JP3026190B2 - 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same - Google Patents

5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same

Info

Publication number
JP3026190B2
JP3026190B2 JP14552898A JP14552898A JP3026190B2 JP 3026190 B2 JP3026190 B2 JP 3026190B2 JP 14552898 A JP14552898 A JP 14552898A JP 14552898 A JP14552898 A JP 14552898A JP 3026190 B2 JP3026190 B2 JP 3026190B2
Authority
JP
Japan
Prior art keywords
aminolevulinic acid
strain
acid
producing
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14552898A
Other languages
Japanese (ja)
Other versions
JPH1142083A (en
Inventor
誠司 西川
享 田中
智稔 神永
喜久男 渡辺
伸也 宮地
圭太郎 渡辺
康司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP14552898A priority Critical patent/JP3026190B2/en
Publication of JPH1142083A publication Critical patent/JPH1142083A/en
Application granted granted Critical
Publication of JP3026190B2 publication Critical patent/JP3026190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、5−アミノレブリ
ン酸を高濃度で生産・蓄積することのできる微生物及び
これを用いた5−アミノレブリン酸の製造法に関する。
TECHNICAL FIELD The present invention relates to a microorganism capable of producing and accumulating 5-aminolevulinic acid at a high concentration, and a method for producing 5-aminolevulinic acid using the microorganism.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】5−ア
ミノレブリン酸は、テトラピロール化合物の前駆体とし
て広く生物圏に存在し、生体中で重要な役割を果たして
いる化合物である。5−アミノレブリン酸は、除草剤、
殺虫剤、植物成長調節剤、植物の光合成増強剤等として
優れた作用を示し、しかも人畜に対して毒性を示さず、
分解性が高いため環境への残留性もないなど、優れた特
性を有する天然化合物である(特開昭61−50281
4号公報、特開平2−138201号公報等参照)。
BACKGROUND OF THE INVENTION 5-Aminolevulinic acid is a compound that exists widely in the biosphere as a precursor of a tetrapyrrole compound and plays an important role in living organisms. 5-aminolevulinic acid is a herbicide,
Insects, plant growth regulators, show excellent action as a plant photosynthesis enhancer, etc., and also show no toxicity to humans,
It is a natural compound having excellent properties such as high decomposability and no persistence in the environment (JP-A-61-50281).
No. 4, JP-A-2-138201, etc.).

【0003】しかし、5−アミノレブリン酸は、生産コ
ストが高く、上記用途に使用するには実用性に欠けると
いう問題がある(CHEMICAL WEEK/OCTOBER, 29, 198
4)。
[0003] However, 5-aminolevulinic acid has a problem that its production cost is high and it is not practical for use in the above applications (CHEMICAL WEEK / OCTOBER, 29, 198).
Four).

【0004】このため、多くの化学合成法が検討されて
いる(例えば、特開平2−76841号公報参照)が、
未だ十分な方法は開発されていない。
For this reason, many chemical synthesis methods have been studied (for example, see Japanese Patent Application Laid-Open No. 2-76841).
No satisfactory method has yet been developed.

【0005】一方、ロドバクテリウム(Rhodobacteriu
m)属、プロピオニバクテリウム(Propionibacterium)
属、メタノバクテリウム(Methanobacterium)属、メタ
ノサルシナ(Methanosarcina)属等の微生物を用いた5
−アミノレブリン酸の製造方法も検討されている。しか
し、プロピオニバクテリウム属、メタノバクテリウム
属、メタノサルシナ属等(特開平5−184376号等
参照)を用いる方法では生産量が非常に低く、満足でき
るものではない。
On the other hand, Rhodobacterium
m) genus, Propionibacterium
5 using microorganisms of the genus Methanobacterium, Methanosarcina, etc.
Methods for producing aminolevulinic acid are also being studied. However, methods using Propionibacterium, Methanobacterium, Methanosarcina and the like (see Japanese Patent Application Laid-Open No. 5-184376) have a very low production amount and are not satisfactory.

【0006】ロドバクテリウム属、ロドシュードモナス
(Rhodopseudomonas)属等の紅色非硫黄細菌の微生物
は、5−アミノレブリン酸を代謝中間体とするテトラピ
ロール化合物の合成能力が高いことが知られている。し
かしながら、これらの微生物を使用すると、生成した5
−アミノレブリン酸は、テトラピロール化合物に代謝さ
れてしまい、望ましい量の5−アミノレブリン酸が蓄積
されないという問題があった。
Microorganisms of red non-sulfur bacteria such as the genus Rhodobacterium and the genus Rhodopseudomonas are known to have a high ability to synthesize tetrapyrrole compounds using 5-aminolevulinic acid as a metabolic intermediate. However, using these microorganisms, the 5
-Aminolevulinic acid is metabolized to a tetrapyrrole compound, and there is a problem that a desired amount of 5-aminolevulinic acid is not accumulated.

【0007】このように生体内において5−アミノレブ
リン酸の生合成は複雑に制御を受けているため、5−ア
ミノレブリン酸を高濃度に蓄積する菌株を作出すること
は容易ではない。
[0007] Since the biosynthesis of 5-aminolevulinic acid is complicatedly controlled in vivo as described above, it is not easy to produce a strain that accumulates 5-aminolevulinic acid at a high concentration.

【0008】これに対し、グルコースを炭素源とし、5
−アミノレブリン酸を最大14.3mM蓄積することが可
能なロドバクテリウム属変異株を用いる方法が提案され
ている(特開平8−168391号)。しかし、この方
法は、培養中の溶存酸素濃度を低濃度に保つ必要があ
り、空気に窒素ガスを混合し培養槽内に通気することが
必要であり、工業的に有利な方法とは言えないものであ
った。なお、この方法では、グルコースを炭素源として
好気的に5−アミノレブリン酸を蓄積させようとする場
合、酸素が必要となる。従って、酸素が十分に存在する
条件下でも微生物がこれを消費することにより、溶存酸
素濃度が下がり、5−アミノレブリン酸が効率よく生産
されることも考えられる。しかし、この微生物を用い比
較的高い溶存酸素条件下で、効率良く5−アミノレブリ
ン酸を生産することは不可能であった。
On the other hand, when glucose is used as a carbon source, 5
A method using a Rhodobacterium mutant capable of accumulating up to 14.3 mM of aminolevulinic acid has been proposed (JP-A-8-168391). However, this method needs to keep the dissolved oxygen concentration during culture at a low concentration, needs to mix nitrogen gas with air and ventilate the culture tank, and cannot be said to be an industrially advantageous method. Was something. In this method, oxygen is required when 5-aminolevulinic acid is accumulated aerobically using glucose as a carbon source. Therefore, it is conceivable that even when oxygen is sufficiently present, the microorganisms consume the dissolved oxygen, thereby lowering the dissolved oxygen concentration and efficiently producing 5-aminolevulinic acid. However, it has been impossible to efficiently produce 5-aminolevulinic acid using this microorganism under relatively high dissolved oxygen conditions.

【0009】従って本発明の目的は、溶存酸素濃度が比
較的高い条件下でも窒素ガス等の導入が不要で、5−ア
ミノレブリン酸を効率よく生産し得る微生物及びこれを
用いた5−アミノレブリン酸の製造法を提供することに
ある。
Accordingly, an object of the present invention is to provide a microorganism capable of efficiently producing 5-aminolevulinic acid without introducing nitrogen gas or the like even under conditions where the dissolved oxygen concentration is relatively high, and a method for producing 5-aminolevulinic acid using the microorganism. It is to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】斯かる実情に鑑み本発明
者は、5−アミノレブリン酸を効率よく生産する微生物
を得るべく鋭意研究を行った結果、グリシン、レブリン
酸等の添加量を適切に変化させ、多数の突然変異株を評
価することができる極めて効率のよい5−アミノレブリ
ン酸生産微生物を選抜する方法を見出し、この方法によ
り、溶存酸素濃度が比較的高くとも5−アミノレブリン
酸を高濃度で蓄積する微生物を見出し本発明を完成し
た。更に本発明者は、培地に糖類、グリシン、レブリン
酸、鉄分等を適切に添加し、培養液中の溶存酸素、酸化
還元電位を制御することにより、5−アミノレブリン酸
の生産量を向上させることができることを見出し本発明
を完成した。
Means for Solving the Problems In view of such circumstances, the present inventors have conducted intensive studies in order to obtain a microorganism that efficiently produces 5-aminolevulinic acid. A method for selecting an extremely efficient 5-aminolevulinic acid-producing microorganism which can be varied to evaluate a large number of mutant strains has been found. By this method, 5-aminolevulinic acid can be produced at a high concentration even when the dissolved oxygen concentration is relatively high. The present inventors have found a microorganism that accumulates in the present invention and completed the present invention. Furthermore, the present inventors improve the production amount of 5-aminolevulinic acid by appropriately adding saccharides, glycine, levulinic acid, iron, and the like to the medium, and controlling the dissolved oxygen and the oxidation-reduction potential in the culture solution. It has been found that the present invention has been completed and the present invention has been completed.

【0011】すなわち本発明は、ロドバクター・スフェ
ロイデス(Rhodobacter sphaeroides )又はその変異株
に属する5−アミノレブリン酸生産微生物であって、溶
存酸素濃度が1.46〜5.86ppmである好気培養
条件下で、3.5〜5.6(n mol/min/mgタンパク)の
5−アミノレブリン酸合成酵素活性を示すことを特徴と
する5−アミノレブリン酸生産微生物を提供するもので
ある。
[0011] That is, the present invention relates to a 5-aminolevulinic acid-producing microorganism belonging to Rhodobacter sphaeroides or a mutant strain thereof, wherein the microorganism has a dissolved oxygen concentration of 1.46 to 5.86 ppm under aerobic culture conditions. A 5-aminolevulinic acid-producing microorganism characterized by exhibiting a 5-aminolevulinic acid synthase activity of 3.5 to 5.6 (nmol / min / mg protein).

