JP3030351B2 - Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel - Google Patents

Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel

Info

Publication number
JP3030351B2
JP3030351B2 JP2010915A JP1091590A JP3030351B2 JP 3030351 B2 JP3030351 B2 JP 3030351B2 JP 2010915 A JP2010915 A JP 2010915A JP 1091590 A JP1091590 A JP 1091590A JP 3030351 B2 JP3030351 B2 JP 3030351B2
Authority
JP
Japan
Prior art keywords
gas
stainless steel
passivation film
film
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010915A
Other languages
Japanese (ja)
Other versions
JPH03215656A (en
Inventor
忠弘 大見
正博 三木
又五郎 前野
裕久 菊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP2010915A priority Critical patent/JP3030351B2/en
Publication of JPH03215656A publication Critical patent/JPH03215656A/en
Application granted granted Critical
Publication of JP3030351B2 publication Critical patent/JP3030351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はステンレス鋼、その製造方法並びにこれを用
いた装置に関し、更に詳しくは著しく耐食性が向上した
ステンレス鋼、その製造方法並びにこれを用いた装置に
関し、その目的とする所は高純度のガスを使用する技術
分野に於いて極めて有効な金属材料を提供せんとするに
ある。
The present invention relates to a stainless steel, a method for producing the same, and an apparatus using the same, and more particularly, a stainless steel having significantly improved corrosion resistance, a method for producing the same, and a method using the same. With respect to the device, the aim is to provide a metal material which is extremely effective in the technical field using high purity gas.

〔従来技術とその問題点〕[Conventional technology and its problems]

半導体製造プロセスでは反応性および腐食性の強い特
殊ガスたとえばBCl3、SiF4、WF6が使用されており、雰
囲気中に水分が存在すると加水分解し塩化水素やフッ化
水素等の強い腐食性を示す酸が発生する。通常これらの
ガスを扱う貯蔵容器・配管・反応チャンバ等にはステン
レス鋼が使用されており、容易に腐食される欠点を有し
ている。
In the semiconductor manufacturing process, highly reactive and corrosive special gases such as BCl 3 , SiF 4 , and WF 6 are used.When moisture is present in the atmosphere, it is hydrolyzed to reduce the strong corrosiveness of hydrogen chloride and hydrogen fluoride. The indicated acid is generated. Usually, stainless steel is used for storage containers, pipes, reaction chambers, and the like that handle these gases, and has a disadvantage that it is easily corroded.

近年半導体デバイスは集積度を向上させるために単位
素子の寸法は年々小さく成っており、1μmからサブミ
クロン、さらに0.5μm以下の寸法を持つ半導体デバイ
スの実用化の為に研究開発が行われている。集積度が向
上すると共に製造プロセスの低温化及び選択性の高いプ
ロセスが不可欠となるため、プロセス雰囲気の高清浄度
化が要求され、この様な高清浄化を要求される装置に若
干の腐食が起こると発生した不純物がウエハーち混入し
膜質の劣化等が生じ、微細加工の精度から得られなくな
るとともに超微細、超高集積デバイスに不可欠の信頼性
に重大な劣化を生じる。従って金属表面の腐食防止が必
要不可欠であるが、従来の装置ではガス供給装置の内面
の耐腐食性対策が行われておらず、使用するハロゲン系
特殊ガスの強烈な反応性の為に二次的汚染が生じ、ガス
の超高純度化が達成されておらず技術の進歩の障害とな
っていた。
In recent years, the size of unit elements of semiconductor devices has been reduced year by year in order to improve the degree of integration, and research and development are being carried out for practical use of semiconductor devices having a size of 1 μm to submicron, and further, 0.5 μm or less. . As the degree of integration is improved and a low-temperature manufacturing process and a process with high selectivity are indispensable, high cleanliness of the process atmosphere is required, and some corrosion occurs in devices requiring such high cleanliness. The generated impurities are mixed into the wafer to deteriorate the quality of the film and the like, which makes it impossible to obtain the precision of the fine processing, and seriously deteriorates the reliability which is indispensable for the ultra-fine and ultra-highly integrated device. Therefore, it is indispensable to prevent corrosion of the metal surface.However, the conventional equipment does not take measures against the corrosion resistance of the inner surface of the gas supply device, and the secondary reaction occurs due to the intense reactivity of the halogen-based special gas used. The contamination of the gas occurred, and the ultra-high purity of the gas was not achieved, which hindered the progress of technology.

またエキシマレーザーの分野では、レーザー発振器が
フッ素に腐食され長期の使用に耐えず実用化が遅れてい
る現状にある。
In the field of excimer lasers, laser oscillators are corroded by fluorine and cannot be used for a long period of time, and their practical use is delayed.

またハロゲン系特殊ガスを取り扱う装置たとえば、RI
E、CVDおよび/またはボンベと配管等の装置内に不働態
化処理を施していない場合、使用ガスと金属表面の酸化
膜や金属表面に吸着されている水分との間で次のような
反応が起こり、副生したガスが二次的汚染をひき起こ
す。
Devices that handle halogen-based special gases, such as RI
E, CVD and / or the following reaction between the gas used and the moisture adsorbed on the metal surface or the metal surface if no passivation treatment is performed in the equipment such as cylinder and piping. Occurs, and the by-product gas causes secondary pollution.

またBF3ガスの場合水分とは次のような反応で分解す
ることが知られている。
It is known that BF 3 gas decomposes with moisture by the following reaction.

BF3+3H2O→B(CFH2)3 この為、BF3ガスをボンベに充填する場合、ボンベ内
付着水を取り除くためにBF3ガスの充填・抜き取りを数
回繰り返して内部洗浄をしているのが現状である。
BF 3 + 3H 2 O → B (CFH 2) 3 Therefore, when filling the BF 3 gas in a bomb, and the inside of the cleaning several times a filling and removal of BF 3 gas in order to remove the cylinder in adhering water That is the current situation.

