JP3031508B2 - Reduction method of polychlorinated alkanes - Google Patents

Reduction method of polychlorinated alkanes

Info

Publication number
JP3031508B2
JP3031508B2 JP4151507A JP15150792A JP3031508B2 JP 3031508 B2 JP3031508 B2 JP 3031508B2 JP 4151507 A JP4151507 A JP 4151507A JP 15150792 A JP15150792 A JP 15150792A JP 3031508 B2 JP3031508 B2 JP 3031508B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
reaction
reduction
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4151507A
Other languages
Japanese (ja)
Other versions
JPH05320076A (en
Inventor
真介 森川
優 吉武
伸 立松
Original Assignee
エイ・ジー・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイ・ジー・テクノロジー株式会社 filed Critical エイ・ジー・テクノロジー株式会社
Priority to JP4151507A priority Critical patent/JP3031508B2/en
Publication of JPH05320076A publication Critical patent/JPH05320076A/en
Application granted granted Critical
Publication of JP3031508B2 publication Critical patent/JP3031508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塩素原子と炭素原子と
のみまたは塩素原子と水素原子と炭素原子とのみからな
多塩素化アルカン類(以下、単に多塩素化アルカン類
という)、例えば地球環境保護の立場から規制対象にな
っている四塩化炭素等を原料とし、これを種々のフッ素
系化合物の原料として有用なクロロホルム等の含水素ク
ロロカーボン類に転換する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing chlorine and carbon atoms.
Or only chlorine, hydrogen, and carbon.
Polychlorinated alkanes (hereinafter simply referred to as polychlorinated alkanes)
Hereinafter), for example, the global environment protection and carbon tetrachloride that is a restricted from the standpoint of the raw material, to a method of converting the hydrogen-containing chlorocarbons such as useful chloroform as a raw material of various fluorine compounds.

【0002】[0002]

【従来の技術】従来、四塩化炭素は主として各種フロン
類の原料として利用されてきたが、これらのフロン類は
もとより、原料である四塩化炭素も製造が規制されるこ
とになっており、これらを分解除去する技術または有用
なものへ転換する技術が広く世界的に求められている。
2. Description of the Related Art Conventionally, carbon tetrachloride has been mainly used as a raw material for various fluorocarbons. However, the production of carbon tetrachloride as a raw material as well as these fluorocarbons is to be regulated. There is a widespread worldwide demand for a technology for decomposing and removing or converting it to a useful one.

【0003】一方、四塩化炭素中の塩素原子を水素原子
と置換することにより得られるクロロホルム等の含水素
クロロカーボン類は、種々の化学製品の原料として有用
である。したがって、四塩化炭素等の多塩素化アルカン
類に効率的に水素を導入して、含水素クロロカーボン類
へ転換するための技術開発が求められている。
[0003] On the other hand, hydrogen-containing chlorocarbons such as chloroform obtained by replacing chlorine atoms in carbon tetrachloride with hydrogen atoms are useful as raw materials for various chemical products. Therefore, there is a need for technology development for efficiently introducing hydrogen into polychlorinated alkanes such as carbon tetrachloride and converting the same to hydrogen-containing chlorocarbons.

【0004】四塩化炭素に水素を導入する方法として
は、種々の方法が知られている。プロトン性溶媒の存在
下に電解還元する方法は、反応速度が遅いなどの欠点を
有し、工業的には採用しがたい。亜鉛等の卑金属で還元
する方法は反応速度は速いが、副生する金属塩化物の処
理が問題となる。一方、特開平3-133939号公報などの還
元触媒を用いて水素還元する方法は、反応速度が速く、
且つ副生塩化水素を回収して利用することができ、工業
的な展開に有利である。しかし、ニッケルや白金などの
汎用還元触媒を用いて気相で水素還元を行う方法におい
ては、極めて急速に触媒が失活し、また、特に高温にお
いて沸点の高い炭素数5またはそれ以上の重合物が副生
するなど、必ずしも目的生成物の収率が高くないなどの
問題点を有していた。
Various methods are known for introducing hydrogen into carbon tetrachloride. The method of performing electrolytic reduction in the presence of a protic solvent has disadvantages such as a low reaction rate, and is difficult to employ industrially. The method of reducing with a base metal such as zinc has a high reaction rate, but has a problem in treating by-product metal chloride. On the other hand, the method of reducing hydrogen using a reducing catalyst such as JP-A-3-33939 has a high reaction rate,
In addition, by-product hydrogen chloride can be recovered and used, which is advantageous for industrial development. However, in the method of performing hydrogen reduction in the gas phase using a general-purpose reduction catalyst such as nickel or platinum, the catalyst is deactivated very rapidly, and a polymer having a high boiling point and a carbon number of 5 or more, particularly at high temperatures. However, there is a problem that the yield of the target product is not always high, such as by-products.