【0012】また、本発明は、該5−アミノレブリン酸
生産微生物を培養し、得られた培養物から5−アミノレ
ブリン酸を採取することを特徴とする5−アミノレブリ
ン酸の製造法を提供するものである。
The present invention also provides a method for producing 5-aminolevulinic acid, which comprises culturing the 5-aminolevulinic acid-producing microorganism and collecting 5-aminolevulinic acid from the resulting culture. is there.

【0013】[0013]

【0014】[0014]

【発明の実施の形態】本発明の5−アミノレブリン酸生
産微生物は、例えば、紅色非硫黄細菌の野性株又はその
変異株等を親株として、これを変異処理後、溶存酸素濃
度が1.46〜5.86ppm である条件下で、5−アミ
ノレブリン酸合成酵素活性が3.5〜5.6(n mol/m
in/mgタンパク)である株を選抜することにより得られ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The 5-aminolevulinic acid-producing microorganism of the present invention is obtained, for example, by treating a wild-type red non-sulfur bacterium or its mutant strain as a parent strain and subjecting it to mutation treatment, and then having a dissolved oxygen concentration of 1.46 to 1. Under the condition of 5.86 ppm, 5-aminolevulinic acid synthase activity is 3.5 to 5.6 (nmol / m2).
in / mg protein).

【0015】より具体的には、次の方法により得られ
る。
More specifically, it is obtained by the following method.

【0016】まず、親株が増殖し得る液体培地を試験管
中に調製し、滅菌した後、親株を接種し、振とう培養す
る。そして増殖した菌体を緩衝液で洗浄後、変異操作を
行う。
First, a liquid medium in which the parent strain can grow is prepared in a test tube, sterilized, inoculated with the parent strain, and cultured with shaking. After the grown cells are washed with a buffer, a mutation operation is performed.

【0017】この変異操作としては、通常の変異手段を
用いることができる。例えば、紫外線、電離放射線等の
物理的変異原を寒天培地上の親株に照射したり、エチル
メタンスルホネート(EMS)、N−メチル−N′−ニ
トロ−N−ニトロソグアニジン(NTG)、エチルニト
ロソ尿素(ENU)等のアルキル化剤、ブロモデオキシ
ウリジン(BrdUrd)等の塩基アナログなどの化学
的変異原を添加した緩衝液中で親株を培養する方法を用
いることができる。
For this mutation operation, ordinary mutation means can be used. For example, a parental strain on an agar medium is irradiated with a physical mutagen such as ultraviolet light or ionizing radiation, or ethyl methanesulfonate (EMS), N-methyl-N'-nitro-N-nitrosoguanidine (NTG), or ethyl nitrosourea. A method of culturing the parent strain in a buffer to which a chemical mutagen such as an alkylating agent such as (ENU) or a base analog such as bromodeoxyuridine (BrdUrd) is added can be used.

【0018】上記のような変異手段によって処理した菌
体を、更に緩衝液で洗浄し、寒天培地等に撒き、培養す
る。なお、この培養により生育した変異株の中から、上
記の性質を示す菌株を選抜するには、以下のような工程
にて行う。
The cells treated by the mutation means as described above are further washed with a buffer, spread on an agar medium or the like, and cultured. In order to select a strain showing the above properties from the mutants grown by this culture, the following steps are performed.

【0019】得られた変異株を試験管等で培養し、菌体
増殖後、レブリン酸とグリシンを添加する。これらを添
加後培養液中の5−アミノレブリン酸蓄積量を測定し
て、5−アミノレブリン酸の生産量が多い株を選抜すれ
ばよい。また、より多くの微生物を培養し、評価するた
めには、マイクロタイタープレートを用いることが効率
的で好ましい。更に5−アミノレブリン酸の測定をエー
リッヒ反応により行えば、5−アミノレブリン酸の蓄積
量が視覚的に認識できるので効率的に選抜を行うことが
できる。
The obtained mutant is cultured in a test tube or the like, and after the cells are grown, levulinic acid and glycine are added. After adding them, the amount of accumulated 5-aminolevulinic acid in the culture solution may be measured to select a strain having a large amount of 5-aminolevulinic acid. In order to culture and evaluate more microorganisms, it is efficient and preferable to use a microtiter plate. Further, if the measurement of 5-aminolevulinic acid is performed by the Erich reaction, the amount of accumulated 5-aminolevulinic acid can be visually recognized, so that the selection can be performed efficiently.

【0020】選抜は、まず一回の変異処理で得られた変
異株群およそ15,000株から、5−アミノレブリン
酸の生産性の高い株を1〜100株程度選び、次いで、
これらの株を試験管や寒天プレート上で継代し、生育度
や生産性の安定な菌株を更に選ぶことにより行われる。
このときも、エーリッヒ反応やマイクロタイタープレー
トを用いることが好ましい。
First, about 1-100 strains having high productivity of 5-aminolevulinic acid are selected from about 15,000 strains of mutant strains obtained by one mutation treatment, and then,
These strains are subcultured on a test tube or an agar plate, and the strain is selected by further selecting strains having stable growth and productivity.
Also at this time, it is preferable to use an Erich reaction or a microtiter plate.

【0021】ここで得られた菌株を更に親株として、上
記変異操作及び選抜を繰り返す。変異を重ね5−アミノ
レブリン酸の生産性が高まるにつれて、最適なレブリン
酸の添加濃度が変化することがあるので、レブリン酸の
添加濃度は適宜変更することが好ましい。このようにし
て変異育種を重ね、好気条件で5−アミノレブリン酸を
著量蓄積する能力を備えた菌株は、5−アミノレブリン
酸の代謝関連酵素のうち5−アミノレブリン酸合成酵素
が増強されているという特徴を持っている。また、培養
液中の溶存酸素濃度が2ppm を超えるような条件であっ
ても、同属の光合成細菌の野性株に観られるような5−
アミノレブリン酸合成酵素活性の抑制が起こりにくくな
っている。
The above-described mutation operation and selection are repeated using the obtained strain as a parent strain. The optimal addition concentration of levulinic acid may change as the mutation is repeated and the productivity of 5-aminolevulinic acid increases, so it is preferable to appropriately change the addition concentration of levulinic acid. In this manner, a strain having repeated mutation breeding and capable of accumulating a significant amount of 5-aminolevulinic acid under aerobic conditions has enhanced 5-aminolevulinic acid synthetase among metabolism-related enzymes of 5-aminolevulinic acid. It has the characteristic. Further, even under the condition that the dissolved oxygen concentration in the culture solution exceeds 2 ppm, it is difficult to obtain 5-
Inhibition of aminolevulinic acid synthase activity is less likely to occur.

【0022】上記方法で最初に用いる親株は、ロドバク
ター・スフェロイデスの野生株又はその変異株であり、
具体的には、ロドバクター・スフェロイデス CR−0
02株(FERM P−15312)等が好ましい親株
として挙げられる。
The parent strain used first in the above method is a wild-type strain of Rhodocobacter spheroides or a mutant thereof.
Specifically, Rhodobacter spheroides CR-0
02 strain (FERM P-15312) is a preferred parent strain.

【0023】また、上記の変異、選抜によって得られる
菌株は、ロドバクター・スフェロイデス CR−007
2009と命名され、FERM BP−6320として
寄託されたものが好ましい。この菌株は前記ロドバクタ
ー・スフェロイデス CR−002株の変異、選抜を繰
り返し行い得られたもので、5−アミノレブリン酸を著
量蓄積し得る菌株である。
The strain obtained by the above mutation and selection is Rhodobacter sphaeroides CR-007.
The one named 2009 and deposited as FERM BP-6320 is preferred. This strain is obtained by repeatedly mutating and selecting the above-mentioned Rhodobacter sphaeroides CR-002 strain, and is a strain capable of accumulating a significant amount of 5-aminolevulinic acid.

【0024】ロドバクター・スフェロイデス CR−0
072009株は、上記の通りロドバクター・スフェロ
イデス CR−002株を起源として変異処理によって
得られたものであるから、その菌学的性質の多くは、C
R−002株と同様である。以下、ロドバクター・スフ
ェロイデス CR−0072009株の菌学的性質につ
いて説明する。
Rhodobacter sphaeroides CR-0
The 072009 strain was obtained by mutagenesis from the strain Rhodobacter sphaeroides CR-002 as described above.
Same as for R-002 strain. Hereinafter, the bacteriological properties of the Rhodobacter sphaeroides CR-0072009 strain will be described.

【0025】 a形態的特徴 ・細胞の大きさ形 0.5×1〜2.5μm、桿菌、数個の細胞が長軸 方向に連なる ・胞子の有無 なし b寒天培地における生育状況 ・表1の培地において 円形のコロニー、光沢があり、赤褐色 c生理学的性質 ・グラム染色性 − ・硝酸塩の還元 + ・オキシダーゼ + ・グルコース発酵性 − ・生育の範囲 pH4.0から9.0、10℃から40℃ d化学分類学的性質 ・DNAのG/C含量(モル%) 68 ・キノンタイプ Q−10 ・カロチノイド +(主要成分:クロロキサンチン、メチルク ロロキサンチン) ・バクテリオクロロフィル + eその他生育条件など ・光合成生育 表1の培地で極めて微弱。起源菌は光合成細 菌であるが光合成生育能が低下している。 ・グルコースの資化性(好気的) + ・酢酸ナトリウムの資化性(好気的) + ・5−アミノレブリン酸脱水酵素活性 好気培養で、起源菌(CR−002株) に比べて1/3以下A Morphological characteristics Cell size 0.5 × 1 to 2.5 μm, bacilli, several cells are connected in the longitudinal direction. Spore presence / absence None b. Growth on agar medium Circular colonies in the medium, shiny, reddish brown c Physiological properties-Gram stainability--Reduction of nitrate +-Oxidase +-Glucose fermentability--Growth range pH 4.0 to 9.0, 10C to 40C d Chemical taxonomic properties-G / C content of DNA (mol%) 68-Quinone type Q-10-Carotenoid + (Main components: chloroxanthine, methylchloroxanthine)-Bacteriochlorophyll + e Other growth conditions, etc.-Photosynthetic growth Very weak in the medium of Table 1. The origin bacteria are photosynthetic bacteria, but their photosynthetic viability is reduced. -Glucose assimilation (aerobic) +-Sodium acetate assimilation (aerobic) +-5-Aminolevulinic acid dehydratase activity In aerobic culture, 1 compared to the original bacterium (CR-002 strain) / 3 or less