尚上記に示した反応で副生する生成物の確認はハロゲ
ン系特殊ガスを水分を吸着したボンベに充填し、または
水分を吸着した配管内に通したガスの赤外吸収スペクト
ルを分析しておこなった。
The by-products of the above-mentioned reaction were confirmed by filling a halogen-containing gas into a cylinder adsorbing moisture or analyzing the infrared absorption spectrum of the gas passed through the pipe adsorbing moisture. Was.

このために金属表面に耐腐食性処理を行うことが研究
されており、この研究の1つに金属表面のフッ素化の研
究があり、今まで行われている研究は次の通りである。
For this purpose, it has been studied to perform a corrosion-resistant treatment on a metal surface. One of the studies is a study on fluorination of a metal surface, and the studies performed so far are as follows.

例えば (1)ANL−5924、42頁(1958)に記載の如くニッケル
表面とフッ素の反応。
For example, (1) Reaction of fluorine with a nickel surface as described in ANL-5924, page 42 (1958).

(2)ANL−6477、122頁(1961)に記載の如くニッケル
表面とフッ素の反応。
(2) Reaction of fluorine with nickel surface as described in ANL-6467, p. 122 (1961).

(3)J.Electrochem.Soc.110巻346頁(1963)に記載の
如くニッケル表面とフッ素の反応。
(3) Reaction of fluorine with a nickel surface as described in J. Electrochem. Soc. 110, p. 346 (1963).

(4)Matheson Gas Date Book 211頁(1961)に記載の
如く装置を常温でフッ素により不働態膜化する方法。
(4) A method of converting a device into a passive film with fluorine at normal temperature as described in Matheson Gas Date Book, page 211 (1961).

(5)Ind.End.Chem.57巻47頁(1965)に記載の如く常
温でニッケル合金をフッ素化し、これの液体フッ素中で
の金属の腐食の研究。
(5) Study of the corrosion of metals in liquid fluorine by fluorinating a nickel alloy at room temperature as described in Ind. End. Chem. 57:47 (1965).

(6)J.Electrochem.Soc.114巻218頁(1967)に記載の
如く鉄とフッ素の反応速度を求めた研究。
(6) A study in which the reaction rate between iron and fluorine was determined as described in J. Electrochem. Soc. 114: 218 (1967).

(7)Trans.Met.Soc.AIME 242巻 1635頁(1968)に記
載の如く常温におけるニッケル、銅合金のフッ素との不
働態膜化反応。
(7) Transformation reaction of nickel and copper alloys with fluorine at room temperature as described in Trans. Met. Soc. AIME 242, 1635 (1968).

(8)Oxid.Metals.2巻319頁(1970)に記載の如く銅、
鉄のフッ素化の状況。
(8) Copper as described in Oxid.Metals.2, p.319 (1970);
Status of iron fluorination.

(9)Oxid.Metals.4巻141頁(1972)に記載の如く電解
研磨した面を有する鉄のフッ素化反応速度を求めた研
究。
(9) A study for determining the fluorination reaction rate of iron having an electropolished surface as described in Oxid. Metals. 4, 141 (1972).

などが知られている。これ等公知研究について若干説明
をつけ加える。
Etc. are known. A few explanations about these known studies are added.

即ち(1)、(2)及び(3)はニッケルの反応性の
みが記載されており、生成した膜の耐食性について記載
されていない。また(4)、(5)は積極的成膜ではな
く常温でフッ素化することのみ示されており耐食性は詳
しく記載されていない。(6)は鉄の反応機構について
の記載である。(7)は生成した不働態膜の耐食性につ
いての記載があるが成膜条件、耐食テスト共に27℃と低
温である膜厚も薄く実用的なものではない。また
(8)、(9)は鉄、銅のフッ素化条件の記載があり、
200℃で鉄は耐食性良好とあるが成膜過程の剥離限界温
度についてのみの評価であり腐食性ガスについての耐食
性評価ではない。
That is, (1), (2) and (3) describe only the reactivity of nickel, but do not describe the corrosion resistance of the formed film. Further, (4) and (5) show that the film is not positively formed but fluorinated at room temperature, and the corrosion resistance is not described in detail. (6) describes the reaction mechanism of iron. (7) describes the corrosion resistance of the formed passivation film, but the film thickness at a low temperature of 27 ° C. is not practical for both the film formation conditions and the corrosion resistance test. Further, (8) and (9) describe the fluorination conditions of iron and copper,
Although iron has good corrosion resistance at 200 ° C., it was evaluated only for the peeling limit temperature in the film formation process, not for the corrosive gas.

即ち上記報告はフッ素化反応の研究のみであり、実用
的フッ化不働態膜の形成に関するものは含まれていな
い。従って過酷な条件において完全な耐食性が気体でき
るフッ化不働態膜の形成が強く要求されている。
That is, the above report is only a study of the fluorination reaction, and does not include anything related to the formation of a practical fluorinated passivation film. Therefore, there is a strong demand for the formation of a fluorinated passivation film that can completely vaporize corrosion resistance under severe conditions.

〔発明が解決しようとする課題〕 本発明が解決しようとする課題は、ステンレス鋼の金
属表面にフッ化不働態膜を形成し高純度ガスの純度低下
防止、並びに特殊ガス等の腐食ガスに対して充分な耐食
性を有する金属材料、並びに装置を提供することであ
る。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to form a fluoride passivation film on the metal surface of stainless steel to prevent the purity of a high-purity gas from lowering, and to prevent corrosion of a special gas or the like. And a metal material having sufficient corrosion resistance.

