrum y2 of the difference processing result
Using the frequency fp giving the peak of (f), the brick thickness d is calculated by the above equation (1). As described above, when this method is applied, the following effect is added to the first method.

【0050】強・弱2種の打撃強度により得られた振動
応答の内、ys (f)には、表皮材および耐火レンガの
振動応答が含まれているが、yw (f)には、表皮材の
みの振動応答が含まれている。このため、ys (f)と
yw (f)との差分処理を施すことで、表皮材の振動応
答を除去し、耐火レンガの振動応答を精度良く検出する
ことが可能となり、測定精度が向上する。
Of the vibration responses obtained by the two types of impact strength, ys (f) includes the vibration response of the skin material and the refractory brick, while yw (f) includes the skin response. The vibration response of the material alone is included. Therefore, by performing the difference processing between ys (f) and yw (f), the vibration response of the skin material can be removed, and the vibration response of the refractory brick can be detected with high accuracy, and the measurement accuracy is improved. .

【0051】〔第3の方法〕この方法は、加振状態(打
撃強度、打撃時に発生する弾性波の周波数分布等)の再
現性のばらつきの影響を抑えるため、前述の第1の方法
および第2の方法の鉄皮表面にとりつけた振動センサで
採取された振動応答周波数スペクトルを前記振動応答周
波数スペクトルと、ハンマにとりつけた打撃強度計にて
得られた加振信号周波数スペクトルとの比をとることで
正規化したものである。
[Third Method] In this method, the first method and the second method described above are used in order to suppress the influence of variations in the reproducibility of the vibration state (strike strength, frequency distribution of elastic waves generated at the time of strike, etc.). The ratio of the vibration response frequency spectrum obtained by the vibration sensor attached to the surface of the iron skin in the method 2 to the frequency spectrum of the excitation signal obtained by the impact strength meter attached to the hammer is determined. It is normalized by

【0052】まず、振動応答周波数スペクトルy(f)
を第1の方法および第2の方法と同様に算出する。同時
に、振動センサ7により採取された振動応答信号と同様
にハンマ4に取りつけられた打撃強度計6により採取さ
れた加振信号を、アンプ8bおよびフィルタ9b(図1
の破線囲み部)を介して周波数解析装置10に入力す
る。ここで、前記フィルタ9bには、第1の方法および
第2の方法で用いたバンドパスフィルタ9aと同じ周波
数帯域を持つバンドパスフィルタを用いる。この帯域制
限された加振信号から周波数解析装置10において加振
周波数スペクトルx(f)を算出する。前述の振動応答
周波数スペクトルy(f)とこの加振周波数スペクトル
x(f)とは各々所定のメモリ12上に記憶された後、
その比を信号処理器11で算出することで振動応答周波
数スペクトルの正規化を行う。この正規化振動応答周波
数スペクトルh(f)の算出方法としては、下記の
(3)式および(4)式等が挙げられるが、(4)式を
用いることが望ましい。
First, the vibration response frequency spectrum y (f)
Is calculated in the same manner as in the first method and the second method. At the same time, similarly to the vibration response signal collected by the vibration sensor 7, the vibration signal collected by the striking strength meter 6 attached to the hammer 4 is transmitted to the amplifier 8b and the filter 9b (FIG. 1).
(Enclosed by a broken line) is input to the frequency analysis apparatus 10. Here, a band-pass filter having the same frequency band as the band-pass filter 9a used in the first method and the second method is used as the filter 9b. An excitation frequency spectrum x (f) is calculated in the frequency analyzer 10 from the excitation signal whose band is limited. The vibration response frequency spectrum y (f) and the excitation frequency spectrum x (f) are stored in a predetermined memory 12, respectively.
By calculating the ratio by the signal processor 11, the vibration response frequency spectrum is normalized. As a method of calculating the normalized vibration response frequency spectrum h (f), the following equations (3) and (4) can be mentioned, but it is desirable to use the equation (4).

【0053】 h(f)=y(f)/x(f) ・・・・(3) h(f)={x(f)' ・y(f)}/{|x(f)|2 +1/c}・・(4) ここで、f :周波数 (KHz) x(f):加振周波数スペクトル、 y(f):振動応答周波数スペクトル、 c:定数、 x(f)' :x(f)の共役複素数 なお、この方法を第2の方法に適用する場合には、第2
の方法と同様にして、上述の複数の加振に対応する正規
化振動応答周波数スペクトルhs (f),hw(f)を
算出し、下記(5)式によりh2 (f)を算出する。
H (f) = y (f) / x (f) (3) h (f) = {x (f) ′ · y (f)} / {| x (f) | 2 + 1 / c} · (4) where f: frequency (KHz) x (f): excitation frequency spectrum, y (f): vibration response frequency spectrum, c: constant, x (f) ′: x ( f) Conjugate complex number When this method is applied to the second method, the second
In the same manner as in the above method, normalized vibration response frequency spectra hs (f) and hw (f) corresponding to the above-mentioned plurality of excitations are calculated, and h2 (f) is calculated by the following equation (5).