【0026】以下、本発明の5−アミノレブリン酸生産
微生物を用いた5−アミノレブリン酸の生産条件につい
て、ロドバクター・スフェロイデス CR−00720
09株を用いた場合を中心に説明する。5−アミノレブ
リン酸の生産条件については、通常の微生物培養条件を
適用することができる。例えば、炭素源としてグルコー
ス等の糖類、あるいは酢酸、リンゴ酸、コハク酸等の酸
類を用いることができ、特に糖類が価格の面で有利であ
る。また、窒素源としては、硫安、塩安等のアンモニア
態窒素化合物、硝酸ナトリウム等の硝酸態窒素化合物等
の無機窒素源;グリシン、尿素、ポリペプトン、酵母エ
キス、カザミノ酸等の有機窒素源を用いることができ
る。このうち、グリシンを添加することが、5−アミノ
レブリン酸の生産向上のため好ましい。グリシンの添加
量は、通常10〜1000mMとなるような範囲が好まし
く、特に10〜400mMの範囲が好ましい。またグリシ
ンの1回当りの添加量は10〜200mMが好ましく、こ
れを数回添加することが好ましい。また、培地には、必
要により、ビタミン類、無機塩類等の成分を添加しても
よい。
Hereinafter, the production conditions of 5-aminolevulinic acid using the 5-aminolevulinic acid-producing microorganism of the present invention will be described with respect to Rhodobacter sphaeroides CR-0072.
The description will be made mainly on the case where the 09 strain is used. For the production conditions of 5-aminolevulinic acid, ordinary microorganism culture conditions can be applied. For example, sugars such as glucose or acids such as acetic acid, malic acid and succinic acid can be used as the carbon source, and saccharides are particularly advantageous in terms of price. As the nitrogen source, an inorganic nitrogen source such as an ammonium nitrogen compound such as ammonium sulfate or ammonium salt or a nitrate nitrogen compound such as sodium nitrate; or an organic nitrogen source such as glycine, urea, polypeptone, yeast extract, or casamino acid is used. be able to. Among them, it is preferable to add glycine for improving the production of 5-aminolevulinic acid. The amount of glycine to be added is preferably in the range of usually 10 to 1000 mM, particularly preferably in the range of 10 to 400 mM. The amount of glycine to be added at one time is preferably 10 to 200 mM, and it is preferable to add glycine several times. If necessary, components such as vitamins and inorganic salts may be added to the medium.

【0027】ロドバクテリウム属、ロドシュードモナス
属等の紅色非硫黄細菌に属する微生物は、一般に5−ア
ミノレブリン酸デヒドラターゼを有し、生成した5−ア
ミノレブリン酸を代謝してしまうことが知られている。
しかし、本発明の菌株は、5−アミノレブリン酸デヒド
ラターゼ活性が顕著に低下しているため、レブリン酸等
の5−アミノレブリン酸デヒドラターゼ阻害剤を添加し
なくとも5−アミノレブリン酸を菌体外に蓄積し得る
が、わずかな量の阻害剤を添加すると5−アミノレブリ
ン酸生産能の向上に効果的である。この場合、その添加
量は0.01〜20mM、特に0.1〜10mMの範囲が好
ましい。培養条件としては、ロドバクター・スフェロイ
デスCR−0072009株が生育可能な条件はすべて
用いることができるが、一般には、培養温度は10〜4
0℃、特に20〜35℃とするのが好ましく、培地のpH
は4〜9、特に5〜8とすることが好ましい。なお、培
養時にpHが変化する場合には、水酸化ナトリウム、アン
モニア、水酸化ナトリウム等のアルカリ溶液や、塩酸、
硫酸、リン酸等の酸で上記範囲に調整することが好まし
い。
It is known that microorganisms belonging to red non-sulfur bacteria such as the genus Rhodobacterium and Rhodopseudomonas generally have 5-aminolevulinic acid dehydratase and metabolize the generated 5-aminolevulinic acid.
However, since the 5-aminolevulinic acid dehydratase activity of the strain of the present invention is significantly reduced, 5-aminolevulinic acid accumulates outside the cells without adding a 5-aminolevulinic acid dehydratase inhibitor such as levulinic acid. However, the addition of a small amount of an inhibitor is effective in improving the ability to produce 5-aminolevulinic acid. In this case, the amount of addition is preferably in the range of 0.01 to 20 mM, particularly 0.1 to 10 mM. As the culturing conditions, all the conditions under which the Rhodobacter sphaeroides CR-0072009 strain can be grown can be used.
0 ° C., particularly preferably 20-35 ° C., and the pH of the medium
Is preferably 4 to 9, particularly preferably 5 to 8. If the pH changes during the culture, sodium hydroxide, ammonia, an alkaline solution such as sodium hydroxide, hydrochloric acid,
It is preferable to adjust to the above range with an acid such as sulfuric acid or phosphoric acid.

【0028】5−アミノレブリン酸の生産は、微生物の
増殖と同時に行うことができるが、独立しても行うこと
ができる。この場合に使用する微生物は、増殖菌体、休
止菌体のいずれでもよく、そのまま5−アミノレブリン
酸の生産に使用できるが、遠心分離機等の装置により集
菌し、培地やリン酸緩衝液等の適当な溶液に再懸濁させ
るなど、菌濃度を高くして用いることもできる。
The production of 5-aminolevulinic acid can be carried out simultaneously with the growth of the microorganism, but can also be carried out independently. The microorganism used in this case may be either a growing cell or a quiescent cell and can be used directly for the production of 5-aminolevulinic acid. However, the microorganism is collected by a device such as a centrifugal separator, and a medium, a phosphate buffer, etc. Can be used with a higher bacterial concentration, such as resuspension in an appropriate solution of

【0029】また、更に5−アミノレブリン酸の生産性
を向上させるには、培養液中の溶存酸素量を0.001
〜2ppm 、酸化還元電位を−220mVから50mVの範囲
で制御することが望ましく、更に望ましくは、それぞれ
0.001〜1ppm 、−200mVから0mVの範囲であ
る。このときの制御方法としては、攪拌回転数や通気量
を変化させる方法、糖類や酵母エキスなどを添加して微
生物の呼吸を活発化する方法、あるいはそれらを組み合
わせて行うことができる。
Further, in order to further improve the productivity of 5-aminolevulinic acid, the amount of dissolved oxygen in the culture solution is reduced to 0.001.
It is preferable to control the oxidation-reduction potential in the range of -220 mV to 50 mV, and more preferably in the range of 0.001 to 1 ppm and -200 mV to 0 mV, respectively. As a control method at this time, a method of changing the number of revolutions and the amount of aeration, a method of adding a saccharide or a yeast extract to activate the respiration of microorganisms, or a combination thereof can be used.

【0030】また、更に安定的に溶存酸素あるいは酸化
還元電位を制御するには、微生物の生育速度を上げ、呼
吸活性を安定化させるべく培地中に鉄成分を含有せしめ
ることが有効である。ここで用いる鉄成分は、その塩が
好ましく、この場合の鉄の価数は特に制限はない。鉄成
分としては、塩化第二鉄、硫酸第二鉄、クエン酸鉄等が
挙げられる。また、培地成分として用いられる酵母エキ
スやコーンスティープリカー等の天然成分中に必要量の
鉄分が含まれている場合は、これを鉄成分として用いる
ことができる。鉄成分は、培地中に鉄として5〜500
μMとなるように添加することが好ましい。これが5μ
M未満であると生育促進効果及び呼吸活性を安定化させ
る効果が得られず、500μMを超えると微生物の生育
が阻害されることがある。特に好ましい鉄成分の濃度と
しては、10〜300μMであり、更に好ましい濃度と
しては20〜200μMである。
In order to more stably control dissolved oxygen or oxidation-reduction potential, it is effective to increase the growth rate of microorganisms and to add an iron component to the medium in order to stabilize respiratory activity. The iron component used here is preferably a salt thereof, and the valence of iron in this case is not particularly limited. Examples of the iron component include ferric chloride, ferric sulfate, and iron citrate. When a natural component such as yeast extract or corn steep liquor used as a medium component contains a necessary amount of iron, it can be used as an iron component. The iron component is 5-500 as iron in the medium.
It is preferable to add so as to be μM. This is 5μ
If it is less than M, the growth promoting effect and the effect of stabilizing respiratory activity cannot be obtained, and if it exceeds 500 μM, the growth of microorganisms may be inhibited. A particularly preferred concentration of the iron component is 10 to 300 μM, and a more preferred concentration is 20 to 200 μM.

【0031】生産された5−アミノレブリン酸はイオン
交換法、クロマト法、抽出法等の常法によって必要に応
じて分離・精製することができる。
The produced 5-aminolevulinic acid can be separated and purified as required by a conventional method such as an ion exchange method, a chromatography method, and an extraction method.

【0032】[0032]

【発明の効果】本発明の微生物は、5−アミノレブリン
酸の生産性に優れ、これを用いた5−アミノレブリン酸
の製造方法は、溶存酸素濃度が比較的高くとも窒素ガス
導入等の必要がなく、工業的に有利に5−アミノレブリ
ン酸を製造することができる。
The microorganism of the present invention has excellent productivity of 5-aminolevulinic acid, and the method for producing 5-aminolevulinic acid using the microorganism does not require introduction of nitrogen gas even if the dissolved oxygen concentration is relatively high. It is industrially advantageous to produce 5-aminolevulinic acid.

【0033】[0033]

【実施例】次に実施例を挙げて本発明を説明するが、こ
れらは単に例示の目的で掲げるものであり、本発明はこ
れらに限定されるものではない。
The present invention will now be described by way of examples, which are provided for illustrative purposes only, and are not intended to limit the present invention.