〔課題を解決するための手段〕[Means for solving the problem]

この課題を解決するために、本発明者等は従来から金
属表面の腐食性に関して研究を重ねた結果、金属就中ス
テンレス鋼表面に積極的フッ素化に十分な温度でフッ素
を作用させ、金属フッ化物を主成分とする不働態膜を形
成せしめた後、この不働態膜を熱処理することにより腐
食性ガスに対し、良好な耐食性を有するフッ化不働態膜
を形成しうる事を見出し。即ちステンレス鋼をフッ素化
がおこる十分な温度まで加熱し、フッ素を単体、又は
N2、Ar、He等の不活性ガスで希釈して作用させ、金属と
の密着性が良好で、かつ剥離の生じない金属フッ化物を
主成分とする不働態膜を形成せしめた後、該不働態膜を
不活性ガス中で熱処理することにより、フッ化不働態膜
が形成される。この形成されたフッ化不働態膜は腐食性
ガスに対して極めて優れた耐食性を示すと共に、脱ガス
特性も極めて優れたものであることが見出され、これに
基づく発明を既に出願した(特願昭63−181225号)。
In order to solve this problem, the present inventors have conducted research on the corrosiveness of metal surfaces, and as a result, have made fluorine act on metals, particularly stainless steel surfaces, at a temperature sufficient for active fluorination, and the metal fluorine After forming a passivation film containing a nitride as a main component, it has been found that a fluorinated passivation film having good corrosion resistance against corrosive gas can be formed by heat-treating the passivation film. That is, stainless steel is heated to a temperature sufficient for fluorination to occur, and fluorine alone or
After being diluted with an inert gas such as N 2 , Ar, or He and allowed to act, a passivation film containing metal fluoride as a main component that has good adhesion to metal and does not cause peeling is formed. By heat-treating the passive film in an inert gas, a fluorinated passive film is formed. The formed fluorinated passivation film was found to exhibit extremely excellent corrosion resistance to corrosive gases and also had extremely excellent degassing properties, and an invention based on this was already filed (Japanese Patent Application No. No. 63-181225).

本発明者等は更にこの新技術について引き続き研究を
行った所、次の様な新しい事実を見出した。即ちステン
レス鋼を上記出願の方法でフッ素化して不働態膜を形成
せしめる際に、そのフッ素化する前のステンレス鋼の状
態と、形成されるフッ化不働態膜の特性との間に密接な
関係があることが判明した。
The present inventors have further studied this new technology, and have found the following new facts. That is, when a passivation film is formed by fluorinating stainless steel by the method of the above-mentioned application, there is a close relationship between the state of the stainless steel before fluorination and the characteristics of the fluorinated passivation film to be formed. It turned out that there is.

即ちフッ素化すべきステンレス鋼を予め特定の予備処
理を行うと、たとえフッ素化温度が高温になっても、換
言すればFeF2とFeF3とが混在して生成しても優れた耐食
性を有する不働態膜が強固に形成され、剥離や亀裂が全
く生じないことが判明した。予め特定の予備処理を行わ
ない場合には、ステンレス鋼を高温通常275℃以上でフ
ッ素化すると、FeF2とFeF3とが共に生成して得られる不
働態膜は亀裂や剥離が生ずる可能性があるが、フッ素化
する前に予めある特定の処理、即ちある特定雰囲気下で
熱処理すると、フッ素化温度に関係なくたとえFeF2とFe
F3とが共に生成しても優れた不働態膜が得られることが
判明したものである。従って、フッ素化温度は低温から
高温例えば275℃以上でも何等支障はない。
That is, if the stainless steel to be fluorinated is preliminarily subjected to a specific pretreatment, even if the fluorination temperature is high, in other words, even if FeF 2 and FeF 3 are formed in a mixed manner, the stainless steel does not have excellent corrosion resistance. It was found that the active film was firmly formed and no peeling or cracking occurred. If the specific pre-treatment is not performed in advance, when the stainless steel is fluorinated at a high temperature, usually 275 ° C. or higher, the passive film obtained by forming both FeF 2 and FeF 3 may have cracks and peeling. However, prior to fluorination, if a specific treatment beforehand, that is, heat treatment under a specific atmosphere, regardless of the fluorination temperature, even if FeF 2 and Fe
It has been found that an excellent passivation film can be obtained even when F 3 is produced together. Therefore, there is no problem even if the fluorination temperature is low to high, for example, 275 ° C. or higher.

本発明はこの新しい事実により完成されている。 The present invention has been completed by this new fact.

〔発明の構成並びに作用〕[Configuration and operation of the invention]

本発明は基本的にはステンレス鋼の表面にフッ化不働
態膜を形成せしめること、及びこのフッ化不働態膜が形
成されたステンレス鋼をガス装置の構成材料の少なくと
も一部として使用することである。
The present invention is basically to form a fluoride passivation film on the surface of stainless steel, and to use the stainless steel on which the fluoride passivation film is formed as at least a part of a constituent material of a gas device. is there.

そしてこのフッ素化の前に予めある特定雰囲気下に熱
処理する。この雰囲気として特に水分が極めて低い雰囲
気の条件下に更に好ましくはその温度がステンレス鋼表
面の付着水分を完全に除去しうる温度で熱処理を行うも
のである。このような条件下で予め熱処理した後フッ素
化を行うと、たとえフッ素化温度が275℃よりも高くな
ってFeF3とFeF2とが共に生成しても、得られる不働態膜
は極めて優れた特性を有し、剥離や割れ等は全く生じな
い。
Before the fluorination, heat treatment is performed in advance in a specific atmosphere. The heat treatment is preferably performed under such an atmosphere having a very low moisture content, and more preferably at a temperature at which the moisture attached to the stainless steel surface can be completely removed. When fluorination is performed after heat treatment in advance under such conditions, even if the fluorination temperature is higher than 275 ° C. and both FeF 3 and FeF 2 are generated, the obtained passive film is extremely excellent. It has characteristics and does not cause peeling or cracking at all.

更に高温でのフッ素化を採用することにより、大きい
膜厚を有したフッ化不働態膜の形成が可能であり、耐食
性は著しく向上すると共に、形成された膜の高度を飛躍
的に向上する。
Further, by employing fluorination at a high temperature, it is possible to form a fluorinated passivation film having a large film thickness, and the corrosion resistance is remarkably improved, and the height of the formed film is remarkably improved.