【0054】 h2 (f)=hs (f)−c・hw (f) ・・・・(5) ここで、c:定数 次いで、第1の方法および第2の方法と同様にして、信
号処理器11にて前記正規化振動応答スペクトルh
(f)またはh2 (f)のピークを与える周波数fp を
用いてレンガ厚みdを前記(1)式により算出する。
H 2 (f) = h s (f) −c · h w (f) (5) where c is a constant. Next, signal processing is performed in the same manner as in the first method and the second method. The normalized vibration response spectrum h
The brick thickness d is calculated by the above equation (1) using the frequency fp giving the peak of (f) or h2 (f).

【0055】以上により、この方法を適用すると第1の
方法および第2の方法に対し、更に、次の効果が加わ
る。
As described above, when this method is applied, the following effects are added to the first method and the second method.

【0056】振動応答周波数スペクトルを加振信号周波
数スペクトルで正規化することで加振状態(打撃強度、
打撃時に発生する弾性波の周波数分布等)の変動に起因
する測定のばらつきを抑え、測定再現性が向上する。
By normalizing the vibration response frequency spectrum with the vibration signal frequency spectrum, the vibration state (strike strength,
Variations in measurement due to fluctuations in the frequency distribution of elastic waves generated at the time of impact are suppressed, and measurement reproducibility is improved.

【0057】なお、上述の第1〜第3のいずれの方法に
おいても、測定場所近傍でスタンプ材が鉄皮もしくは耐
火レンガと剥離したり、ずり落ちたりしている場合に
は、鉄皮と耐火レンガとの間に空隙が生じるため、鉄皮
表面を打撃しても耐火レンガ内に弾性波を伝えることが
極めて困難になる。この場合には、振動応答周波数スペ
クトルy(f)またはh(f)上での耐火レンガの共振
ピーク周波数fp の特定が不可能となる。この際は、測
定場所近傍でモルタル材を圧入し、鉄皮と耐火レンガと
の間の空隙をなくす前処理を実施することで、上記の方
法にてレンガ厚みが測定可能となる。
In any of the first to third methods described above, if the stamp material has peeled off or slipped off from the steel or refractory brick in the vicinity of the measurement place, the steel and the fireproof Since a gap is formed between the brick and the brick, it is extremely difficult to transmit an elastic wave into the refractory brick even when the steel surface is hit. In this case, it becomes impossible to specify the resonance peak frequency fp of the refractory brick on the vibration response frequency spectrum y (f) or h (f). At this time, the mortar material is press-fitted in the vicinity of the measurement place, and a pretreatment for eliminating the gap between the steel shell and the refractory brick is performed, so that the brick thickness can be measured by the above method.

【0058】更に、鉄皮が開口されていたりして、耐火
物に直接加振力を与えることが可能な場合には、ハンマ
により耐火物表面を打撃した際に得られる耐火物の振動
を耐火物表面にとりつけた振動センサを用いて測定し、
本発明方法により耐火物の厚みを測定することができる
ことはいうまでもない。
Further, when it is possible to directly apply an exciting force to the refractory due to the opening of the steel shell or the like, the vibration of the refractory obtained when the surface of the refractory is struck with a hammer is used. Measure using a vibration sensor attached to the object surface,
It goes without saying that the thickness of the refractory can be measured by the method of the present invention.

【0059】[0059]