【0034】実施例1 表1に示すグルタメート・グルコース培地(培地1)1
0mlを21mmφの試験管に分注し、121℃で15分間
滅菌した後、放冷した。これにロドバクター・スフェロ
イデスCR−002株(FERM P−15312)の
一白金耳を植菌後、30℃、暗所にて2日間振とう培養
した。
Example 1 Glutamate / glucose medium (medium 1) 1 shown in Table 1
0 ml was dispensed into a 21 mmφ test tube, sterilized at 121 ° C. for 15 minutes, and allowed to cool. One platinum loop of Rhodobacter sphaeroides CR-002 strain (FERM P-15312) was inoculated into this, followed by shaking culture at 30 ° C. in a dark place for 2 days.

【0035】別の21mmφの試験管に培地1を10ml分
注して、上記と同様にして滅菌した。これに、上記の培
養液0.5mlを植え継ぎ、32℃の条件下暗所にて18
時間振とう培養した。
10 ml of the medium 1 was dispensed into another 21 mmφ test tube and sterilized in the same manner as described above. To this, 0.5 ml of the above culture solution was subcultured, and incubated at 32 ° C. in a dark place for 18 minutes.
The cells were cultured with shaking for a time.

【0036】[0036]

【表1】 [Table 1]

【0037】この培養液を洗浄のため3000gにて5
分間遠心分離し、その上清を捨て、遠心分離前と同量の
トリス・マレイン酸緩衝液(pH6.0)に懸濁させた。
この洗浄操作を更に2度繰り返した。この後、再び30
00gにて5分間遠心分離し、その上清を捨て、100
μg/mlのNTGを含むトリス・マレイン酸(pH6.
0)に懸濁させ、室温にて80分間静置培養した。この
ようにして変異処理した菌を、上記と同様の方法で3回
洗浄した後、滅菌した培地1を分注した試験管に植え継
ぎ、暗所32℃にて2日間振とう培養した。培地1に寒
天15g/Lを添加し、121℃で15分間滅菌して調
製した寒天プレートに、上記の培養液を希釈して塗布
し、暗所32℃で4日間培養した。これにより、約15
000株のコロニーを得た。
This culture solution was washed at 3000 g for 5 minutes.
After centrifugation for 1 minute, the supernatant was discarded and suspended in the same volume of Tris-maleate buffer (pH 6.0) as before centrifugation.
This washing operation was repeated twice more. After this, 30
After centrifugation at 00 g for 5 minutes, the supernatant was discarded.
Tris-maleic acid (pH 6.
0) and cultivated at room temperature for 80 minutes. The thus-mutated bacteria were washed three times in the same manner as described above, and then transferred to a test tube in which sterilized medium 1 was dispensed, and cultured with shaking at 32 ° C in a dark place for 2 days. The culture solution was diluted and applied to an agar plate prepared by adding 15 g / L of agar to Medium 1 and sterilizing at 121 ° C. for 15 minutes, followed by culturing at 32 ° C. for 4 days in the dark. As a result, about 15
2,000 colonies were obtained.

【0038】次に、滅菌済みの96穴マイクロプレート
に1ウエル当り0.2mlの滅菌済みの培地1を分注し、
上記の約15000株の変異株をそれぞれ植菌した。こ
れを、30℃、暗所にてマイクロプレートシェイカーを
用いて振とう培養し、48時間後、各ウエルにグリシ
ン、レブリン酸が最終濃度それぞれ30mMとなるように
添加した。更に24時間上記と同じ条件下で振とう培養
した。
Next, 0.2 ml of a sterilized medium 1 per well was dispensed into a sterilized 96-well microplate.
About 15,000 mutant strains described above were inoculated respectively. This was shake-cultured in a dark place at 30 ° C. using a microplate shaker, and after 48 hours, glycine and levulinic acid were added to each well so that the final concentrations were 30 mM each. Shaking culture was performed for another 24 hours under the same conditions as above.

【0039】各ウエルの5−アミノレブリン酸は以下の
ように検出した(エイリッヒ反応)。 (1)各ウエルから培養液を別のマイクロタイタープレ
ートに採取し、1%のアセチルアセトンを含む1Mの酢
酸緩衝液0.1mlを添加し、シールで蓋をして、100
℃、15分インキュベートした後、マイクロタイタープ
レートを氷中で急冷した。 (2)次に、2%のp−ジメチルアミノベンズアルデヒ
ド、16%の過塩素酸を含む酢酸溶液を0.1ml添加
し、室温で15分後、エイリッヒ反応による赤紫の呈色
を観察し、 (3)このとき、反応液を一部取りTLC分析によって
5−アミノレブリン酸に由来しない赤紫の呈色を示す菌
株を排除し、5−アミノレブリン酸生産の高い変異株6
株を選抜した。
5-Aminolevulinic acid in each well was detected as follows (Erich reaction). (1) The culture solution was collected from each well into another microtiter plate, 0.1 ml of a 1 M acetate buffer containing 1% acetylacetone was added, and the plate was covered with a seal.
After incubation at 15 ° C. for 15 minutes, the microtiter plate was quenched in ice. (2) Next, 0.1 ml of an acetic acid solution containing 2% p-dimethylaminobenzaldehyde and 16% perchloric acid was added, and after 15 minutes at room temperature, reddish purple color due to the Erich reaction was observed, (3) At this time, a part of the reaction solution was taken, and by TLC analysis, a strain showing a purple-red coloration not derived from 5-aminolevulinic acid was excluded, and the mutant 6 having a high production of 5-aminolevulinic acid 6
Strains were selected.

【0040】上記6株を培地1試験管にて暗所、30℃
にて48時間培養し、培地1の組成の寒天プレート上に
塗布し、コロニーを形成させた。次に、滅菌済みの96
穴マイクロプレートに1ウエル当り0.2mlの滅菌済み
の培地1を分注し、上記の各コロニーに由来した60個
のコロニーを任意に選び、それぞれ植菌した。これを、
32℃、暗所にてマイクロプレートシェイカーを用いて
振とう培養し、48時間後、各ウエルにグリシンが、最
終濃度30mMとなるように添加し、上記60コロニーの
20コロニーずつについて、レブリン酸を30、15、
1mM添加した。更に24時間上記と同じ条件下で振とう
培養し、各ウエルから培養液を採取しエイリッヒ反応に
より、5−アミノレブリン酸の生産性及びレブリン酸の
至適濃度を調べた。この操作を3回繰り返し、生産性の
高さ及びコロニー間の生産性のバラツキを指標にして、
CR−002株より安定的に生産性の高い変異株1株を
分離した。これをCR−150株と名付けた。レブリン
酸の至適濃度は30mMであった。30mMのレブリン酸を
添加した場合のエーリッヒ反応の553nmの吸光度をマ
イクロプレートリーダーを用いて、5−アミノレブリン
酸の蓄積量を定量したところ、CR−002株が0.0
1mMであるのに対してCR−150株は0.1mMであっ
た。
The above 6 strains were cultured in a medium 1 test tube in a dark place at 30 ° C.
For 48 hours, and spread on an agar plate having the composition of Medium 1 to form a colony. Next, the sterilized 96
0.2 ml of sterilized medium 1 per well was dispensed into a well microplate, and 60 colonies derived from each of the above colonies were arbitrarily selected and inoculated. this,
After shaking culture using a microplate shaker in a dark place at 32 ° C., 48 hours later, glycine was added to each well to a final concentration of 30 mM, and levulinic acid was added to each of 20 colonies of the above 60 colonies. 30, 15,
1 mM was added. Further, the cells were shake-cultured under the same conditions as described above for 24 hours, and a culture solution was collected from each well, and the productivity of 5-aminolevulinic acid and the optimal concentration of levulinic acid were examined by Erich reaction. Repeat this operation three times, using the high productivity and the variation in productivity between colonies as indices,
One mutant strain with higher productivity was isolated more stably than the CR-002 strain. This was named CR-150 strain. The optimal concentration of levulinic acid was 30 mM. When the amount of accumulated 5-aminolevulinic acid was determined using a microplate reader to determine the amount of accumulated 5-aminolevulinic acid, the absorbance at 553 nm of the Erich reaction when 30 mM levulinic acid was added.
The CR-150 strain was 0.1 mM compared to 1 mM.

【0041】実施例2 用いる菌株をCR−150株として実施例1と同様に操
作を行い、約15000株の変異株を誘導した。実施例
1と同様に選抜試験を行い、CR−150株にくらべて
生産性の向上した変異株CR−268株を得た。マイク
ロプレートリーダーを用いてエーリッヒ反応の553nm
の吸光度により5−アミノレブリン酸の蓄積量を定量し
たところ、CR−268株は0.3mMであった。
Example 2 The same operation as in Example 1 was carried out except that the strain used was CR-150, and about 15,000 mutant strains were induced. A selection test was performed in the same manner as in Example 1 to obtain a mutant strain CR-268 having improved productivity as compared to the CR-150 strain. 553 nm of Erich reaction using microplate reader
The amount of accumulated 5-aminolevulinic acid was determined by the absorbance of the strain CR-268 to be 0.3 mM.

【0042】実施例3 用いる菌株をCR−268株として実施例1と同様に操
作を行い、約15000株の変異株を誘導した。実施例
1と同様に選抜試験を行い、CR−268株にくらべて
生産性の向上した変異株CR−368株を得た。マイク
ロプレートリーダーを用いてエーリッヒ反応の553nm
の吸光度により5−アミノレブリン酸の蓄積量を定量し
たところ、CR−368株は0.5mMであった。
Example 3 The same operation as in Example 1 was carried out except that the strain to be used was CR-268, and about 15,000 mutants were induced. A selection test was performed in the same manner as in Example 1 to obtain a mutant CR-368 strain whose productivity was improved as compared with the CR-268 strain. 553 nm of Erich reaction using microplate reader
The amount of accumulated 5-aminolevulinic acid was determined by absorbance of the strain CR-368 to be 0.5 mM.