本発明に於いて使用するステンレス鋼は、通常ステン
レス鋼として従来から知られているものが広い範囲でい
ずれも使用される。その代表的な一例としてクロム15〜
28重量%、ニッケル3.5〜15重量%及び残部鉄から成
り、その他の若干成分が更に2〜6重量%含有されてい
るものを例示出来る。
As the stainless steel used in the present invention, any of those conventionally known as stainless steels can be used in a wide range. A typical example is chrome 15 ~
For example, it may be 28% by weight, 3.5 to 15% by weight of nickel and the balance iron, and further contain 2 to 6% by weight of some other components.

本発明に於いてはこのステンレス鋼をフッ素化して、
少なくともその表面の一部または全面に金属フッ化物か
ら成るフッ化不働態膜を形成せしめるものであるが、こ
の際該フッ化不働態膜の少なくとも表面部分にフッ化鉄
を主成分とする層を形成せしめるようにフッ素化し、更
に不活性ガス雰囲気下で熱処理を行う。フッ素化前の予
備処理は不活性ガスの露点が約−50℃以下好ましくは−
75℃以下の雰囲気下、且つ150℃以上の温度で1〜5時
間程度加熱する。フッ素化温度はフッ素化が充分に行え
る温度で良く、低温から高温まで広い範囲で行うことが
出来る。特に275℃よりも高い温度、特に好ましくは300
℃よりも高い温度で行うことが出来る。フッ素化の時間
は1〜5時間である。また形成されたフッ化膜中には主
成分であるフッ化鉄の他にフッ化クロムの生成も認めら
れた。フッ素化は常圧で行うのを基本とするが必要に応
じて加圧下で行うことも出来、この際の圧力としてはゲ
ージ圧力で2気圧以下程度で良い。フッ素化の雰囲気
は、酸素の存在しない状態で行うのが好ましく、従って
フッ素を単独で、あるいは適宜な不活性ガスたとえば
N2、Ar、He等で希釈することが好ましい。
In the present invention, this stainless steel is fluorinated,
A fluorinated passivation film made of a metal fluoride is formed on at least a part or the entire surface of the fluorinated passivation film. It is fluorinated so as to be formed, and heat treatment is further performed in an inert gas atmosphere. In the pretreatment before fluorination, the dew point of the inert gas is about −50 ° C. or less, preferably −
It is heated in an atmosphere of 75 ° C. or less and at a temperature of 150 ° C. or more for about 1 to 5 hours. The fluorination temperature may be a temperature at which fluorination can be sufficiently performed, and can be performed in a wide range from a low temperature to a high temperature. Especially at temperatures higher than 275 ° C., particularly preferably 300
It can be performed at a temperature higher than ℃. The fluorination time is 1 to 5 hours. In the formed fluoride film, formation of chromium fluoride was also recognized in addition to iron fluoride as a main component. The fluorination is basically carried out at normal pressure, but may be carried out under pressure if necessary, and the pressure at this time may be about 2 atm or less as a gauge pressure. The fluorination atmosphere is preferably performed in the absence of oxygen. Therefore, fluorine alone or a suitable inert gas such as
It is preferable to dilute with N 2 , Ar, He or the like.

フッ素化収量後の熱処理は、200℃以上、好ましくは3
00〜600℃でN2、Ar、He等の不活性ガス中で1〜5時間
行うことにより、堅牢かつち密で金属との密着性が良好
であり、更に耐食性並びにガス脱離性も十分に認められ
るフッ化不働態膜を形成する。不働態膜の膜質が熱処理
によってこの様に変化することは驚くべき現象であり、
未だ認められたことのない事実である。
Heat treatment after the fluorination yield is 200 ° C or higher, preferably 3 ° C.
By performing in an inert gas such as N 2 , Ar, or He for 1 to 5 hours at 00 to 600 ° C., it is robust, dense, has good adhesion to metal, and has sufficient corrosion resistance and gas desorption properties. An acceptable fluoridation passivation film is formed. It is a surprising phenomenon that the film quality of the passive film changes in this way by heat treatment.
This is a fact that has not yet been recognized.

本発明に於いては上記フッ素化を行うに際しては、ス
テンレス鋼の表面を予め平滑にすることが好ましい。こ
の際の平滑度としては、Rmax=0.03〜1.0μm(表面の
凹凸の避の最大値)程度が好ましく、これにより大きく
耐食性が向上する。
In the present invention, when performing the above fluorination, it is preferable that the surface of the stainless steel is smoothed in advance. The smoothness at this time is preferably about Rmax = 0.03 to 1.0 μm (maximum value for avoiding surface irregularities), which greatly improves corrosion resistance.

この際の鏡面化処理手段自体は何等限定されず、適宜
な手段が広い範囲で選択され、その代表的な一例として
複合電解研磨する手段を例示出来る。
At this time, the mirror finishing means itself is not limited at all, and an appropriate means is selected in a wide range, and a typical example thereof is a means for performing composite electrolytic polishing.

かくして形成されるフッ化不働態膜は通常400Å以上
好ましくは500Å程度以上の膜厚で形成され、基材たる
ステンレス鋼に十分なる強度をもって形成されるために
容易には剥離せず、また亀裂等も殆ど生じない不働態膜
となっている。
The fluorinated passivation film thus formed is usually formed with a film thickness of 400 mm or more, preferably about 500 mm or more, and is not easily peeled off since it is formed with sufficient strength on the stainless steel as the base material. Is a passive film that hardly occurs.

次いで本発明のガス装置について説明する。 Next, the gas device of the present invention will be described.

本発明のガス装置は基本的にはガス就中腐食性ガスに
接触する部分に上記フッ化不働態膜が形成されたステン
レス鋼を使用するものであり、更に接触しない部分につ
いて上記ステンレス鋼を使用しても良いことは勿論であ
る。
The gas apparatus of the present invention basically uses a stainless steel having the above-mentioned fluorinated passivation film formed in a portion that comes into contact with a gas, particularly a corrosive gas, and further uses the above stainless steel in a portion that does not come into contact with the gas. Of course, it may be possible.