【0005】[0005]

【発明が解決しようとする課題】先に本発明者は、還元
触媒の存在下にポリクロロカーボン類を液相状態で水素
還元することにより、触媒の短期的劣化を無くし且つ高
収率で含水素クロロカーボン類が得られることを見出し
た。かかる液相水素還元方法においては、活性炭粉末担
持貴金属触媒等の粉末状の触媒を用いる液相懸濁床方式
が反応収率を確保する上では有利である。しかし、連続
反応を行うためには粉末状触媒を循環する必要があり、
そのために触媒の分離システムを設置しなくてはならな
いなど、設備投資、触媒コストの低減などについて、工
業化上克服すべき種々の課題を有している。
SUMMARY OF THE INVENTION First, the present inventors have reduced the hydrogen content of polychlorocarbons in the liquid phase in the presence of a reduction catalyst, thereby eliminating short-term deterioration of the catalyst and containing the catalyst in high yield. It has been found that hydrogen chlorocarbons can be obtained. In such a liquid phase hydrogen reduction method, a liquid phase suspension bed system using a powdery catalyst such as a noble metal catalyst supporting activated carbon powder is advantageous in securing the reaction yield. However, in order to perform a continuous reaction, it is necessary to circulate a powdery catalyst,
Therefore, there are various problems to be overcome in industrialization, such as equipment investment and reduction of catalyst cost, such as the necessity of installing a catalyst separation system.

【0006】ポリクロロカーボン類の気相水素還元にお
いては、触媒とポリクロロカーボン類との強い相互作用
により、触媒へ重質物が堆積しやすく、極めて短時間の
うちに触媒活性が低下する。また、目的物である含水素
クロロカーボン類を高収率で得ることは困難である。一
方、液相で反応を行うことは、反応溶媒の使用等によ
り、吸着エネルギーの大きなポリクロロカーボン類にお
いても吸着を制御できること、副生重合物についてもそ
れほど重合度が大きくなければ、触媒表面から溶解除去
しやすく、したがって活性点の減少を抑制できるなどの
利点を有する。特に、懸濁床方式は触媒と反応原料の撹
拌が容易であり、良好な反応特性を達成しやすい。小規
模での工業化にはバッチ式懸濁床方式での対応が可能で
ある。
In the gas-phase hydrogen reduction of polychlorocarbons, heavy substances tend to be deposited on the catalyst due to strong interaction between the catalyst and the polychlorocarbons, and the catalytic activity is reduced in a very short time. In addition, it is difficult to obtain the target hydrogen-containing chlorocarbons in high yield. On the other hand, conducting the reaction in the liquid phase means that the adsorption of polychlorocarbons having a large adsorption energy can be controlled by the use of a reaction solvent and the like. It has an advantage that it can be easily dissolved and removed, and thus the decrease in active sites can be suppressed. In particular, in the suspension bed method, the catalyst and the reactants are easily stirred, and good reaction characteristics are easily achieved. For small-scale industrialization, a batch suspension bed system can be used.

【0007】しかし、懸濁床方式においては、撹拌に起
因する触媒の摩耗による損失があるほか、規模の拡大時
に必要な反応の連続化を行うためには、触媒を分離リサ
イクルするシステムが必要である。また、懸濁床方式に
おいて用いる触媒は、通常は数十〜100μm程度の極
めて微細な担体を用いており、触媒の分離リサイクルに
伴う問題が多い。例えば、フィルターの目づまり対策、
リサイクル中での触媒ロス低減策など、克服すべき課題
が多い。
However, in the suspension bed method, there is a loss due to abrasion of the catalyst due to agitation, and a system for separating and recycling the catalyst is necessary in order to continue the necessary reaction when the scale is increased. is there. Further, the catalyst used in the suspension bed method usually uses an extremely fine carrier of about several tens to 100 μm, and there are many problems associated with separation and recycling of the catalyst. For example, filter clogging measures,
There are many issues to be overcome, such as measures to reduce catalyst loss during recycling.

【0008】[0008]

【課題を解決するための手段】本発明者は、液相水素還
元連続反応システムの最適化について鋭意検討を行った
結果、8族、9族および10族元素から選ばれる少なく
とも1種の元素を主成分とする還元触媒を固定床方式で
用いることにより、ポリクロロカーボン類を水素により
極めて効率的に且つ低コストで含水素クロロカーボン類
に転換できることを見出し、本発明を完成するに至った
ものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies on the optimization of a liquid-phase hydrogen reduction continuous reaction system, and have found that at least one element selected from Group 8, Group 9, and Group 10 elements can be obtained. The present inventors have found that polychlorocarbons can be converted to hydrogen-containing chlorocarbons with hydrogen at a very efficient and low cost by using a reduction catalyst as a main component in a fixed bed system, and the present invention has been completed. It is.