【0043】実施例4 用いる菌株をCR−368株として実施例1と同様に操
作を行い、約15000株の変異株を誘導した。実施例
1と同様に選抜試験を行い、CR−368株にくらべて
生産性の向上した変異株CR−405株を得た。マイク
ロプレートリーダーを用いてエーリッヒ反応の553nm
の吸光度により5−アミノレブリン酸の蓄積量を定量し
たところ、CR−405株は1.0mMであった。
Example 4 The same operation as in Example 1 was carried out except that the strain to be used was CR-368, and about 15,000 mutants were induced. A selection test was performed in the same manner as in Example 1 to obtain a mutant CR-405 strain having improved productivity as compared with the CR-368 strain. 553 nm of Erich reaction using microplate reader
The amount of accumulated 5-aminolevulinic acid was determined by the absorbance of the strain CR-405 to be 1.0 mM.

【0044】実施例5 用いる菌株をCR−405株として実施例1と同様に操
作を行い、約15000株の変異株を誘導した。加える
レブリン酸濃度を15mMとする以外は実施例1と同様に
選抜試験を行い、CR−405株にくらべて生産性の向
上した変異株CR−502株を得た。マイクロプレート
リーダーを用いてエーリッヒ反応の553nmの吸光度に
より5−アミノレブリン酸の蓄積量を定量したところ、
CR−405株が1.2mMであったのに対して、CR−
502株は2.1mMであった。
Example 5 The same operation as in Example 1 was carried out except that the strain to be used was CR-405 strain, and about 15,000 mutant strains were induced. A selection test was performed in the same manner as in Example 1 except that the concentration of levulinic acid to be added was 15 mM, to obtain a mutant strain CR-502 having improved productivity as compared to the CR-405 strain. When the amount of accumulated 5-aminolevulinic acid was determined by the absorbance at 553 nm of the Erich reaction using a microplate reader,
The CR-405 strain was 1.2 mM, whereas the CR-405 strain was CR-405.
502 strains were 2.1 mM.

【0045】実施例6 用いる菌株をCR−502株として実施例1と同様に操
作を行い、約15000株の変異株を誘導した。加える
レブリン酸濃度を1mMとする以外は実施例1と同様に選
抜試験を行い、CR−502株にくらべて生産性の向上
した変異株CR−660株を得た。マイクロプレートリ
ーダーを用いてエーリッヒ反応の553nmの吸光度によ
り5−アミノレブリン酸の蓄積量を定量したところ、C
R−502株が2.4mMであったのに対して、CR−6
60株は3.3mMであった。
Example 6 The same operation as in Example 1 was carried out except that the strain to be used was CR-502, and about 15,000 mutant strains were induced. A selection test was performed in the same manner as in Example 1 except that the concentration of levulinic acid to be added was 1 mM, to obtain a mutant strain CR-660 having improved productivity as compared with the strain CR-502. Using a microplate reader, the amount of accumulated 5-aminolevulinic acid was determined by the absorbance at 553 nm of the Erich reaction.
Whereas the R-502 strain was 2.4 mM, CR-6 was used.
60 strains were 3.3 mM.

【0046】実施例7 用いる菌株をCR−660株として実施例1と同様に操
作を行い、約15000株の変異株を誘導した。加える
レブリン酸濃度を1mMとする以外は実施例1と同様に選
抜試験を行い、CR−660株にくらべて生産性の向上
した変異株CR−0072001、CR−007200
2、CR−0072009株を得た。マイクロプレート
リーダーを用いてエーリッヒ反応の553nmの吸光度に
より5−アミノレブリン酸の蓄積量を定量したところ、
CR−0072001、CR−0072002、CR−
0072009株はそれぞれ5.9、5.6、4.6mM
であった。
Example 7 The same operation as in Example 1 was carried out except that the strain to be used was CR-660, and about 15,000 mutants were induced. A selection test was performed in the same manner as in Example 1 except that the concentration of levulinic acid to be added was changed to 1 mM, and mutants CR-0072001 and CR-007200 improved in productivity as compared with the CR-660 strain.
2. CR-0072009 strain was obtained. When the amount of accumulated 5-aminolevulinic acid was determined by the absorbance at 553 nm of the Erich reaction using a microplate reader,
CR-0072001, CR-0072002, CR-
0072009 strains are 5.9, 5.6 and 4.6 mM, respectively.
Met.

【0047】実施例8 実施例7で得た変異株CR−0072001、CR−0
072002、CR−0072009株を、培地1を2
00ml調製した500ml容の浸透フラスコに植菌し、暗
所、32℃で48時間往復振とう培養した。培養後、5
000gで10分間遠心して菌体を集め、それぞれ湿菌
体重量が0.5g/10mlとなるように下記培地2で懸
濁させ、21mmの試験管に3mlずつ分注した。このよう
にして得られた試験管を暗所、32℃で往復振とう培養
し、20時間後の培養液中の5−アミノレブリン酸を岡
山らの方法(CLINICAL CHEMISTRY,
Vol.36,No.8,p−1494,1990)で
測定した。その結果、CR−0072001、CR−0
072002、CR−0072009株はそれぞれ1
9.0、21.5、31.0mMであった。
Example 8 Mutants CR-0072001 and CR-0 obtained in Example 7
072002, CR-0072009 strain,
The inoculated flask was inoculated into a 500 ml permeation flask prepared in 00 ml and shake-cultured at 32 ° C for 48 hours in a dark place. After culture, 5
The cells were collected by centrifugation at 000 g for 10 minutes, suspended in the following medium 2 so that the wet cell weight was 0.5 g / 10 ml, and 3 ml was dispensed into a 21 mm test tube. The test tube thus obtained was subjected to reciprocal shaking culture at 32 ° C. in the dark, and the 5-aminolevulinic acid in the culture solution after 20 hours was purified by the method of Okayama et al. (CLINICAL CHEMISTRY,
Vol. 36, no. 8, p-1494, 1990). As a result, CR-0072001, CR-0
072002 and CR-0072009 strains are 1
9.0, 21.5, and 31.0 mM.

【0048】[0048]

【表2】 [Table 2]

【0049】実施例9 変異株CR−0072009株を、培地3を50ml調製
した300ml容のバッフル付三角フラスコに植菌し、暗
所、32℃で48時間回転振とう培養した。これを3L
容の発酵槽に1.8Lの培地3を調製したところへ全量
植菌し、32℃、通気量0.36L/分、400rpm で
攪拌培養した。硫酸と水酸化ナトリウムを用いてpHを
6.5〜6.6に制御しながら培養を続け、培養40時
間後、レブリン酸0.210g、グリシン8.1g、酵
母エキス(日本製薬社製、D−3)18gを添加し、攪
拌回転数を325rpm にして、硫酸と水酸化ナトリウム
を用いてpH6.3から6.4に保ちながら培養を続け
た。更に12時間、26時間、38時間後にグリシンを
8.1gづつ添加した。レブリン酸添加後50時間で培
養を止めた。この培養液中の5−アミノレブリン酸を岡
山らの方法(CLINICAL CHEMISTRY,
Vol.36,No.8,p−1494,1990)で
定量したところ60mMであった。このときのレブリン酸
添加後の培養液内の溶存酸素濃度の平均値は、0.01
ppm であった。また、レブリン酸添加後の培養液内の酸
化還元電位は、−180mVから−50mVの範囲で推移し
ていた。
Example 9 The mutant strain CR-0072009 was inoculated into a 300 ml Erlenmeyer flask equipped with baffles prepared by preparing 50 ml of Medium 3 and cultivated with shaking in a dark place at 32 ° C. for 48 hours. This is 3L
When 1.8 L of the medium 3 was prepared in a fermenter having a capacity of 0.5 ml, the whole amount was inoculated and cultured with stirring at 32 ° C., aeration rate of 0.36 L / min, and 400 rpm. The culture was continued while controlling the pH to 6.5 to 6.6 using sulfuric acid and sodium hydroxide, and after 40 hours of culture, 0.210 g of levulinic acid, 8.1 g of glycine, yeast extract (manufactured by Nippon Pharmaceutical Co., Ltd., D -3) 18 g was added, the culturing was continued at a stirring rotation speed of 325 rpm, and the pH was maintained at 6.3 to 6.4 using sulfuric acid and sodium hydroxide. After 12, 26 and 38 hours, 8.1 g of glycine was added. The culture was stopped 50 hours after the addition of levulinic acid. 5-Aminolevulinic acid in this culture solution was analyzed by the method of Okayama et al. (CLINICAL CHEMISTRY,
Vol. 36, no. 8, p-1494, 1990) and found to be 60 mM. At this time, the average value of the dissolved oxygen concentration in the culture solution after the addition of levulinic acid was 0.01
ppm. Further, the oxidation-reduction potential in the culture solution after the addition of levulinic acid was in the range of −180 mV to −50 mV.

【0050】[0050]

【表3】 [Table 3]

【0051】実施例10 変異株CR−0072009株を、培地3を50ml調製
した300ml容のバッフル付三角フラスコに植菌し、暗
所、32℃で48時間回転振とう培養した。これを3L
容の発酵槽に1.8Lの培地3を調製したところへ全量
植菌し、32℃、通気量0.36L/分、400rpm で
攪拌培養した。硫酸と水酸化ナトリウムを用いてpHを
6.5〜6.6に制御しながら培養を続け、培養40時
間後、レブリン酸0.210g、グリシン8.1g、酵
母エキス18gを添加し、通気量を0.72L/分、攪
拌回転数600rpm にして、硫酸と水酸化ナトリウムを
用いてpH6.3から6.4に保ちながら培養を続けた。
更に12時間、24時間、38時間後にグリシンを8.
1gずつ添加した。レブリン酸添加後50時間で培養を
止めた。この培養液中の5−アミノレブリン酸を岡山ら
の方法(CLINICAL CHEMISTRY,Vo
l.36,No.8,p−1494,1990)で定量
したところ13mMであった。このときのレブリン酸添加
後の培養液内の溶存酸素濃度の平均値は、2.3ppm で
あった。また、レブリン酸添加後の培養液内の酸化還元
電位は、50mVから70mVの範囲で推移していた。
Example 10 The mutant CR-0072009 strain was inoculated into a 300 ml Erlenmeyer flask with a baffle prepared by preparing 50 ml of Medium 3 and cultivated with shaking in a dark place at 32 ° C. for 48 hours. This is 3L
When 1.8 L of the medium 3 was prepared in a fermenter having a capacity of 0.5 ml, the whole amount was inoculated and cultured with stirring at 32 ° C., aeration rate of 0.36 L / min, and 400 rpm. The culture was continued while controlling the pH to 6.5 to 6.6 using sulfuric acid and sodium hydroxide, and after 40 hours of culture, 0.210 g of levulinic acid, 8.1 g of glycine, and 18 g of yeast extract were added. The culture was continued while maintaining the pH at 6.3 to 6.4 using sulfuric acid and sodium hydroxide at 0.72 L / min and a stirring rotation speed of 600 rpm.
Glycine was added after 12, 24, and 38 hours.
1 g each was added. The culture was stopped 50 hours after the addition of levulinic acid. 5-Aminolevulinic acid in this culture solution was analyzed by the method of Okayama et al. (CLINICAL CHEMISTRY, Vo).
l. 36, no. 8, p-1494, 1990) to be 13 mM. At this time, the average value of the dissolved oxygen concentration in the culture solution after the addition of levulinic acid was 2.3 ppm. Further, the oxidation-reduction potential in the culture solution after the addition of levulinic acid was in the range of 50 mV to 70 mV.