本発明者等は、装置のハロゲン系特殊ガスへの耐食性
および高純度ガスの汚染について研究してきた結果、装
置内面のステンレス鋼表面にフッ素ガスで金属フッ化不
働態膜を形成させることにより、装置がハロゲン系特殊
ガスに耐食性を有すると共に高純度ハロゲン系特殊ガス
を汚染しないことを見出して、装置に係る発明を完成し
たものである。
The present inventors have studied the corrosion resistance of the apparatus to the halogen-based special gas and the contamination of high-purity gas, and as a result, by forming a metal fluoride passivation film with fluorine gas on the stainless steel surface inside the apparatus, the apparatus has been developed. Has found that it has corrosion resistance to halogen-based special gases and does not contaminate high-purity halogen-based special gases, and has completed the invention relating to the apparatus.

ガス装置としてはガスを取り扱う装置全てを包含する
広い概念として使用されており、たとえばガス貯蔵用、
またはガス配送様装置をはじめ、ガスを使用する或いは
ガスが発生する反応装置等が例示出来る。更に詳しくは
たとえばボンベ・ガスホルダー・配管・バルブ・RIE反
応装置・CVD反応装置、WF6等による選択成長装置、シリ
コンウエハー上の配線用金属にフッ化薄膜から成る絶縁
膜を形成するための金属面直接フッ化装置またはエキシ
マレーザー発振器等である。第1図にガス装置の例を模
式図で示した。装置はガス貯蔵用ボンベ201、及びバル
ブ、マスフローコントローラー等を内蔵したガス供給シ
ステム202、及びRIE装置やCVD装置等から成る反応装置2
03、及び真空排気装置205から構成されている。反応装
置203のチャンバー内壁にはフッ化不働態膜204が形成さ
れている。
As a gas device, it is used as a broad concept encompassing all devices that handle gas, for example, for gas storage,
Alternatively, a gas delivery-like apparatus, a reaction apparatus that uses a gas or generates a gas, or the like can be exemplified. More specifically, for example, cylinders, gas holders, pipes, valves, RIE reactors, CVD reactors, selective growth equipment using WF 6, etc., metals for forming insulating films consisting of fluoride thin films on metal for wiring on silicon wafers A surface direct fluorination device or an excimer laser oscillator is used. FIG. 1 is a schematic diagram showing an example of a gas device. The equipment is a gas storage cylinder 201, a gas supply system 202 with a built-in valve, mass flow controller, etc.
03 and an evacuation device 205. A fluorine passivation film 204 is formed on the inner wall of the chamber of the reaction device 203.

第2図に反応チャンバー内壁を不働態化する場合の1
例を模式図で示した。反応チャンバー303を不働態化す
る場合ガス導入ライン301より超高純度のN2又はArを例
えば、毎分10l程度反応チャンバー内に導入し、常温で
十分パーヂすることにより水抜きを行う。水抜きが十分
かどうかは、例えばパーヂライン304に設けられた露点
計305でパーヂガスの露点をモニターすることにより行
えば良い。その後更に、電気炉302によりチャンバー303
全体を200〜450℃程度に加熱し、ほぼ完全に内表面に吸
着しているH2O分子を脱離させる。
FIG. 2 shows the case of passivating the inner wall of the reaction chamber.
An example is shown in a schematic diagram. When the reaction chamber 303 is passivated, ultrapure N 2 or Ar, for example, is introduced into the reaction chamber at a rate of, for example, about 10 liters per minute from the gas introduction line 301, and water is removed by sufficiently purging at room temperature. Whether or not the water is sufficiently drained may be determined, for example, by monitoring the dew point of the purge gas with a dew point meter 305 provided on the purge line 304. Thereafter, the chamber 303 is further moved by the electric furnace 302.
The whole is heated to about 200 to 450 ° C., and H 2 O molecules adsorbed almost completely on the inner surface are eliminated.

次に高純度F2をチャンバー内に導入し、チャンバー内
面にフッ素化を行う。所定の時間フッ素化を行った後再
度チャンバー内に超高純度N2、又はArを導入しチャンバ
ー内に残存している高純度F2をパーヂする。パーヂ完了
後も、そのまま超高純度N2又はArをフローしながらチャ
ンバー内壁に形成された不働態膜の熱処理を300〜500℃
で行う。この様にして形成されたフッ化不働態膜は腐食
性ガスに対して極めて安定であり、又脱ガス特性を極め
て良好である。
Next, high-purity F 2 is introduced into the chamber, and fluorination is performed on the inner surface of the chamber. After performing fluorination for a predetermined time, ultrahigh-purity N 2 or Ar is again introduced into the chamber to purify the high-purity F 2 remaining in the chamber. After the completion of the heat treatment, heat treatment of the passive film formed on the inner wall of the chamber is performed at 300 to 500 ° C. while flowing ultra-high purity N 2 or Ar as it is.
Do with. The fluorinated passivation film formed in this way is extremely stable against corrosive gases and has extremely good degassing properties.

このガス装置に使用されるガスは、チッ素・アルゴン
・ヘリウム等の不活性ガスおよびハロゲン系ガス、たと
えばF2、Cl2、NF3、CF4、SF4、SF6、SiF4、BF3、HF、WF6、MoF6、PF
3、PF5、AsF3、AsF5、BCl3等である。
The gas used in this gas apparatus is an inert gas such as nitrogen, argon, helium and the like, and a halogen-based gas, for example, F 2 , Cl 2 , NF 3 , CF 4 , SF 4 , SF 6 , SiF 4 , BF 3 , HF, WF 6 , MoF 6 , PF
3 , PF 5 , AsF 3 , AsF 5 , BCl 3 and the like.