【0009】かくして本発明は、固定床還元触媒の存在
下、液相で多塩素化アルカン類を水素により還元するこ
とを特徴とする多塩素化アルカン類の還元方法を提供す
るものである。
Thus, the present invention provides a method for reducing polychlorinated alkanes, which comprises reducing polychlorinated alkanes with hydrogen in the liquid phase in the presence of a fixed-bed reduction catalyst.

【0010】本発明によれば、8族、9族および10族
元素から選ばれる少なくとも1種の元素、特に耐酸性に
優れ高活性なルテニウム、ロジウム、パラジウム、白金
等の白金族元素を主成分として含む還元触媒を固定床で
用い、液相でポリクロロカーボン類を水素還元すること
により、触媒の短期的劣化を無くし且つ高収率で含水素
クロロカーボン類を効率的に製造することができる。
According to the present invention, at least one element selected from Group 8 element, Group 9 element and Group 10 element, in particular, a platinum group element such as ruthenium, rhodium, palladium, platinum and the like, which is excellent in acid resistance and highly active, is used as a main component. Hydrogen reduction of polychlorocarbons in the liquid phase by using a reduction catalyst containing as a fixed bed with hydrogen can eliminate short-term deterioration of the catalyst and efficiently produce hydrogen-containing chlorocarbons in high yield. .

【0011】本発明においては、還元触媒を固定床方式
で用いることが重要である。固定床方式は、比較的単純
な構造の反応システムで運転が可能であり、原料四塩化
炭素などの多塩素化アルカン類の流通、水素の分散を効
率的に行うことができる。また、反応装置、反応条件お
よび触媒の最適化を行うことにより、懸濁床方式と同等
またはそれ以上の高い収率でクロロホルム、塩化メチレ
ン、塩化メチル等の含水素クロロカーボン類が得られる
ものである。これは液相で水素還元を行う場合、水素の
液中での拡散が律速となる場合においては、触媒表面に
おける水素濃度が低下することによる反応速度低下、選
択率低下につながる場合があり、これに留意して反応条
件を決定することで良好な反応成績を得ることが可能に
なったものである。特に、原料をダウンフローで供給す
る滴下床方式においては、水素の液相拡散距離が短く触
媒表面における水素濃度の低下を抑制しやすいため、反
応速度、触媒耐久性を向上する上で有利である。
In the present invention, it is important to use the reduction catalyst in a fixed bed system. The fixed bed system can be operated with a reaction system having a relatively simple structure, and can efficiently distribute polychlorinated alkanes such as raw material carbon tetrachloride and disperse hydrogen. In addition, by optimizing the reaction apparatus, reaction conditions and catalyst, hydrogen-containing chlorocarbons such as chloroform, methylene chloride, and methyl chloride can be obtained with a high yield equivalent to or higher than that of the suspension bed method. is there. This is because, when hydrogen reduction is performed in the liquid phase, if the diffusion of hydrogen in the liquid is rate-limiting, the reduction in hydrogen concentration on the catalyst surface may lead to a reduction in reaction rate and a decrease in selectivity. By determining the reaction conditions while paying attention to the above, good reaction results can be obtained. In particular, in a dropping bed system in which a raw material is supplied in a downflow manner, the liquid phase diffusion distance of hydrogen is short and a decrease in the hydrogen concentration on the catalyst surface is easily suppressed, which is advantageous in improving the reaction rate and the catalyst durability. .

【0012】以下、本発明の詳細について実施例ととも
に説明する。
Hereinafter, the present invention will be described in detail with examples.

【0013】本発明において、多塩素化アルカン類とし
ては、例えば四塩化炭素、クロロホルム、塩化メチレ
ン、ヘキサクロロエタン、あるいはジクロロプロパンな
どが例示され、具体的には、四塩化炭素の還元によりク
ロロホルム、塩化メチレン、塩化メチルが、また、クロ
ロホルムの還元により塩化メチレン、塩化メチルが、さ
らに、塩化メチレンの還元により塩化メチルが、ヘキサ
クロロエタンの還元によりテトラクロロエチレン等が、
ジクロロプロパンの還元によりプロピレン等がそれぞれ
得られるなどである。また、炭素数が4以上の多塩素化
アルカン類であってもよい。
In the present invention, examples of polychlorinated alkanes include, for example, carbon tetrachloride, chloroform, methylene chloride, hexachloroethane, and dichloropropane. Specifically, chloroform, chloride, and the like are obtained by reduction of carbon tetrachloride. Methylene, methyl chloride, methylene chloride and methyl chloride by reduction of chloroform, further, methyl chloride by reduction of methylene chloride, tetrachloroethylene and the like by reduction of hexachloroethane,
Propylene and the like can be obtained by reduction of dichloropropane. Further, polychlorinated alkanes having 4 or more carbon atoms may be used.