【0052】実施例11 変異株CR−0072009株を、培地3を50ml調製
した300ml容のバッフル付三角フラスコに植菌し、暗
所、32℃で48時間回転振とう培養した。これを3L
容の発酵槽に1.8Lの培地3を調製したところへ全量
植菌し、32℃、通気量0.36L/分、400rpm で
攪拌培養した。硫酸と水酸化ナトリウムを用いてpHを
6.5〜6.6に制御しながら培養を続け、培養40時
間後、レブリン酸0.210g、グリシン8.1g、酵
母エキス18gを添加し、通気量を0.18L/分、攪
拌回転数を200rpm にして、硫酸と水酸化ナトリウム
を用いてpH6.0から6.5に保ちながら培養を続け
た。更に12時間、24時間後にグリシンを8.1gず
つ添加した。レブリン酸添加後50時間で培養を止め
た。この培養液中の5−アミノレブリン酸を岡山らの方
法(CLINICAL CHEMISTRY,Vol.
36,No.8,p−1494,1990)で定量した
ところ15mMであった。このときのレブリン酸添加後の
培養液内の溶存酸素濃度は、検出限界以下であった。ま
た、レブリン酸添加後の培養液内の酸化還元電位は、−
220mVから−180mVの範囲で推移していた。実施例
7に示されるごとくRhodobacter spha
eroidesCR−002株を起源菌として変異を重
ねて得られたCR−0072009株は、グルコースや
グリシンなど安価な原料を用いて飛躍的に高い濃度で5
−アミノレブリン酸を生産することのできる菌株であ
り、本菌株を用いれば工業的に5−アミノレブリン酸を
製造することが可能である。また、実施例10、11か
らわかるように、生産性を高めるには、レブリン酸添加
後の培養液内の溶存酸素濃度を2.0ppm 以下、あるい
は培養液内の酸化還元電位を−220mVから50mVの範
囲で制御することが望ましく、これは、攪拌回転数を低
下させることによって容易に行うことができる。
Example 11 The mutant strain CR-0072009 was inoculated into a 300 ml Erlenmeyer flask with a baffle prepared by preparing 50 ml of Medium 3 and cultivated with shaking in a dark place at 32 ° C. for 48 hours. This is 3L
When 1.8 L of the medium 3 was prepared in a fermenter having a capacity of 0.5 ml, the whole amount was inoculated and cultured with stirring at 32 ° C., aeration rate of 0.36 L / min, and 400 rpm. The culture was continued while controlling the pH to 6.5 to 6.6 using sulfuric acid and sodium hydroxide, and after 40 hours of culture, 0.210 g of levulinic acid, 8.1 g of glycine, and 18 g of yeast extract were added. The culture was continued while maintaining the pH at 6.0 to 6.5 with sulfuric acid and sodium hydroxide at 0.18 L / min and a stirring rotation speed of 200 rpm. After 12 hours and 24 hours, 8.1 g of glycine was added. The culture was stopped 50 hours after the addition of levulinic acid. 5-Aminolevulinic acid in this culture solution was analyzed by the method of Okayama et al. (CLINICAL CHEMISTRY, Vol.
36, no. 8, p-1494, 1990) and was 15 mM. At this time, the dissolved oxygen concentration in the culture solution after the addition of levulinic acid was below the detection limit. The oxidation-reduction potential in the culture solution after the addition of levulinic acid was −
The range was from 220 mV to -180 mV. Rhodobacter spha as shown in Example 7.
The CR-0072009 strain obtained by repeatedly mutating the eroides strain CR-002 as a source bacterium was used at an extremely high concentration of 5% by using inexpensive raw materials such as glucose and glycine.
-Aminolevulinic acid is a strain that can produce amino-levulinic acid, and it is possible to industrially produce 5-aminolevulinic acid using this strain. Further, as can be seen from Examples 10 and 11, in order to enhance the productivity, the dissolved oxygen concentration in the culture solution after adding levulinic acid was 2.0 ppm or less, or the oxidation-reduction potential in the culture solution was from -220 mV to 50 mV. Is desirably controlled within the range described above, and this can be easily performed by lowering the stirring rotation speed.

【0053】実施例12 培地3を50ml調製した300ml容のバッフル付三角フ
ラスコ3つを調製し、それぞれに変異株CR−0072
009株を植菌し、暗所、32℃で48時間回転振とう
培養した。これを3基の3L容の発酵槽に1.8Lの培
地3を調製したものへそれぞれ全量植菌し、32℃で培
養した。硫酸と水酸化ナトリウムを用いてpHを6.5〜
6.6に制御しながら、通気量0.36L/分とし、攪
拌数を400rpm とし、うち1基については培養25時
間後に攪拌回転数を250rpm とし、それぞれ90時間
まで培養を続けた。培養中、溶存酸素濃度、5−アミノ
レブリン酸合成酵素活性を測定した。5−アミノレブリ
ン酸合成酵素活性は以下のように測定した。
Example 12 Three 300 ml Erlenmeyer flasks with baffles prepared by preparing 50 ml of the culture medium 3 were prepared, and each of them was a mutant strain CR-0072.
The 009 strain was inoculated and cultivated with rotation and shaking at 32 ° C. for 48 hours in a dark place. The whole was inoculated into 1.8 L of medium 3 prepared in three 3 L fermenters and cultured at 32 ° C. The pH was adjusted to 6.5 using sulfuric acid and sodium hydroxide.
While controlling the pressure at 6.6, the aeration rate was set to 0.36 L / min, the stirring speed was set to 400 rpm, and the stirring speed was set to 250 rpm after 25 hours of culturing for one of them, and the culturing was continued for 90 hours each. During the culture, the dissolved oxygen concentration and 5-aminolevulinic acid synthase activity were measured. 5-Aminolevulinic acid synthase activity was measured as follows.

【0054】培養液を約30mlサンプリングし、遠心分
離により菌体を集めた。集めた菌体をリン酸緩衝液(5
0mM、pH7.2)で洗浄後、同じ組成の緩衝液5mlに再
懸濁し、常法によりフレンチプレスにて、菌体を破砕し
10000gで30分間遠心分離して、得られた上清を
5−アミノレブリン酸合成酵素粗酵素液とした。
About 30 ml of the culture was sampled, and the cells were collected by centrifugation. The collected cells were added to a phosphate buffer (5
After washing with 0 mM, pH 7.2), the cells were resuspended in 5 ml of a buffer having the same composition, and the cells were disrupted by a French press using a conventional method and centrifuged at 10,000 g for 30 minutes. -An aminolevulinic acid synthase crude enzyme solution was used.

【0055】リン酸緩衝液(50mM、pH7.2)の1ml
中にグリシン50mMと、ピリドキサールリン酸0.1mM
とEDTA1mMを含み、更に上記の粗酵素液を蛋白量換
算で1.0mg/mlとなるように加え酵素反応液を調製し
た。これにスクシニル−CoAが0.2mMの濃度で含有
するように加え、37℃でインキュベートした。15分
後、10vol%トリクロロ酢酸を1ml加えて反応を停止
させた。これを3500rpm で10分間遠心分離し、上
清を1mlとり、1%のアセチルアセトンを含む1M酢酸
緩衝液(pH4.7)2mlを加え100℃、15分反応さ
せて直ちに氷冷した。3.5mlのエイリッヒ試薬を加え
15分後の553nmの吸光度からピロール化合物生成量
を測定し、酵素反応による5−アミノレブリン酸生成量
(a)を算出した。次の数1の式によって5−アミノレ
ブリン酸生成速度を求め、これを5−アミノレブリン酸
合成酵素活性とした。培養液中の溶存酸素濃度と、その
ときの5−アミノレブリン酸合成酵素活性の関係を図1
及び表4に示す。尚、図1中溶存酸素濃度10%は0.
7ppm に、溶存酸素濃度90%は6.6ppm に相当す
る。
1 ml of a phosphate buffer (50 mM, pH 7.2)
Glycine 50 mM and pyridoxal phosphate 0.1 mM
And 1 mM EDTA, and the above crude enzyme solution was further added so as to be 1.0 mg / ml in terms of protein amount to prepare an enzyme reaction solution. To this was added succinyl-CoA at a concentration of 0.2 mM and incubated at 37 ° C. After 15 minutes, 1 ml of 10 vol% trichloroacetic acid was added to stop the reaction. This was centrifuged at 3500 rpm for 10 minutes, 1 ml of the supernatant was taken, 2 ml of 1M acetic acid buffer (pH 4.7) containing 1% acetylacetone was added, and the mixture was reacted at 100 ° C. for 15 minutes and immediately cooled with ice. 3.5 ml of Erich reagent was added, and the amount of pyrrole compound produced was measured from the absorbance at 553 nm after 15 minutes, and the amount of 5-aminolevulinic acid produced by the enzyme reaction (a) was calculated. The 5-aminolevulinic acid production rate was determined by the following equation (1), and this was defined as 5-aminolevulinic acid synthase activity. FIG. 1 shows the relationship between the dissolved oxygen concentration in the culture solution and the activity of 5-aminolevulinic acid synthase at that time.
And Table 4 below. The dissolved oxygen concentration of 10% in FIG.
At 7 ppm, a dissolved oxygen concentration of 90% corresponds to 6.6 ppm.