【実施例】本発明の第2および第3の方法を図1に示す
装置構成で実施した例の測定経過を図2に示す。図2は
打撃強度・強(約2000Kgf)および打撃強度・弱
(約200Kgf)にて鉄皮表面を打撃した際に得られ
た正規化振動応答周波数スペクトルhs (f)〔図2
(a)〕,hw (f)〔図2(b)〕および差分処理結
果h2 (f)〔図2(c)〕の一例を示す。この図2に
おいて、図2(a)および図2(b)では、表面材等の
共振ピークが支配的であるが、差分処理を行った結果
の図2(c)では、前記共振ピークが除去され耐火レ
ンガの共振ピークが顕在化してくる過程がよく判る。
この差分処理結果h2 (f)の共振ピークの周波数f
p から(1)式を用いて得られたレンガ厚みは、約65
0mmであった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a measurement procedure of an embodiment in which the second and third methods of the present invention are implemented by the apparatus configuration shown in FIG. FIG. 2 shows a normalized vibration response frequency spectrum hs (f) obtained when the steel surface is struck with a striking strength / strong (about 2000 Kgf) and a striking strength / weak (about 200 Kgf) [FIG.
(A)], hw (f) [FIG. 2 (b)] and the difference processing result h2 (f) [FIG. 2 (c)]. 2A and 2B, the resonance peak of the surface material is dominant in FIG. 2A and FIG. 2B, but in FIG. 2C obtained by performing the difference processing, the resonance peak is removed. The process by which the resonance peak of the refractory brick becomes apparent becomes apparent.
The frequency f of the resonance peak of the difference processing result h2 (f)
The brick thickness obtained by using equation (1) from p is about 65
It was 0 mm.

【0060】一方、図4は前記測定場所でのコアサンプ
ルによる測定結果を模式的に表したものである。図4に
おいて、凝固物は耐火レンガのくずと炉の内容物とが混
ざりあって固まった部位を、脆化部は耐火レンガが熱応
力等によりぼろぼろに劣化した部位を(約130m
m)、健全部は測定目的とするまだ耐火機能を有する耐
火レンガの部位を示す。図4において、測定場所での健
全部のレンガ厚みは約630mmであり、本発明方法によ
り精度良く耐火レンガの厚みが測定可能であることを確
認した。
On the other hand, FIG. 4 schematically shows a result of measurement using the core sample at the measurement location. In FIG. 4, the solidified material is a portion where the waste of the refractory brick and the contents of the furnace are mixed and hardened, and the embrittlement portion is a portion where the refractory brick is deteriorated by thermal stress or the like (about 130 m).
m), the sound part indicates the part of the refractory brick still having the refractory function to be measured. In FIG. 4, the brick thickness of the healthy part at the measurement location was about 630 mm, and it was confirmed that the thickness of the refractory brick could be measured accurately by the method of the present invention.

【0061】また、図3に同じく第1および第3の方法
により行った他の実施例の測定過程を示す。
FIG. 3 shows a measurement process of another embodiment similarly performed by the first and third methods.

【0062】図3は打撃強度・強(約2000Kgf)
および打撃強度・弱(約200Kgf)にて鉄皮表面を
打撃した際に得られた振動応答周波数スペクトルys
(f)〔図3(a)〕,yw (f)〔図3(b)〕およ
び差分処理結果y2 (f)〔図3(c)〕の一例を示
す。この図3から、図3(a)および図3(b)では、
表面材等の共振ピークが支配的であるが、差分処理を
行った結果の図3(c)では、前記共振ピークが除去
され耐火レンガの共振ピークが顕在化してくる過程が
よく判る。この差分処理結果y2 (f)の共振ピーク
の周波数fp から(1)式を用いて得られたレンガ厚み
は、約880mmであった。一方、この測定場所でのコ
アーサンプルによる耐火レンガ厚みの測定結果は約90
0mmであり、両者はよく一致している。
FIG. 3 shows the impact strength and strength (about 2000 kgf).
And the vibration response frequency spectrum ys obtained when the steel surface was hit with a low impact strength (about 200 kgf)
(F) [FIG. 3 (a)], yw (f) [FIG. 3 (b)] and an example of the difference processing result y2 (f) [FIG. 3 (c)] are shown. From FIG. 3, in FIGS. 3A and 3B,
Although the resonance peak of the surface material or the like is dominant, FIG. 3 (c) as a result of performing the difference processing clearly shows a process in which the resonance peak is removed and the resonance peak of the refractory brick becomes apparent. The brick thickness obtained by using the equation (1) from the frequency fp of the resonance peak of the difference processing result y2 (f) was about 880 mm. On the other hand, the measurement result of the thickness of the refractory brick by the core sample at this measurement place was about 90%.
0 mm, and both agree well.

【0063】[0063]

【発明の効果】上述のように、本発明方法によれば弾性
波を用いた厚み測定において、次の効果が発揮され、優
れた耐火物の厚み測定精度を実現することが可能となっ
た。
As described above, according to the method of the present invention, the following effects are exhibited in the thickness measurement using an elastic wave, and it is possible to realize excellent thickness measurement accuracy of a refractory.