【0014】本発明においては、8族、9族および10
族元素から選ばれる少なくとも1種の元素を主成分とし
て含む還元触媒を使用することができる。特に、本発明
の反応では、塩化水素が副生物として生成するため、ル
テニウム、ロジウム、パラジウム、白金等の還元活性の
高い白金族元素を含んでいることが、触媒の耐久性を得
る上で好ましい。これらの主成分元素は、1種のみで用
いてもよく、もちろん2種以上を併用してもよい。
In the present invention, groups 8, 9 and 10
A reduction catalyst containing at least one element selected from group elements as a main component can be used. In particular, in the reaction of the present invention, since hydrogen chloride is generated as a by-product, it is preferable to contain a platinum group element having a high reduction activity such as ruthenium, rhodium, palladium, and platinum in order to obtain durability of the catalyst. . These main component elements may be used alone or in combination of two or more.

【0015】本発明の還元触媒は、上記8〜10族の主
成分元素を必須成分として含むが、触媒性能を損なわな
い範囲で、これらの必須成分以外の他の元素をさらに含
んでいてもよい。例えば、添加成分としては、銅、銀、
金などの11族元素が例示され得る。これら添加成分元
素についても、1種あるいは2種以上で用いることがで
きる。添加成分を併用する場合には、その添加量は0.
01〜50重量%、好ましくは0.1〜50重量%、特
に1〜50重量%が望ましい。
The reduction catalyst of the present invention contains, as an essential component, the main elements of Groups 8 to 10, but may further contain other elements other than these essential components as long as the catalytic performance is not impaired. . For example, as an additive component, copper, silver,
Group 11 elements such as gold may be exemplified. One or more of these additional component elements can be used. When additional components are used in combination, the amount of addition is 0.1.
The content is preferably from 01 to 50% by weight, preferably from 0.1 to 50% by weight, particularly preferably from 1 to 50% by weight.

【0016】固定床に使用するため、これらの触媒は担
体に担持させたものが望ましい。担体としては、活性
炭、アルミナ、ジルコニア、シリカ等、通常用いられる
ものが使用できる。担体には液の流通により粉化しない
程度の強度が必要である。担体の形状は、特に液体をア
ップフローで流通させる場合には触媒が振動しやすいた
め摩耗損失を受けにくいペレット状のものが好適である
が、滴下床方式では破砕炭等も使用可能であり、必ずし
も特に限定されない。サイズは0.5mm〜20mm程
度が適当である。また、担持量については0.01〜2
0重量%、好ましくは0.1〜5重量%程度が、触媒の
担持効率、反応活性、触媒成分の分散、触媒製造コスト
などの点で好適である。
For use in a fixed bed, these catalysts are preferably supported on a carrier. As the carrier, those commonly used, such as activated carbon, alumina, zirconia, and silica, can be used. The carrier must have such strength that it does not become powdered by the flow of the liquid. The shape of the carrier is preferably in the form of pellets that are not easily affected by abrasion loss because the catalyst is easily vibrated, especially when the liquid is circulated in the upflow.However, in the case of the dropping bed method, crushed charcoal can be used, There is no particular limitation. An appropriate size is about 0.5 mm to 20 mm. Further, the loading amount is 0.01 to 2
0% by weight, preferably about 0.1 to 5% by weight, is suitable in terms of catalyst loading efficiency, reaction activity, dispersion of catalyst components, catalyst production cost, and the like.

【0017】触媒の調製法は特に限定されない。含浸
法、共沈法、混練法等通常行われる方法が適用できる。
触媒成分の担持方法などについても、通常採用される範
囲から適宜選定され得る。例えば、上記元素の単純塩ま
たは錯塩などを用いて含浸法、イオン交換法などにより
担持する方法が適用できる。
The method for preparing the catalyst is not particularly limited. Conventional methods such as an impregnation method, a coprecipitation method and a kneading method can be applied.
The method for supporting the catalyst component and the like can also be appropriately selected from the range usually employed. For example, a method in which a simple salt or a complex salt of the above element is used and supported by an impregnation method, an ion exchange method, or the like can be applied.