上記フッ化不働態膜を有するステンレス鋼を用いて装
置を作成するに際しては、予め不働態化膜が形成された
ステンレス鋼を使用して装置を作成しても良く、また装
置を作成した後に必要な構成部分のステンレス鋼に、フ
ッ素を作用させてフッ化不働態膜を形成しても良い。こ
の際のフッ素化の条件等は前記に記載した条件で行えば
良い。
When manufacturing an apparatus using the stainless steel having the fluorinated passivation film, the apparatus may be manufactured using a stainless steel on which a passivation film is formed in advance, or after the apparatus is manufactured, The fluorine passivation film may be formed by causing fluorine to act on the stainless steel of the various components. The conditions for the fluorination at this time may be performed under the conditions described above.

〔実施例〕〔Example〕

本発明の技術的内容をより明確ならしめるために、代
表的な例を抽出して以下に実施例として例示する。
In order to clarify the technical contents of the present invention, typical examples are extracted and illustrated as examples below.

実施例1 SUS−316L研磨板(面平坦度Rmax=0.03〜1.0μm)を
予め露点−90℃のN2ガス中で所定温度で2時間熱処理
後、100%F2ガスを共存せしめ2時間フッ素化し不働態
膜を形成せしめた後、再度N2ガス中で所定温度で熱処理
した。
After 2 hours heat treatment at a predetermined temperature in Example 1 SUS-316L polishing plate (surface flatness Rmax = 0.03 to 1.0 [mu] m) previously dew point -90 ° C. in a N 2 gas, 2 hours fluorine allowed coexist 100% F 2 gas After the passivation film was formed, heat treatment was performed again at a predetermined temperature in N 2 gas.

フッ素化時の各温度による膜厚ぽ測定した。結果を第
1表に示した。第1表に示す温度でフッ素化し形成され
た皮膜は亀裂や剥離が認められなかった。
The film thickness at each temperature during fluorination was measured. The results are shown in Table 1. The coating film fluorinated at the temperatures shown in Table 1 did not show cracks or peeling.

実施例2 第3図に実施例1のサンプルのX線解析チャートを示
す。サンプルNo.1のフッ素化温度200℃の場合はFeF2
み検出されている。サンプルNo.2、3、4の場合FeF2
FeF3で構成された混合皮膜となっている。
Example 2 FIG. 3 shows an X-ray analysis chart of the sample of Example 1. When the fluorination temperature of sample No. 1 was 200 ° C., only FeF 2 was detected. For sample Nos. 2, 3 and 4, FeF 2
It has a mixed film composed of FeF 3.

実施例3 実施例1のサンプルを用い、下記に示す組成のガス中
で25℃、72時間の耐食性を調べた。第2表に示す如く、
いずれの温度でフッ素化した場合も皮膜は亀裂、剥離を
生じることなく、良好な耐食性を示した。
Example 3 The sample of Example 1 was examined for corrosion resistance at 25 ° C. for 72 hours in a gas having the following composition. As shown in Table 2,
When fluorinated at any temperature, the coating did not crack or peel off and showed good corrosion resistance.

耐食テストに用いたガスの組成はHF:5.0、H2O:1.0、N
2:94.0vol%である。
The composition of the gas used for the corrosion resistance test was HF: 5.0, H 2 O: 1.0, N
2 : 94.0 vol%.

実施例4 実施例1のサンプルを用いた形成されたフッ化不働態
膜の硬度をヌープ硬度計を用い測定した。第3表に測定
値を示した。皮膜の形成された表面は皮膜形成前のステ
ンレス鋼表面に比べ著しい硬度の改善が認められた。特
に高温に於けるフッ素化の場合飛躍的に大きな硬度が得
られた。硬度値は1g加重、5秒間の測定値である。
Example 4 The hardness of the fluorinated passivation film formed using the sample of Example 1 was measured using a Knoop hardness meter. Table 3 shows the measured values. The hardness of the surface on which the film was formed was significantly improved as compared with the surface of the stainless steel before the film was formed. Particularly in the case of fluorination at a high temperature, a remarkably large hardness was obtained. The hardness value is a value measured with 1 g weight and 5 seconds.

実施例5 最も腐食性並びに浸透性の強い塩素ガスによる耐食性
の評価を第4表に示した。
Example 5 Table 4 shows the evaluation of the corrosion resistance due to the most corrosive and permeable chlorine gas.

評価に用いたSUS−316L1/4インチ径のパイプは予め−
90℃のN2ガス中で所定温度で2時間熱処理後100%F2
スを共存せしめ2時間フッ素化し不働態膜を形成せしめ
た後、再度N2ガス中で所定温度で熱処理した。フッ化不
働態膜の形成されたパイプ内に塩素ガスを大気圧で封入
し、250℃で1時間放置した時の封入直後及び1時間放
置後の管内の圧力の差よりガスの反応量を算出した。第
4図に評価に使用した装置の概略図を示す。
The SUS-316L 1/4 inch diameter pipe used for evaluation was
After heat treatment at 90 ° C. in N 2 gas at a predetermined temperature for 2 hours, fluorination was performed for 2 hours in the presence of 100% F 2 gas to form a passivation film, and heat treatment was again performed in N 2 gas at a predetermined temperature. Chlorine gas is sealed at atmospheric pressure in a pipe on which a fluorinated passivation film is formed, and the reaction amount of the gas is calculated from the difference between the pressures in the pipe immediately after being sealed at 250 ° C. for one hour and after one hour. did. FIG. 4 shows a schematic diagram of the apparatus used for the evaluation.

高温フッ素化の場合に於いても塩素の消費は認められ
ず、形成された皮膜に亀裂、剥離がないことが認められ
た。
Even in the case of high-temperature fluorination, no consumption of chlorine was recognized, and it was recognized that the formed film had no cracks or peeling.