【0056】[0056]

【数1】 (Equation 1)

【0057】比較例1 用いる菌株をCR−002株とする以外は実施例10と
同様に行った。結果を図1及び表4に示す。図1からわ
かるように、CR−0072009株は培養液中の溶存
酸素濃度が2ppm を超えるような条件であっても、光合
成細菌の野性株に観られるような5−アミノレブリン酸
合成酵素活性の抑制が起こりにくくなっている。
Comparative Example 1 The procedure was as in Example 10, except that the strain used was CR-002. The results are shown in FIG. As can be seen from FIG. 1, the CR-0072009 strain inhibits 5-aminolevulinic acid synthase activity as seen in a wild-type photosynthetic bacterium even under conditions where the dissolved oxygen concentration in the culture solution exceeds 2 ppm. Is less likely to occur.

【0058】[0058]

【表4】 [Table 4]

【0059】実施例13 実施例9で用いた培地3(表3)に含まれる酵母エキス
に代え別のメーカーの酵母エキスB(オリエンタル酵母
社製、B−2)5.0g/Lを含有する培地を用い以下
の実験を行った。実施例9と同様、変異株CR−007
2009株を300ml容のバッフル付三角フラスコで4
8時間培養した培養液を、3L容の発酵槽中で、1.8
Lの酵母エキスBで調製した培地3へ全量植菌し、32
℃、通気量0.36L/分、400rpm で攪拌培養し、
レブリン酸0.210g、グリシン8.1g、酵母エキ
スB18gを添加し、攪拌回転数を325rpm に低下さ
せ培養を続けた。レブリン酸添加後、およそ4時間の間
は溶存酸素が0.5ppm を推移したが、5時間後溶存酸
素が上昇し始めた。6時間後これが4ppm まで上昇し、
5−アミノレブリン酸の生成が10mMで停止した。これ
に、塩化第二鉄が20μMとなるように添加したとこ
ろ、添加後2時間以内に溶存酸素が再び0.5ppm 以下
となり、5−アミノレブリン酸の生成が再開したので、
更に12時間、26時間、38時間後にグリシンを8.
1gずつ添加した。レブリン酸添加後50時間で培養を
止めた。この培養液中の5−アミノレブリン酸を岡山ら
の方法(CLINICAL CHEMISTRY,Vo
l.36,No.8,p−1494,1990)で定量
したところ40mMであった。
Example 13 The medium 3 (Table 3) used in Example 9 contains 5.0 g / L of yeast extract B (manufactured by Oriental Yeast Co., Ltd., B-2) instead of the yeast extract contained in Medium 3. The following experiment was performed using the medium. As in Example 9, mutant CR-007
2009 strain in a 300 ml Erlenmeyer flask with baffle
The culture solution cultured for 8 hours was subjected to 1.8 L fermentation in a 3 L fermenter.
L. Yeast extract B, inoculate the whole amount into medium 3 prepared
C., aeration rate 0.36 L / min, stirring culture at 400 rpm,
0.210 g of levulinic acid, 8.1 g of glycine, and 18 g of yeast extract B were added, and the stirring speed was reduced to 325 rpm to continue the culture. After adding levulinic acid, the dissolved oxygen remained at 0.5 ppm for about 4 hours, but after 5 hours the dissolved oxygen began to rise. Six hours later this rose to 4 ppm,
5-Aminolevulinic acid production stopped at 10 mM. To this, when ferric chloride was added to 20 μM, the dissolved oxygen became 0.5 ppm or less again within 2 hours after the addition, and the production of 5-aminolevulinic acid resumed.
Glycine was added after an additional 12, 26, and 38 hours.
1 g each was added. The culture was stopped 50 hours after the addition of levulinic acid. 5-Aminolevulinic acid in this culture solution was analyzed by the method of Okayama et al. (Clinical Chemistry, Vo).
l. 36, no. 8, p-1494, 1990) and found to be 40 mM.

【0060】実施例13から明らかなように鉄分の添加
が呼吸を回復させる効果があることがわかる。
As is clear from Example 13, the addition of iron has the effect of restoring respiration.

【0061】参考例 実施例9で用いた酵母エキス、実施例13で用いた酵母
エキスB、更に下記実施例で用いる別のメーカーの酵母
エキスC(オリエンタル酵母社製、工業用酵母エキス)
に含まれる鉄分をICPmass法にて調べたところ、酵母
エキス1gあたり、それぞれ73μg、25μg、15
5μgであった。この鉄分量からそれぞれの酵母エキス
を用いて調製した培地3に含まれる鉄分は、それぞれ
6.64、2.27、14.1μMであることがわか
る。これより、実施例9では5−アミノレブリン酸を生
産している時点で培養液中に20μMの鉄分が含まれて
おり、実施例13の鉄添加以前の培地では6.8μM、
鉄添加後は、26.8μMの鉄分が含まれていることが
わかる。
Reference Example Yeast extract used in Example 9, Yeast extract B used in Example 13, and yeast extract C of another manufacturer (Industrial yeast extract manufactured by Oriental Yeast Co., Ltd.) used in the following Examples
The iron content of the yeast extract was determined by the ICPmass method to be 73 μg, 25 μg, and 15 μg / g of yeast extract, respectively.
It was 5 μg. From the iron content, it can be seen that the iron content contained in the medium 3 prepared using each yeast extract was 6.64, 2.27, and 14.1 μM, respectively. Thus, in Example 9, the culture solution contained 20 μM iron at the time of producing 5-aminolevulinic acid, and the medium before iron addition in Example 13 had 6.8 μM,
It can be seen that after the addition of iron, 26.8 μM iron was contained.

【0062】実施例14 培地3の酵母エキスに代え上記酵母エキスCを3g/L
として調製した培地に塩化第二鉄を表5に示す濃度にな
るよう添加した培地50mlを調製した300ml容のバッ
フル付三角フラスコに変異株CR−0072009株
〔21mmφの試験管中酵母エキスC10mlで48時間培
養した培養液1ml(660nmの光学密度で0.2)〕を
植菌し、暗所、32℃で回転振とう培養した。酵母エキ
ス中に含まれる鉄分とあわせると表5に示す量の鉄分を
含んでいる。培養30時間後の菌体濃度を660nmの光
学密度で測定した結果を表5に示す。
Example 14 The above yeast extract C was replaced with 3 g / L of the yeast extract in the medium 3.
In a 300 ml Erlenmeyer flask with a baffle prepared by adding 50 ml of a medium obtained by adding ferric chloride to the medium prepared as described in Table 5 to a concentration shown in Table 5, the mutant strain CR-0072009 [48 ml of yeast extract C in a test tube of 21 mmφ with 48 ml) was added. 1 ml of a culture solution (0.2 at an optical density of 660 nm)], which had been cultured for an hour, was inoculated, and cultured with shaking at 32 ° C. in a dark place. When combined with the iron content contained in the yeast extract, the amount of iron content shown in Table 5 is contained. Table 5 shows the results obtained by measuring the cell concentration after culturing for 30 hours at an optical density of 660 nm.

【0063】[0063]

【表5】 [Table 5]

【0064】表5から明らかなように、適切な鉄分の添
加が生育速度を上昇させる効果があることがわかる。
As is clear from Table 5, it can be seen that the addition of an appropriate iron content has the effect of increasing the growth rate.