【0018】また、触媒の使用に当たっては必ずしも触
媒の還元処理を行う必要はないが、あらかじめ水素還元
を施しておくことが安定した特性を得る上で望ましい。
担持した触媒成分の還元法としては、水素、ヒドラジ
ン、ホルムアルデヒド、水素化ホウ素ナトリウム、ボラ
ンジメチルアミン錯塩等により液相で還元する方法、お
よび水素により気相で還元する方法などが適用できる。
Further, when using the catalyst, it is not always necessary to carry out a reduction treatment of the catalyst, but it is desirable to carry out a hydrogen reduction in advance to obtain stable characteristics.
As a method for reducing the supported catalyst component, a method of reducing in a liquid phase with hydrogen, hydrazine, formaldehyde, sodium borohydride, a borane dimethylamine complex salt, and a method of reducing in a gas phase with hydrogen can be applied.

【0019】反応溶媒の使用は、生成物割合の制御や反
応活性の安定化等に有効であり、適宜行うことができ
る。例えば、メタノール、エタノール等のアルコール
類、トリエチルアミン等のアミン類、酢酸等のカルボン
酸類、アセトン等のケトン類を反応溶媒として使用でき
る。
The use of a reaction solvent is effective for controlling the product ratio and stabilizing the reaction activity, and can be carried out as appropriate. For example, alcohols such as methanol and ethanol, amines such as triethylamine, carboxylic acids such as acetic acid, and ketones such as acetone can be used as a reaction solvent.

【0020】還元反応温度は、0℃〜300℃程度の広
範囲から適宜選定され得るが、好適な液相反応では、特
に50℃〜250℃程度を選定するのが望ましい。
The temperature of the reduction reaction can be appropriately selected from a wide range of about 0 ° C. to 300 ° C., but in a preferable liquid phase reaction, it is particularly preferable to select about 50 ° C. to 250 ° C.

【0021】水素と多塩素化アルカン類の供給モル比は
特に限定されない。水素を多くすると反応率が上がり、
触媒の寿命などの点で有利であるが、より脱塩素・水素
化が進んだものの生成割合が多くなる。多塩素化アルカ
ン類の1モルに対して水素を50モル以上用いることも
できるが、通常は多塩素化アルカン類の1モルに対して
水素の1〜20モル程度を供給することが好ましい。過
剰の水素については、これをリサイクルすることによ
り、水素の利用率を高めることが可能である。
The supply molar ratio of hydrogen to polychlorinated alkanes is not particularly limited. Increasing the amount of hydrogen increases the reaction rate,
Although it is advantageous in terms of the life of the catalyst, etc., the rate of formation of more dechlorinated / hydrogenated products increases. Although 50 mol or more of hydrogen can be used per 1 mol of the polychlorinated alkanes, it is usually preferable to supply about 1 to 20 mol of hydrogen to 1 mol of the polychlorinated alkanes. Excess hydrogen can be recycled to increase the utilization of hydrogen.

【0022】また、反応圧力は常圧以上が適当であり、
圧力を上げるほど反応速度が増加する。通常は数kg/
cm2 G〜10kg/cm2 G程度までの加圧が採用さ
れ得る。余りに高圧では、反応速度が増加しても装置コ
ストの上昇を伴うなどの難点が認められるものである。
The reaction pressure is suitably normal pressure or higher.
Increasing the pressure increases the reaction rate. Usually several kg /
pressure up to cm 2 G~10kg / cm 2 of about G can be employed. If the reaction pressure is too high, difficulties such as an increase in the cost of the apparatus will be recognized even if the reaction rate increases.

【0023】[0023]

【実施例】以下に本発明の具体的態様を実施例および比
較例により説明するが、本発明は必ずしもこれに限定さ
れるものではない。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not necessarily limited thereto.

【0024】実施例1 径3mmの成形炭担持白金触媒(担持量:2重量%、エ
ヌ・イー・ケムキャット社製)4リットルを、内径60
mmの円筒状反応器に充填した。触媒層を四塩化炭素で
充たした後窒素を封入した。80℃まで昇温した後、水
素の供給を開始した。四塩化炭素1モルに対して水素を
3モル、連続的にアップフローで供給し反応を継続し
た。生成するクロロホルム等の気体成分は気液分離器に
より連続的に取り出し、未反応の四塩化炭素等の液体成
分は反応器に戻しリサイクルした。圧力は5kg/cm
2 Gであった。生成物については気相成分、液相成分、
いずれもガスクロマトグラフィーを用いて分析を行っ
た。反応開始後100時間における四塩化炭素のワンパ
スでの反応率は91%であり、クロロホルム(選択率:
90%)、パークロロエチレン(選択率:5%)等の生
成が確認された。
Example 1 4 liters of a 3 mm-diameter platinum catalyst supported on molded charcoal (supporting amount: 2% by weight, manufactured by NE Chemcat Co.)
mm cylindrical reactor. After filling the catalyst layer with carbon tetrachloride, nitrogen was sealed. After the temperature was raised to 80 ° C., the supply of hydrogen was started. The reaction was continued by continuously supplying 3 moles of hydrogen to 1 mole of carbon tetrachloride in an upflow manner. The gaseous components such as chloroform generated were continuously taken out by a gas-liquid separator, and the unreacted liquid components such as carbon tetrachloride were returned to the reactor and recycled. The pressure is 5kg / cm
Was 2 G. For the product, gas phase component, liquid phase component,
All were analyzed using gas chromatography. 100 hours after the start of the reaction, the reaction rate of carbon tetrachloride in one pass was 91%, and chloroform (selectivity:
90%) and perchlorethylene (selectivity: 5%).

【0025】実施例2 触媒として径5mmの成形炭担持パラジウム触媒(担持
量:2重量%、エヌ・イー・ケムキャット社製)を用い
る他は実施例1と同様にして実験を行い、生成物の分析
を行った。反応開始後100時間における四塩化炭素の
ワンパスでの反応率は92%であり、クロロホルム(選
択率:85%)、パークロロエチレン(選択率:10
%)、メタン(選択率:5%)等の生成が確認された。
Example 2 An experiment was carried out in the same manner as in Example 1 except that a palladium catalyst supported on molded charcoal having a diameter of 5 mm (loading amount: 2% by weight, manufactured by NE Chemcat) was used as a catalyst. Analysis was carried out. 100 hours after the start of the reaction, the conversion of carbon tetrachloride in one pass was 92%, and chloroform (selectivity: 85%) and perchlorethylene (selectivity: 10).
%), Methane (selectivity: 5%) and the like were confirmed.

【0026】実施例3 触媒として径1mmの成形炭担持白金触媒(担持量:2
重量%、エヌ・イー・ケムキャット社製)1リットル
を、内径30mmの円筒形反応器に充填した。窒素を充
たした後80℃まで昇温した。触媒を水素で十分に還元
した後、水素と四塩化炭素をモル比5:1でダウンフロ
ーで供給した。生成物については、気相成分、液相成
分、いずれもガスクロマトグラフィーを用いて分析し
た。反応開始後100時間における四塩化炭素の反応率
は94%であり、クロロホルム(選択率:90%)、パ
ークロロエチレン(選択率:5%)等の生成が確認され
た。
Example 3 As a catalyst, a platinum-supported platinum catalyst having a diameter of 1 mm (amount supported: 2)
1 liter (weight%, manufactured by NE Chemcat) was charged into a cylindrical reactor having an inner diameter of 30 mm. After filling with nitrogen, the temperature was raised to 80 ° C. After the catalyst was sufficiently reduced with hydrogen, hydrogen and carbon tetrachloride were supplied in a down flow at a molar ratio of 5: 1. The product was analyzed using gas chromatography for both the gas phase component and the liquid phase component. 100 hours after the start of the reaction, the conversion of carbon tetrachloride was 94%, and formation of chloroform (selectivity: 90%), perchloroethylene (selectivity: 5%), and the like was confirmed.

【0027】実施例4 触媒として径1mmの成形炭担持白金触媒(担持量:2
重量%、エヌ・イー・ケムキャット社製)1リットル
を、内径30mmの円筒形反応器に充填した。窒素を充
たした後90℃まで昇温した。触媒を水素で十分に還元
した後、水素とヘキサクロロエタンとクロロホルムとを
モル比5:1:1でダウンフローで供給した。生成物に
ついては、気相成分、液相成分、いずれもガスクロマト
グラフィーを用いて分析を行った。反応開始後100時
間におけるヘキサクロロエタンの反応率は81%であ
り、パークロロエチレン(選択率:95%)、ペンタク
ロロエタン(選択率:1%)等の生成が確認された。
Example 4 As a catalyst, a platinum catalyst supported on molded charcoal having a diameter of 1 mm (amount supported: 2)
1 liter (weight%, manufactured by NE Chemcat) was charged into a cylindrical reactor having an inner diameter of 30 mm. After filling with nitrogen, the temperature was raised to 90 ° C. After the catalyst was sufficiently reduced with hydrogen, hydrogen, hexachloroethane and chloroform were supplied in a down flow at a molar ratio of 5: 1: 1. Regarding the product, both the gas phase component and the liquid phase component were analyzed using gas chromatography. 100 hours after the start of the reaction, the conversion of hexachloroethane was 81%, and formation of perchlorethylene (selectivity: 95%), pentachloroethane (selectivity: 1%) and the like was confirmed.