〔発明の効果〕 本発明により形成せしめたフッ化不働態膜は強力な腐
食性を有するハロゲン系ガスに対し著しい耐食性が認め
られる。フッ化不働態膜が形成された金属材料は超LSI
の微細加工の装置等の製作に大いに効果があることが認
めらた。即ちF2、HFといった従来の技術ではまったく取
り扱うことのできなかった活性なガスの供給が行える様
になった。そのためこれまで液体を使ったウエットプロ
セスでしか除去することのできなかったSiウエハー上の
自然酸化膜をHFガスで、除去することができる様になっ
たのである。プロセス温度の低温化、下地材料の差によ
る選択性の向上等プロセス高性能化に決定的に寄与す
る。さらに、各種の光励起化学反応の励起光源としてあ
るいは、0.5ミクロン以下のパターンサイズのULSIの露
光装置として有望なエキシマレーザーステッパー用光源
として、高信頼化長寿化が望まれているエキシマレーザ
ーに本発明の技術は最適である。KrFエキシマレーザ
ー、及びArFエキシマレーザーの発光波長は、それぞれ2
48nm、193nm、である。
[Effect of the Invention] The fluorinated passivation film formed according to the present invention has remarkable corrosion resistance to a halogen-based gas having strong corrosiveness. Ultra-LSI metal material with fluorinated passivation film
It has been found that the present invention is very effective for the production of fine processing equipment. That is, it is possible to supply an active gas such as F 2 or HF which cannot be handled at all by the conventional technology. Therefore, the native oxide film on the Si wafer, which could only be removed by a wet process using a liquid, can now be removed with HF gas. It contributes decisively to higher process performance, such as lowering the process temperature and improving selectivity due to differences in the base material. Furthermore, the present invention relates to an excimer laser that is expected to have high reliability and long life as an excitation light source for various photoexcited chemical reactions or as a light source for an excimer laser stepper that is promising as a ULSI exposure apparatus having a pattern size of 0.5 μm or less. Technology is optimal. The emission wavelengths of KrF excimer laser and ArF excimer laser are 2
48 nm and 193 nm.

光化学反応励起にも、またサブミクロンULSIの露光に
も絶好の波長である。
It is a perfect wavelength for photochemical reaction excitation and submicron ULSI exposure.

しかし、これまでのエキシマレーザーではパルス毎の
出力をゆらぎが10%を越えると共に寿命も100万パルス
どまりであるため実用技術には成り得なかった。
However, in the conventional excimer laser, the output fluctuation per pulse exceeds 10% and the life is only 1 million pulses, so that it cannot be a practical technique.

本発明のフッ化不働態膜を内面に施したガス供給系、
及び表面にフッ化不働態膜を設けた電極を用いたエキシ
マレーザー(ArF、KrF)のパルス毎のゆらぎは1%以内
になり、寿命も1,000万パルスまで向上した。ステッパ
ーとして1秒に1ショット露光して1年間使用できるこ
とになる。完全に実用技術に耐えるところまで改善され
たのである。
A gas supply system in which the fluorinated passivation film of the present invention is applied to the inner surface,
In addition, the fluctuation of each pulse of excimer laser (ArF, KrF) using an electrode provided with a fluoride passivation film on the surface was within 1%, and the life was improved to 10 million pulses. It can be used as a stepper for one year with one shot exposure per second. It has been improved to the point where it can completely withstand practical technology.

本発明によるフッ化不働態膜の技術を別途本発明者ら
が別途に発明した「ドライエッチング装置」(昭和63年
7月20日出願)、及び「無水フッ化水素希釈ガス発生装
置」(昭和63年7月20日出願)に用いることにより高純
度のフッ化水素ガスの供給が可能となり、かつ装置の耐
食性も極度に向上する効果がある。
The inventors of the present invention separately invented the technology of the fluorinated passivation film according to the present invention separately as a "dry etching apparatus" (filed on July 20, 1988) and an "anhydrous hydrogen fluoride diluted gas generator" (Showa (Application on Jul. 20, 1988) enables the supply of high-purity hydrogen fluoride gas and has the effect of extremely improving the corrosion resistance of the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示すガス装置の模式図であ
る。第2図は反応チャンバーのフッ素化方法の一例を示
す模式図である。第3図は各種不働態膜のX線解析図を
示し、また第4図は耐食性試験に用いた装置の概略図で
ある。 201……ガスボンベ 202……ガス供給システム 203……反応チャンバー 204……フッ化不働態膜 205……排気装置 301……ガス導入ライン 302……電気炉 303……反応チャンバー 304……ガスパージライン 305……露点計 401……SUS−316L1/4インチ径電解研磨管 402……加熱装置 403……水銀マノメーター 404……試料ガスボンベ
FIG. 1 is a schematic view of a gas apparatus showing one embodiment of the present invention. FIG. 2 is a schematic view showing an example of a method for fluorinating a reaction chamber. FIG. 3 shows an X-ray analysis diagram of various passive films, and FIG. 4 is a schematic diagram of an apparatus used for a corrosion resistance test. 201 ... Gas cylinder 202 ... Gas supply system 203 ... Reaction chamber 204 ... Fluorine passivation membrane 205 ... Exhaust device 301 ... Gas introduction line 302 ... Electric furnace 303 ... Reaction chamber 304 ... Gas purge line 305 …… Dew point meter 401 …… SUS-316L 1/4 inch diameter electrolytic polishing tube 402 …… Heating device 403 …… Mercury manometer 404 …… Sample gas cylinder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊山 裕久 奈良県奈良市あやめ池北3丁目7―13 (58)調査した分野(Int.Cl.7,DB名) C23C 8/08 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Hirohisa Kikuyama 3-7-13 Ayame Ikekita, Nara City, Nara Prefecture (58) Field surveyed (Int. Cl. 7 , DB name) C23C 8/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステンレス鋼の表面の少なくとも一部に化
学量論比を満足するフッ化第一鉄並びにフッ化第二鉄の
混合膜層を主成分とする金属フッ化物から成るフッ化不
動態膜が形成されていることを特徴とするフッ化不動態
膜が形成されたステンレス鋼。
1. A fluoride passivation comprising a metal fluoride having a mixed film layer of ferrous fluoride and ferric fluoride satisfying a stoichiometric ratio on at least a part of the surface of stainless steel. A stainless steel on which a fluorinated passivation film is formed, wherein the film is formed.
【請求項2】ステンレス鋼表面がフッ素化前に、予め鏡
面化されたものである請求項(1)に記載のステンレス
鋼。
2. The stainless steel according to claim 1, wherein the surface of the stainless steel is mirror-finished before fluorination.
【請求項3】請求項(1)又は(2)に記載のステンレ
ス鋼を装置の構成部分の少なくとも一部に用いたことを
特徴とする装置。
3. An apparatus characterized in that the stainless steel according to claim 1 or 2 is used for at least a part of components of the apparatus.
【請求項4】上記装置がガス処理用装置である請求項
(3)に記載の装置。
4. The apparatus according to claim 3, wherein said apparatus is a gas processing apparatus.
【請求項5】上記ガス装置がガス貯蔵用、ガス配送用、
ガス反応装置、薄膜形成装置、または反応性ガスエッチ
ング装置である請求項(4)に記載の装置。
5. The gas device according to claim 1, wherein the gas device is for gas storage, gas delivery,
The apparatus according to claim 4, which is a gas reaction apparatus, a thin film forming apparatus, or a reactive gas etching apparatus.
【請求項6】露点が少なくとも−50℃以下の不活性ガス
を用いて、150℃以上の温度の雰囲気を作り、この雰囲
気中でステンレス鋼を、1〜5時間加熱した後フッ素化
して、フッ化不動態膜を形成し、次いで不活性ガス中で
300〜600℃、1〜5時間の条件で熱処理することを特徴
とするフッ化不動態膜が形成されたステンレス鋼の製造
方法。
6. An atmosphere having a dew point of at least -50.degree. C. or less using an inert gas having a dew point of at least 150.degree. C. is formed. In this atmosphere, the stainless steel is heated for 1 to 5 hours and then fluorinated. Passivation film and then in an inert gas
A method for producing stainless steel on which a fluorinated passivation film is formed, wherein heat treatment is performed at 300 to 600 ° C. for 1 to 5 hours.
JP2010915A 1990-01-19 1990-01-19 Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel Expired - Lifetime JP3030351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010915A JP3030351B2 (en) 1990-01-19 1990-01-19 Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010915A JP3030351B2 (en) 1990-01-19 1990-01-19 Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel

Publications (2)

Publication Number Publication Date
JPH03215656A JPH03215656A (en) 1991-09-20
JP3030351B2 true JP3030351B2 (en) 2000-04-10

Family

ID=11763559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010915A Expired - Lifetime JP3030351B2 (en) 1990-01-19 1990-01-19 Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel

Country Status (1)

Country Link
JP (1) JP3030351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082495A (en) 2001-09-12 2003-03-19 Chemical Yamamoto:Kk Stainless steel with fluorine or fluorine and oxygen- containing film layer formed thereon, and production method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69717182T2 (en) 1996-03-07 2003-07-24 Tadahiro Ohmi An excimer laser
EP1146135B1 (en) 1998-12-04 2010-04-28 Stella Chemifa Kabushiki Kaisha Stainless steel having passive fluoride film formed thereon and equipment manufactured therefrom
KR102527163B1 (en) * 2017-08-01 2023-05-02 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method of filled container and filled container
KR102223547B1 (en) * 2020-09-08 2021-03-05 (주)후성 Method for making noodles using dodam rice and konjac and noodles manufactured using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082495A (en) 2001-09-12 2003-03-19 Chemical Yamamoto:Kk Stainless steel with fluorine or fluorine and oxygen- containing film layer formed thereon, and production method therefor

Also Published As

Publication number Publication date
JPH03215656A (en) 1991-09-20

Similar Documents

Publication Publication Date Title
US5009963A (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
EP0352061B1 (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
JP2730695B2 (en) Tungsten film forming equipment
US5259935A (en) Stainless steel surface passivation treatment
US6280597B1 (en) Fluorinated metal having a fluorinated layer and process for its production
EP0902101B1 (en) Metallic material or film having fluorinated surface layer, and fluorination process
EP0512782B1 (en) Stainless steel surface passivation treatment
JP3045576B2 (en) Method of forming passive film on stainless steel and stainless steel
JP2867376B2 (en) Metal material having fluorinated passivation film formed thereon, gas apparatus using the metal material, and method of forming fluorinated passivation film
JP3030351B2 (en) Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel
JPH0466657A (en) Corrosion-resistant aluminum alloy material and its manufacture
JP2018107438A (en) Method for surface treatment of metal member, and method for manufacturing semiconductor element
JPH02175855A (en) Metallic material having formed fluorinated passive state film and device using its metallic material
JPH06322512A (en) Surface treatment for stainless steel material for semiconductor-manufacturing equipment
JPH09217166A (en) Stainless steel, production thereof and evacuating device
JPH05287496A (en) Surface treatment of stainless steel member
JP3084306B2 (en) Method of forming fluorinated passivation film
EP1146135B1 (en) Stainless steel having passive fluoride film formed thereon and equipment manufactured therefrom
JP3955294B2 (en) Corrosion-resistant processing method for semiconductor processing apparatus member and processing member thereof
JP2002038252A (en) Structure resistant to heat, and material and structure resistant to corrosive halogen-based gas
Sugiyama et al. Low outgassing and anticorrosive metal surface treatment for ultrahigh vacuum equipment
KR950012809B1 (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
EP0946407A1 (en) Device and method for the storage, transportation and production of active fluorine
JP3037928B2 (en) Stainless steel, its manufacturing method and pressure reducing device
KR102489717B1 (en) Container for storing high-purity hydrogen fluoride using a metal substrate having low corrosion resistance, and a method for manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

EXPY Cancellation because of completion of term