【0065】実施例15 培地3の酵母エキスに代え上記酵母エキスCを3g/L
として調製した培地に更に20μMの塩化第二鉄を添加
した培地50mlを調製した300ml容のバッフル付三角
フラスコに変異株CR−0072009株〔21mmφの
試験管中酵母エキスC10mlで48時間培養した培養液
1ml(660nmの光学密度で0.2)〕を植菌し、暗
所、32℃で48時間回転振とう培養した。これを3L
容の発酵槽に1.8Lの上記塩化第二鉄添加培地を調製
したところへ全量植菌し、32℃、通気量0.36L/
分、400rpm で攪拌培養した。培養24時間後、レブ
リン酸0.210g、グリシン8.1g、酵母エキスC
9gを添加し、攪拌回転数を325rpm にして、硫酸と
水酸化ナトリウムを用いてpH6.3から6.4に保ちな
がら培養を続けた。更に12時間、26時間、38時間
後にグリシンを8.1gずつ添加した。レブリン酸添加
後50時間で培養を止めた。この培養液中の5−アミノ
レブリン酸を岡山らの方法(CLINICAL CHE
MISTRY,Vol.36,No.8,p−149
4,1990)で定量したところ55mMであった。この
ときのレブリン酸添加後の培養液内の溶存酸素濃度の平
均値は、0.01ppm であった。また、レブリン酸添加
後の培養液内の酸化還元電位は、−180mVから−50
mVの範囲で推移していた。
Example 15 The above yeast extract C was replaced with 3 g / L of the yeast extract C in the medium 3.
The mutant strain CR-0072009 [a culture obtained by culturing for 48 hours with 10 ml of yeast extract C in a test tube of 21 mmφ] in a 300 ml Erlenmeyer flask with a baffle prepared by adding 50 ml of medium to which 20 μM ferric chloride was further added to the medium prepared as described above. 1 ml (0.2 at an optical density of 660 nm)], and cultivated with shaking in the dark at 32 ° C. for 48 hours. This is 3L
1.8 L of the above ferric chloride-supplemented medium was prepared in a fermenter with a volume of 32 ° C., and inoculated at 32 ° C. with an aeration rate of 0.36 L /
The mixture was stirred and cultured at 400 rpm for a minute. After 24 hours of culture, 0.210 g of levulinic acid, 8.1 g of glycine, yeast extract C
9 g was added, the cultivation was continued at a stirring rotation speed of 325 rpm, and the pH was maintained at 6.3 to 6.4 using sulfuric acid and sodium hydroxide. After 12, 26, and 38 hours, 8.1 g of glycine was added. The culture was stopped 50 hours after the addition of levulinic acid. 5-Aminolevulinic acid in this culture solution was analyzed by the method of Okayama et al. (CLINICAL CHE).
MISTRY, Vol. 36, no. 8, p-149
4, 1990) was 55 mM. At this time, the average value of the dissolved oxygen concentration in the culture solution after the addition of levulinic acid was 0.01 ppm. The oxidation-reduction potential in the culture solution after the addition of levulinic acid was from -180 mV to -50.
It was in the range of mV.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶存酸素と5−アミノレブリン酸合成酵素活
性との関係を示す図である。
FIG. 1 is a diagram showing the relationship between dissolved oxygen and 5-aminolevulinic acid synthase activity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:01) (72)発明者 神永 智稔 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所研究開発センター内 (72)発明者 渡辺 喜久男 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所研究開発センター内 (72)発明者 宮地 伸也 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所研究開発センター内 (72)発明者 渡辺 圭太郎 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所研究開発センター内 (72)発明者 堀田 康司 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所研究開発センター内 (56)参考文献 特開 平8−168391(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12N 1/20 C12P 13/00 BIOSIS(DIALOG) WPI(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C12R 1:01) (72) Inventor Tomonori Kanaga 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Research Institute R & D Center Co., Ltd. (72) Inventor Kikuo Watanabe 1134-2 Gongendo, Satte City, Saitama Prefecture Inside Cosmo Research Institute R & D Center (72) Inventor Shinya Miyachi 1134-2 Gongendo, Sate City, Saitama Prefecture R & D Cosmo Research Institute Inc. Within the center (72) Inventor Keitaro Watanabe 1134-2, Gongendo, Satte City, Saitama Prefecture Inside the R & D Center, Cosmo Research Institute, Inc. (72) Koji Hotta 1134-2, Gongendo, Satte City, Saitama Cosmo Research Institute, Inc. research and development Center in (56) reference Patent flat 8-168391 (JP, a) (58 ) investigated the field (Int.Cl. 7, B name) C12N 1/20 C12P 13/00 BIOSIS (DIALOG) WPI (DIALOG)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ロドバクター・スフェロイデス(Rhodob
acter sphaeroides )又はその変異株に属する5−アミ
ノレブリン酸生産微生物であって、溶存酸素濃度が1.
46〜5.86ppmである好気培養条件下で、3.5
〜5.6(n mol/min/mgタンパク)の5−アミノレブリ
ン酸合成酵素活性を示すことを特徴とする5−アミノレ
ブリン酸生産微生物。
[1] Rhodob spheroides (Rhodob)
acter sphaeroides) or a mutant thereof, which is a 5-aminolevulinic acid-producing microorganism having a dissolved oxygen concentration of 1.
Under aerobic culture conditions of 46-5.86 ppm, 3.5
A 5-aminolevulinic acid-producing microorganism, which exhibits a 5-aminolevulinic acid synthetase activity of from 5.6 to 5.6 (nmol / min / mg protein).
【請求項2】 ロドバクター・スフェロイデス(Rhodob
acter sphaeroides)CR−0072009と命名さ
れ、FERM BP−6320として寄託されたもので
ある請求項1記載の5−アミノレブリン酸生産微生物。
2. The method according to claim 1, wherein the bacterium is Rhodob.
The 5-aminolevulinic acid-producing microorganism according to claim 1, which is named acter sphaeroides) CR-0072009 and has been deposited as FERM BP-6320.
【請求項3】 請求項1又は2記載の微生物を培養し、
得られた培養物から5−アミノレブリン酸を採取するこ
とを特徴とする5−アミノレブリン酸の製造法。
3. culturing the microorganism according to claim 1 or 2,
A method for producing 5-aminolevulinic acid, comprising collecting 5-aminolevulinic acid from the obtained culture.
【請求項4】 培養が、レブリン酸又はグリシンを添加
した培地で行われるものである請求項3記載の5−アミ
ノレブリン酸の製造法。
4. The method for producing 5-aminolevulinic acid according to claim 3, wherein the culturing is performed in a medium to which levulinic acid or glycine is added.
【請求項5】 グリシンの添加量が200mM/回以下
である請求項4記載の5−アミノレブリン酸の製造法。
5. The method for producing 5-aminolevulinic acid according to claim 4, wherein the amount of glycine added is 200 mM / time or less.
【請求項6】 培養が、培養液中の溶存酸素濃度を0.
001〜2ppmとするか又は酸化還元電位を−220
〜50mVとした条件で行われるものである請求項3〜
5のいずれか1項記載の5−アミノレブリン酸の製造
法。
6. The cultivation, wherein the dissolved oxygen concentration in the culture solution is reduced to 0.
001 to 2 ppm or the oxidation-reduction potential is -220.
The method is carried out under the condition of 5050 mV.
6. The method for producing 5-aminolevulinic acid according to any one of 5.
【請求項7】 培養が、鉄成分を5〜500μM含有す
る培地で行われるものである請求項3〜6のいずれか1
項記載の5−アミノレブリン酸の製造法。
7. The method according to claim 3, wherein the culture is performed in a medium containing 5 to 500 μM of an iron component.
The method for producing 5-aminolevulinic acid according to the above item.
JP14552898A 1997-05-27 1998-05-27 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same Expired - Lifetime JP3026190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14552898A JP3026190B2 (en) 1997-05-27 1998-05-27 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-136548 1997-05-27
JP13654897 1997-05-27
JP14552898A JP3026190B2 (en) 1997-05-27 1998-05-27 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same

Publications (2)

Publication Number Publication Date
JPH1142083A JPH1142083A (en) 1999-02-16
JP3026190B2 true JP3026190B2 (en) 2000-03-27

Family

ID=26470090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14552898A Expired - Lifetime JP3026190B2 (en) 1997-05-27 1998-05-27 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same

Country Status (1)

Country Link
JP (1) JP3026190B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2459366T3 (en) 2004-09-02 2014-05-09 Cosmo Oil Co., Ltd. Agents improving the constitutive function
JP4977349B2 (en) 2005-09-21 2012-07-18 コスモ石油株式会社 Process for producing 5-aminolevulinic acid hydrochloride
JP4919400B2 (en) * 2006-07-31 2012-04-18 コスモ石油株式会社 Process for producing 5-aminolevulinic acid
JP5404995B2 (en) 2006-08-10 2014-02-05 コスモ石油株式会社 Plant polyphenol extender
JP5039389B2 (en) 2007-02-02 2012-10-03 コスモ石油株式会社 Hop alpha acid or hop oil content improver
WO2008126374A1 (en) 2007-03-30 2008-10-23 Cosmo Oil Co., Ltd. Agent for improving alkali resistance of plant and method for improving alkali resistance of plant
JP2013208074A (en) * 2012-03-30 2013-10-10 Cosmo Oil Co Ltd Method for preparing 5-aminolevulinic acid
KR102127104B1 (en) 2013-03-22 2020-06-26 네오 Ala 가부시키가이샤 Method for producing 5-aminolevulinic acid or salt thereof
JP6391957B2 (en) * 2014-03-20 2018-09-19 コスモAla株式会社 Process for producing 5-aminolevulinic acid or a salt thereof
JP6262047B2 (en) * 2014-03-26 2018-01-17 コスモAla株式会社 Process for producing 5-aminolevulinic acid or a salt thereof
JP6355381B2 (en) * 2014-03-26 2018-07-11 コスモAla株式会社 Process for producing 5-aminolevulinic acid or a salt thereof

Also Published As

Publication number Publication date
JPH1142083A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
KR950009199B1 (en) A method for producing 2-keto-l-gulonis acid
US4529697A (en) Process for producing L-glutamic acid by fermentation
JP3026190B2 (en) 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same
FI86889B (en) FOERFARANDE FOER FRAMSTAELLNING AV L-CARNITIN PAO MIKROBIOLOGISKT SAETT.
EP1041154B1 (en) Process for the preparation of 5-aminolevulinic acid
US5407826A (en) Isolated cultures of microorganisms of Clonostachys Cylindrospora, Gliocladium and Nectria Gliocladioides
KR100233330B1 (en) Microbiological process for the production of 6-hydroxypicolinic acid
US4877728A (en) Biotransformation of L-tyrosine and L-phenylalanine to 2,5-dihydroxyphenylacetic acid followed by polymerization to melanin pigments
JPH08187092A (en) Improving method of hydration activity for converting nitryl compound contained in thermophilic microorganism to amide compound
EP1018546B1 (en) Microorganisms producing 5-aminolevulinic acid and processes for producing 5-aminolevulinic acid by using the same
US4363875A (en) Process for producing L-tryptophan, and a pure culture of a microorganism strain used in said process
JP3786301B2 (en) 5-aminolevulinic acid-producing microorganism
JP3118175B2 (en) 5-Aminolevulinic acid-producing bacteria and method for selecting the same
US4322498A (en) Citric acid producing mutant yeast strains
US5316939A (en) Microorganism belonging to the genus Rhodococcus, and process for producing sec-cedrenol and cedrenone
CA1119981A (en) Process for preparing 2,5-diketogluconic acid
JP2991395B2 (en) 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid
JPH06141875A (en) Production of 5-aminolevulinic acid by microorganism
US4968610A (en) Process for the preparation of chanoclavine
US4430429A (en) Production of vitamin B12 -activity substances
JP3492750B2 (en) 5-Aminolevulinic acid-producing microorganism and method for producing the same
JP3413294B2 (en) Method for producing 2,5-dihydroxypyridine and bacteria producing 2,5-dihydroxypyridine
JP3066273B2 (en) 5-Aminolevulinic acid producing microorganism
JPH04271787A (en) Production of d-lactic acid and genus pseudomonas bacterium
JP2586283B2 (en) Method for producing L-carnitine by microbiological means

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term