【0028】実施例5 触媒として径1mmの成形炭担持パラジウム触媒(担持
量:2重量%、エヌ・イー・ケムキャット社製)1リッ
トルを、内径30mmの円筒形反応器に充填した。窒素
を充たした後95℃まで昇温した。触媒を水素で十分に
還元した後、水素とジクロロプロパンをモル比2:1で
ダウンフローで供給した。圧力は10kg/cm2 Gで
あった。生成物については、気相成分、液相成分、いず
れもガスクロマトグラフィーを用いて分析を行った。反
応開始後100時間におけるジクロロプロパンの反応率
は81%であり、プロピレン(選択率:80%)、プロ
パン(選択率:20%)等の生成が確認された。
Example 5 As a catalyst, 1 liter of a formed palladium catalyst supported on charcoal having a diameter of 1 mm (loading amount: 2% by weight, manufactured by NE Chemcat) was charged into a cylindrical reactor having an inner diameter of 30 mm. After filling with nitrogen, the temperature was raised to 95 ° C. After the catalyst was sufficiently reduced with hydrogen, hydrogen and dichloropropane were supplied in a down flow at a molar ratio of 2: 1. The pressure was 10 kg / cm 2 G. Regarding the product, both the gas phase component and the liquid phase component were analyzed using gas chromatography. 100 hours after the start of the reaction, the conversion of dichloropropane was 81%, and production of propylene (selectivity: 80%), propane (selectivity: 20%) and the like was confirmed.

【0029】[0029]

【発明の効果】本発明は、実施例に示した如く、多塩素
化アルカン類を固定床触媒の存在下に液相で水素を用い
て還元することにより、含水素クロロカーボン類を高収
率で製造し得るという効果を有する。また、本発明方法
は、原料多塩素化アルカン類の反応率を高めても、目的
物の含水素クロロカーボン類を高い選択率で得ることが
できるという効果も有する。さらに、本発明において
は、触媒活性を損なう不純物を生成する副反応を効果的
に抑制し得ることから、触媒寿命の観点からも極めて有
利である。さらにまた、本発明方法は、連続化プロセス
として極めて有利であり、特に工業的規模の連続化プロ
セスとして好適である。
As shown in the examples, the present invention reduces hydrogenated chlorocarbons in a high yield by reducing polychlorinated alkanes with hydrogen in the liquid phase in the presence of a fixed bed catalyst. This has the effect of being able to be manufactured with. Further, the method of the present invention has an effect that even if the reaction rate of the raw material polychlorinated alkanes is increased, the target hydrogen-containing chlorocarbons can be obtained with a high selectivity. Furthermore, in the present invention, since a side reaction that generates impurities that impair the catalytic activity can be effectively suppressed, it is extremely advantageous from the viewpoint of catalyst life. Furthermore, the method of the present invention is extremely advantageous as a continuous process, and particularly suitable as an industrial-scale continuous process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 23/46 311 B01J 23/46 311X C07C 11/06 C07C 11/06 (72)発明者 吉武 優 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社 中央研究所内 (72)発明者 立松 伸 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社 中央研究所内 (56)参考文献 特開 平1−258631(JP,A) 特開 平3−133939(JP,A) 特表 平4−504728(JP,A) 米国特許3579596(US,A)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI B01J 23/46 311 B01J 23/46 311X C07C 11/06 C07C 11/06 (72) Inventor Yu Yoshitake Hazawa, Kanagawa-ku, Kanagawa-ku, Kanagawa Prefecture 1150, Asahi Glass Co., Ltd., Central Research Laboratory (72) Inventor Shin Tachimatsu 1150, Hazawacho, Kanagawa-ku, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Co., Ltd., Central Research Laboratory (56) JP-A-3-133939 (JP, A) Table 4 JP-A-4-504728 (JP, A) US Patent 3,579,596 (US, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定床還元触媒の存在下、液相で塩素原子
と炭素原子とのみまたは塩素原子と水素原子と炭素原子
とのみからなる多塩素化アルカン類を水素により還元す
ることを特徴とする多塩素化アルカン類の還元方法。
(1) chlorine atom in a liquid phase in the presence of a fixed bed reduction catalyst ;
And carbon and only or chlorine and hydrogen and carbon
A method for reducing polychlorinated alkanes, which comprises reducing hydrogenated polychlorinated alkanes consisting only of :
【請求項2】還元触媒が8族、9族および10族元素か
ら選ばれる少なくとも1種の元素を主成分とする触媒で
ある請求項1記載の還元方法。
2. A group reduction catalyst 8, Group 9 and at least one method of reducing claim 1, wherein the element is a catalyst mainly composed of selected from Group 10 elements.
【請求項3】還元触媒中の主成分元素が、ルテニウム、
ロジウム、パラジウムおよび白金から選ばれる少なくと
も1種の白金族元素である請求項1または2記載の還元
方法。
3. The method according to claim 1, wherein the main component element in the reduction catalyst is ruthenium,
Rhodium, at least one method of reducing claim 1 or 2, wherein the platinum group element selected from palladium and platinum.
【請求項4】還元温度が0℃〜300℃である請求項
1、2または3記載の還元方法。
4. A method of reducing claim 1, wherein the reduction temperature is 0 ° C. to 300 ° C..
JP4151507A 1992-05-19 1992-05-19 Reduction method of polychlorinated alkanes Expired - Lifetime JP3031508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151507A JP3031508B2 (en) 1992-05-19 1992-05-19 Reduction method of polychlorinated alkanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151507A JP3031508B2 (en) 1992-05-19 1992-05-19 Reduction method of polychlorinated alkanes

Publications (2)

Publication Number Publication Date
JPH05320076A JPH05320076A (en) 1993-12-03
JP3031508B2 true JP3031508B2 (en) 2000-04-10

Family

ID=15520024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151507A Expired - Lifetime JP3031508B2 (en) 1992-05-19 1992-05-19 Reduction method of polychlorinated alkanes

Country Status (1)

Country Link
JP (1) JP3031508B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476979A (en) * 1992-10-01 1995-12-19 The Dow Chemical Company Processes for converting chlorinated alkenes to useful, less chlorinated alkenes
US5453557A (en) * 1992-10-01 1995-09-26 The Dow Chemical Company Processes for converting chlorinated byproducts and waste products to useful materials
JPH07285890A (en) * 1994-04-14 1995-10-31 Dow Chem Co:The Hydrodechlorination of chlorinated alkane
US5430215A (en) * 1994-04-14 1995-07-04 The Dow Chemical Company Selective hydrodechlorination of 1,2,3-trichloropropane to produce propylene
JP2012111717A (en) * 2010-11-25 2012-06-14 Ne Chemcat Corp Method for producing compound containing dichloromethyl group
JP5817591B2 (en) * 2012-03-01 2015-11-18 旭硝子株式会社 Method for producing 2,3,3,3-tetrafluoropropene
CN104557442B (en) * 2013-10-18 2017-10-13 江苏扬农化工集团有限公司 The method of comprehensive utilization of carbon trichloride
CN104292069B (en) * 2014-08-26 2016-01-13 巨化集团技术中心 A kind of preparation method of zellon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579596A (en) 1968-03-29 1971-05-18 Dow Chemical Co Hydrogenolysis of carbon tetrachloride and chloroform

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580695B2 (en) * 1988-04-08 1997-02-12 旭硝子株式会社 Method for producing 1,1-dichloro-2,2,2-trifluoroethane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579596A (en) 1968-03-29 1971-05-18 Dow Chemical Co Hydrogenolysis of carbon tetrachloride and chloroform

Also Published As

Publication number Publication date
JPH05320076A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
EP2209759B1 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
JP6673413B2 (en) Method for producing fluoroolefin
JP3031508B2 (en) Reduction method of polychlorinated alkanes
EP0844225B1 (en) A method of producing 1,1,1,3,3-pentafluoro-2-halogeno-3-chloropropane
JP2675116B2 (en) Process for the preparation of 4,4'-diamino-dicyclohexylmethane with low trans-trans isomer content by catalytic hydrogenation of 4,4'-diamino-diphenylmethane
CN102762523B (en) Method for producing 3,3,3-trifluoro propene
KR100222459B1 (en) Process for producing hydrochloromethanes
US6291729B1 (en) Halofluorocarbon hydrogenolysis
US6472575B2 (en) Process for producing adamantane
JP2000281631A (en) Method for catalytic hydrogenation of dinitrotoluene, and catalyst
JP2812800B2 (en) Method for producing chloroform
US5637548A (en) Preparation of bimetallic catalysts for hydrodechlorination of chlorinated hydrocarbons
JP4312334B2 (en) Indan manufacturing method
US6464954B2 (en) Method for hydrogenating an anthraquinone compound
JP2737308B2 (en) Method for producing partially chlorinated methane
JPS6212771B2 (en)
CN114436865B (en) Preparation method of 4-aminocyclohexanol
JP3004115B2 (en) Production method of hydrogen-containing chloroalkanes
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JP2735755B2 (en) Method for producing chloroform
GB2086889A (en) Process for preparing acetaldehyde
JP3547162B2 (en) Method for producing lower halogenated hydrocarbon
RU2070551C1 (en) Method of synthesis of vinyl chloride
KR100645667B1 (en) Process for producing 1-n-halophenylethanol
CN114605224A (en) 1,1,2,2,3,3, 4-heptafluorocyclopentane and preparation method and application thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13