【0064】(1)共振周波数を用いてレンガの厚み測
定をおこなうことで、低周波弾性波(周波数帯域:50
0〜3000Hz)を耐火レンガ内に伝搬させた際にお
こる測定精度の低下を抑制する。
(1) By measuring the thickness of the brick using the resonance frequency, a low-frequency elastic wave (frequency band: 50
(0-3000 Hz) is suppressed from lowering the measurement accuracy that occurs when propagating into the refractory brick.

【0065】(2)表皮材等の測定の妨げになる振動応
答を取り除き、耐火レンガのみの振動応答を検出するこ
とにより測定精度が向上する。
(2) The measurement accuracy is improved by removing the vibration response that hinders the measurement of the skin material and detecting the vibration response of only the refractory brick.

【0066】(3)振動応答周波数スペクトルを加振周
波数スペクトルで正規化することで加振状態の影響を抑
制し、測定値の再現性および精度を向上させる。
(3) By normalizing the vibration response frequency spectrum with the excitation frequency spectrum, the influence of the excitation state is suppressed, and the reproducibility and accuracy of the measured values are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施した一例の装置構成図であ
る。
FIG. 1 is an apparatus configuration diagram of an example in which a method of the present invention is implemented.

【図2】強・弱2種類の打撃強度にて鉄皮表面を打撃し
た際に得られた正規化振動応答周波数スペクトルhs
(f),hw (f)およびその差分処理結果h2 (f)
の一例を示すスペクトル分布図である。
FIG. 2 is a normalized vibration response frequency spectrum hs obtained when the steel surface is hit with two types of strong and weak hitting strengths.
(F), hw (f) and the difference processing result h2 (f)
FIG. 4 is a spectrum distribution diagram showing an example of the above.

【図3】強・弱2種類の打撃強度にて鉄皮表面を打撃し
た際に得られた振動応答周波数スペクトルys (f)と
yw (f)とその差分処理結果h2 (f)の一例を示す
スペクトル分布図である。
FIG. 3 shows an example of vibration response frequency spectra ys (f) and yw (f) obtained when the steel surface is hit with two types of high and low hitting strengths, and a difference processing result h2 (f). It is a spectrum distribution diagram shown.

【図4】コアサンプルによる計測結果の模式図である。FIG. 4 is a schematic diagram of a measurement result by a core sample.

【符号の説明】[Explanation of symbols]

1 鉄皮 2 スタンプ材 3 レンガ 4 ハンマ 5 打撃チップ 6 打撃強度計 7 振動センサ 9 フィルタ(バンドパスフィルタまたはローパスフ
ィルタ) 10 周波数解析装置 11 信号処理器
DESCRIPTION OF SYMBOLS 1 Iron skin 2 Stamp material 3 Brick 4 Hammer 5 Impact tip 6 Impact strength meter 7 Vibration sensor 9 Filter (band-pass filter or low-pass filter) 10 Frequency analyzer 11 Signal processor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 17/00 - 17/04 G01N 29/00 - 29/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01B 17/00-17/04 G01N 29/00-29/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄皮内面に張りめぐらされた耐火物の厚み
を弾性波を伝搬させた際に得られる共振周波数成分から
測定する方法であって、振動を鉄皮に加えたのち、前記
振動に対する振動応答から鉄皮もしくは鉄皮とスタンプ
材の振動応答信号を除去した振動応答周波数スペクトル
を測定し、前記振動応答周波数スペクトルのピーク周波
数から耐火物の厚みを算出することを特徴とする弾性波
による耐火物の厚み測定方法。
1. A method for measuring the thickness of a refractory stretched over an inner surface of a steel shell from a resonance frequency component obtained when an elastic wave is propagated, wherein the vibration is applied to the steel shell, and then the vibration is applied to the steel shell. Response from vibration to steel or steel and stamp
A method for measuring the thickness of a refractory using elastic waves, comprising: measuring a vibration response frequency spectrum from which a vibration response signal of a material is removed, and calculating a thickness of the refractory from a peak frequency of the vibration response frequency spectrum.
【請求項2】加振強度の異なる複数の振動を鉄皮に加え
たのち、前記複数の加振強度に対応する振動応答周波数
スペクトルを測定し、前記加振強度毎の振動応答周波数
スペクトルの値について差分処理を行い、前記差分処理
で得られる差分周波数スペクトルのピーク周波数から耐
火物の厚みを算出することを特徴とする請求項1に記載
の弾性波による耐火物の厚み測定方法。
2. A method according to claim 1, wherein a plurality of vibrations having different excitation intensities are applied to the steel, and a vibration response frequency spectrum corresponding to the plurality of excitation intensities is measured. The method for measuring the thickness of a refractory using elastic waves according to claim 1, wherein a difference process is performed on the refractory, and a thickness of the refractory is calculated from a peak frequency of a difference frequency spectrum obtained by the difference process.
【請求項3】振動応答周波数スペクトルを鉄皮に加えた
加振周波数スペクトルで正規化することを特徴とする請
求項1または請求項2に記載の弾性波による耐火物の厚
み測定方法。
3. The method according to claim 1, wherein the vibration response frequency spectrum is normalized by an excitation frequency spectrum applied to the steel.
JP7027791A 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves Expired - Fee Related JP3039308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7027791A JP3039308B2 (en) 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7027791A JP3039308B2 (en) 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves

Publications (2)

Publication Number Publication Date
JPH08219751A JPH08219751A (en) 1996-08-30
JP3039308B2 true JP3039308B2 (en) 2000-05-08

Family

ID=12230807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7027791A Expired - Fee Related JP3039308B2 (en) 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves

Country Status (1)

Country Link
JP (1) JP3039308B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2326235B (en) * 1997-06-12 2001-04-11 Mecon Ltd Method and apparatus for monitoring the linings of cement kilns
CA2593767C (en) * 2005-01-17 2013-07-09 P-Response Ip Pty Ltd Non-destructive testing of the lining of a process vessel
JP5438276B2 (en) * 2007-01-29 2014-03-12 三菱重工環境・化学エンジニアリング株式会社 Refractory erosion detection method and apparatus for melting furnace bottom
JP5157610B2 (en) * 2008-04-17 2013-03-06 Jfeスチール株式会社 Method for measuring the thickness of thin steel pipes
JP2012013522A (en) * 2010-06-30 2012-01-19 Korea Atomic Energy Research Inst Method and apparatus for low frequency vibration excitation using ultrasonic wave
KR101229622B1 (en) * 2010-08-30 2013-02-04 (주)엘지하우시스 Apparatus and method for evaluating internal vacuum level of vacuum insulation panel using frequency response method
KR101297514B1 (en) 2010-09-29 2013-08-16 (주)엘지하우시스 Vacuum insulation panel, and apparatus and method for evaluating internal vacuum level of the vacuum insulation panel using frequency response method
KR101282726B1 (en) * 2012-02-09 2013-07-05 박철 Method of monitering vacuum of vacuum insulation material
WO2021105758A1 (en) * 2019-11-29 2021-06-03 Arcelormittal System and method for estimating both thickness and wear state of refractory material of a metallurgical furnace
JP7400786B2 (en) * 2020-10-01 2023-12-19 Jfeスチール株式会社 Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace

Also Published As

Publication number Publication date
JPH08219751A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JPWO2002040959A1 (en) Acoustic diagnosis / measurement device using pulsed electromagnetic force and their diagnosis / measurement method
JP3039308B2 (en) Refractory thickness measurement method using elastic waves
JP3958538B2 (en) Concrete hammering inspection method and concrete hammering inspection apparatus
Kietov et al. Study of dynamic crack formation in nodular cast iron using the acoustic emission technique
JP2006017741A (en) Acoustic diagnosing using pulse electromagnetic force and measuring apparatus and its diagnosing and measuring method
JP2009276095A (en) Non-destructive flaw detecting method and non-destructive flaw detector
JP2012168022A (en) Method for diagnosing quality of concrete-based structure
JPH1090234A (en) Method of detecting internal defect of structure
JP6130778B2 (en) Method and apparatus for inspecting interface of composite structure
JP2004325224A (en) Diagnostic method of corrosion thinning of anchor bolt, and device used therefor
JP4553458B2 (en) Tunnel diagnostic apparatus and method
JP2001311724A (en) Concrete soundness determination method and device
JP4577957B2 (en) Tunnel diagnostic equipment
JP3895573B2 (en) Elastic wave propagation velocity measurement calculation method and nondestructive compressive strength test apparatus using the method
JP3510835B2 (en) Deterioration measurement device for concrete structures.
JP3514690B2 (en) Evaluation method of grout filling condition of concrete structure
JP3379386B2 (en) Refractory wear evaluation method and apparatus, and refractory management method and apparatus
JPH0196584A (en) Method for surveying position of piping buried under ground
JP3395886B2 (en) Refractory residual thickness measuring device
JPS5827002A (en) Method for measuring thickness of refractory material
JP2003329656A (en) Degree of adhesion diagnosis method and device for concrete-sprayed slope
JP3070475B2 (en) Ultrasonic probe
US6497151B1 (en) Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects
JP3252724B2 (en) Refractory thickness measurement method and apparatus
JP3956486B2 (en) Method and apparatus for detecting thermal spray coating peeling on structure surface

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees