JP3005371B2 - Surface treatment method for ferritic stainless steel - Google Patents

Surface treatment method for ferritic stainless steel

Info

Publication number
JP3005371B2
JP3005371B2 JP4273245A JP27324592A JP3005371B2 JP 3005371 B2 JP3005371 B2 JP 3005371B2 JP 4273245 A JP4273245 A JP 4273245A JP 27324592 A JP27324592 A JP 27324592A JP 3005371 B2 JP3005371 B2 JP 3005371B2
Authority
JP
Japan
Prior art keywords
alloy
weight
hardness
stainless steel
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4273245A
Other languages
Japanese (ja)
Other versions
JPH06122957A (en
Inventor
順二 今井
修司 山田
糾 濱田
一博 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4273245A priority Critical patent/JP3005371B2/en
Publication of JPH06122957A publication Critical patent/JPH06122957A/en
Application granted granted Critical
Publication of JP3005371B2 publication Critical patent/JP3005371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、表面硬度が高くて、
耐磨耗性、母材硬度および母材靭性がいずれも十分であ
って、刃物、ギア、シャフトなどの部品に適するものが
得られるフェライト系ステンレス材の表面処理方法に関
する。
BACKGROUND OF THE INVENTION The present invention provides a high surface hardness
The present invention relates to a surface treatment method for a ferritic stainless steel material which has sufficient wear resistance, base material hardness, and base material toughness, and is suitable for components such as blades, gears, and shafts.

【0002】[0002]

【従来の技術】従来、母材硬度や母材靭性の十分な金属
材の表面にセラミックのコーテング層を形成し、表面硬
度や耐磨耗性を上げる試みがなされている。セラミック
のコーテング層の形成方法には、溶射、PVD、CVD
が挙げられる。しかしながら、溶射では緻密なコーテン
グ層が形成出来ないため、十分な表面硬度の確保ができ
ず、PVDやCVDではコーテング層の厚みや密着強度
が不足するため結果的に表面硬度や耐磨耗性を上げるこ
とが出来ない。
2. Description of the Related Art Conventionally, attempts have been made to increase the surface hardness and abrasion resistance by forming a ceramic coating layer on the surface of a metal material having sufficient base material hardness and base material toughness. The method for forming the ceramic coating layer includes thermal spraying, PVD, and CVD.
Is mentioned. However, since a dense coating layer cannot be formed by thermal spraying, a sufficient surface hardness cannot be ensured. In the case of PVD or CVD, the thickness and adhesion strength of the coating layer are insufficient. As a result, the surface hardness and abrasion resistance are reduced. I can't raise it.

【0003】一方、従来、鋼やFe−Cr−Al系鋼の
表面に、(例えば、NH3 ガスの熱分解を伴う)ガス窒
化や(例えば、N2 ガスやNH3 ガスのグロー法でによ
る分解を伴う)イオン窒化で窒化物層を生成イオン窒化
で窒化物層を生成させることで表面硬度や耐磨耗性を上
げる方法がある。この窒化による方法は、表面にコーテ
ング層を積層するのではなく、鋼の表面から少し内部の
間を窒化物に変える方法であるため、剥離・欠落の心配
はなくてHv=1000程度の表面硬度になる。ただ、
母材硬度がHv=200程度と随分低く十分でない。焼
き入れで母材硬度を予め上げても、窒化温度が焼鈍温度
に近くて、結局、Hv=350程度の母材硬度の確保に
留まる。
On the other hand, conventionally, gas nitriding (for example, accompanied by thermal decomposition of NH 3 gas) or glowing (for example, N 2 gas or NH 3 gas) is applied to the surface of steel or Fe—Cr—Al steel. There is a method of increasing the surface hardness and abrasion resistance by generating a nitride layer by ion nitridation (with decomposition). In this method by nitriding, instead of laminating a coating layer on the surface, it is a method of changing a little from the surface of the steel to a nitride, so that there is no fear of peeling or missing, and a surface hardness of about Hv = 1000. become. However,
The base material hardness is as low as about Hv = 200, which is not enough. Even if the hardness of the base material is increased in advance by quenching, the nitriding temperature is close to the annealing temperature, so that the base material hardness of about Hv = 350 is eventually secured.

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、表面硬度が高くて、耐磨耗性、母材硬度および
母材靭性がいずれも十分であって、刃物、ギア、シャフ
トなどの部品に適するものが得られるフェライト系ステ
ンレス材の表面処理方法を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has a high surface hardness, a sufficient abrasion resistance, a sufficient base material hardness, and a sufficient base material toughness. It is an object of the present invention to provide a surface treatment method of a ferritic stainless steel material that can obtain a material suitable for the above-mentioned parts.

【0005】[0005]

【問題を解決するための手段】上記課題を達成するた
め、この発明にかかるフェライト系ステンレス材の表面
処理方法では、窒素を含む減圧雰囲気中にFe−Cr−
Ni−Al系フェライト合金をセットしグロー放電を生
起させることによりフェライト合金表面に窒化物層を生
成させるようにするフェライト系ステンレス材の表面処
理方法であって、前記フェライト合金の組成を、Cr:
20〜40重量%、Ni:2〜30重量%、Al:2〜
15重量%、Zr,Y,Hf,Ce,La,Ndおよび
Gdのうちのいずれか1種または2種以上:0.05〜
3.0重量%、Ti:0〜0.5重量%、残部:Feと
している。
Means for Solving the Problems In order to achieve the above object, a method for treating a surface of a ferritic stainless steel material according to the present invention uses a Fe--Cr--
A method of treating a surface of a ferritic stainless steel material in which a Ni-Al-based ferrite alloy is set to generate a glow discharge to generate a nitride layer on the surface of the ferrite alloy, wherein the composition of the ferrite alloy is Cr:
20-40 wt%, Ni: 2-30 wt%, Al: 2
15% by weight, any one or more of Zr, Y, Hf, Ce, La, Nd and Gd: 0.05 to
3.0% by weight, Ti: 0 to 0.5% by weight, balance: Fe.

【0006】この発明では、グロー放電によるN2 なし
いNH3 の分解で生じたNイオンがフェライト合金の表
面層部分と反応し窒化物層が生成されてゆく。つまり、
この発明の場合、フェライト合金表面がイオン窒化され
るのである。窒化物層は主に窒化クロムからなるが、他
に窒化アルミニウムや窒化鉄等も含まれている。この発
明で用いるFe−Cr−Ni−Al系フェライト合金
は、NiAl系B2相粒子が母相中に分散しており、靭
性のみならず硬度も十分なものである。
According to the present invention, N ions generated by the decomposition of N 2 or NH 3 by glow discharge react with the surface layer of the ferrite alloy to form a nitride layer. That is,
In the case of the present invention, the surface of the ferrite alloy is ion-nitrided. The nitride layer is mainly made of chromium nitride, but also contains aluminum nitride, iron nitride and the like. The Fe-Cr-Ni-Al-based ferrite alloy used in the present invention has NiAl-based B2-phase particles dispersed in the matrix, and has sufficient toughness as well as hardness.

【0007】減圧雰囲気にセットされるFe−Cr−N
i−Al系フェライト合金は、インゴットから適当な形
にしたもの(例えば、合金板など)に限らず、水アトマ
イズ法により得た合金粉末を圧粉成形し焼結させた焼結
体の形態のものもある。この発明の場合、窒素を含む減
圧雰囲気中へのセット前に、(必要に応じて所定の形状
に成形してから)非酸化性雰囲気で1250〜1350
℃の範囲の温度に昇温し所定時間保持したあと10℃/
秒以上の冷却速度で急冷する適切な熱処理が予め施され
ているFe−Cr−Ni−Al系フェライト合金は、N
iAl系B2相粒子が母相に適切な状態で分散してお
り、より硬度が高いため適当である。1250〜135
0℃の範囲の温度での保持時間は、材料の厚さに依存す
るが、通常、30秒〜30分程度である。
[0007] Fe-Cr-N set in a reduced pressure atmosphere
The i-Al ferrite alloy is not limited to an ingot formed into an appropriate shape (for example, an alloy plate, etc.), but may be in the form of a sintered body obtained by compacting and sintering an alloy powder obtained by a water atomizing method. There are also things. In the case of the present invention, before setting in a reduced-pressure atmosphere containing nitrogen, (after molding into a predetermined shape as necessary), the mixture is placed in a non-oxidizing atmosphere at 1250 to 1350.
After heating to a temperature in the range of
Fe-Cr-Ni-Al-based ferrite alloys that have been subjected to an appropriate heat treatment for rapid cooling at a cooling rate of
This is appropriate because the iAl-based B2 phase particles are dispersed in an appropriate state in the matrix and have higher hardness. 1250-135
The holding time at a temperature in the range of 0 ° C. depends on the thickness of the material, but is usually about 30 seconds to 30 minutes.

【0008】この発明では、窒素を含む減圧雰囲気に
は、例えば、N2 とH2 の混合ガスおよびNH3 ガスの
うちの少なくとも1つのガスを用いる。(N2 +H2
の混合ガスやNH3 ガスを減圧雰囲気に供給し必要な窒
素を含ませるようにするのである。減圧雰囲気の圧力
は、例えば、65〜1350Pa程度(好ましくは、7
00〜900Pa)である。(N2 +H2 )の混合ガス
の場合、N2 ガスとH2 ガスの混合比は、普通、体積比
で1:9〜9:1の範囲が適当である。
In the present invention, for example, at least one of a mixed gas of N 2 and H 2 and an NH 3 gas is used as the reduced-pressure atmosphere containing nitrogen. (N 2 + H 2 )
The mixed gas and NH 3 gas is to so as to contain the required nitrogen was supplied to the reduced pressure atmosphere. The pressure of the reduced pressure atmosphere is, for example, about 65 to 1350 Pa (preferably
00 to 900 Pa). In the case of a mixed gas of (N 2 + H 2 ), the mixing ratio of the N 2 gas and the H 2 gas is usually appropriate in a range of 1: 9 to 9: 1 by volume.

【0009】減圧雰囲気中には、陽極と陰極が対向配置
されており、普通、陰極にフェライト合金をセットし、
両電極間に電圧を印加する。例えば、減圧雰囲気の大き
さ(例えば、イオン窒化炉の大きさ)が、例えば、縦3
0cm×横30cm×高さ30cmであって、陰極・陽
極間の距離12cmである場合、両極間に250〜35
0Vの直流電圧をかけ、放電電流0.4〜0.8Aのグ
ロー放電を生起させる。グロー放電の生起保持時間(窒
化時間)は、2〜10時間程度である。
In a reduced-pressure atmosphere, an anode and a cathode are arranged to face each other. Usually, a ferrite alloy is set on the cathode,
A voltage is applied between both electrodes. For example, if the size of the reduced pressure atmosphere (for example, the size of the ion nitriding furnace) is, for example,
0 cm x 30 cm x 30 cm in height, and when the distance between the cathode and the anode is 12 cm, 250-35
A glow discharge having a discharge current of 0.4 to 0.8 A is generated by applying a DC voltage of 0 V. The generation and retention time (nitridation time) of glow discharge is about 2 to 10 hours.

【0010】グロー放電生起時にフェライト合金は放電
電流で昇温するが、昇温温度が400〜700℃(好ま
しくは550〜600℃)の範囲となるようにする。逆
に言うと、グロー放電生起時のフェライト合金温度が4
00〜700℃の範囲に収まる放電電流となるようにす
るのである。このようにして、この発明ではフェライト
系ステンレス材が表面処理され、表面に窒化物膜が生成
される。表面処理後の表面硬度はHv=1000程度、
母材硬度500程度である。
When the glow discharge occurs, the temperature of the ferrite alloy rises by the discharge current, and the temperature is raised in the range of 400 to 700 ° C. (preferably 550 to 600 ° C.). Conversely, the ferrite alloy temperature at the time of glow discharge occurrence is 4
The discharge current is controlled to fall within the range of 00 to 700 ° C. Thus, in the present invention, the ferrite stainless steel is subjected to the surface treatment, and a nitride film is formed on the surface. The surface hardness after the surface treatment is about Hv = 1000,
The base material hardness is about 500.

【0011】続いて、原材料であるFe−Cr−Ni−
Al系フェライト合金の含有元素について、その含有量
の限定理由を説明する。この発明の合金は、フェライト
生成元素であるCrおよびAlと、オーステナイト生成
元素であるNiを多量に含有したFe基合金であり、合
金を主としてフェライト相にする理由は、次の通りであ
る。フェライト相の合金は、内部にNiAl系B2相粒
子が分散し、高い母材硬度を有するのに大使、オーステ
ナイト相の合金では母材硬度が低くなる。
Subsequently, the raw material Fe-Cr-Ni-
The reasons for limiting the contents of the elements contained in the Al-based ferrite alloy will be described. The alloy of the present invention is an Fe-based alloy containing a large amount of Cr and Al, which are ferrite-forming elements, and Ni, which is an austenite-forming element. The reason why the alloy is mainly made into a ferrite phase is as follows. The ferrite phase alloy has NiAl-based B2 phase particles dispersed therein and has a high base material hardness. However, the base material hardness of the austenitic phase alloy is low.

【0012】〔Cr:20〜40重量(好ましくは25
〜40重量%)〕 Crは、合金表面に緻密で均一な窒
化物層を形成させるために必要であるが、この発明の合
金ではNiを含有するため、合金をフェライト相にする
ためには、Niが下限値でAlが上限値の場合でも20
重量%以上のCrが必要である。Ni量が下限値、Al
量が上限値付近、Cr量が20重量%未満の合金では窒
化物層の形成が不完全である。このため、Crの下限は
20重量%である。また、合金中のCr含有量が増加す
るにつれて脆化の傾向が強くなるので、Crの上限は4
0wt%である。
[Cr: 20 to 40 weight (preferably 25
4040% by weight)] Cr is necessary for forming a dense and uniform nitride layer on the surface of the alloy. However, in the alloy of the present invention, Ni is contained. Even when Ni is the lower limit and Al is the upper limit, 20
Cr is required in an amount of at least% by weight. Ni content is lower limit, Al
In the alloy whose amount is near the upper limit and whose Cr amount is less than 20% by weight, formation of the nitride layer is incomplete. Therefore, the lower limit of Cr is 20% by weight. Further, since the tendency of embrittlement increases as the Cr content in the alloy increases, the upper limit of Cr is 4%.
0 wt%.

【0013】〔Ni:2〜30重量%(好ましくは10
〜30重量%)〕 Niは、微細なNiAlを合金中に
析出させ、母材の機械的性質(例えば、硬度)を向上さ
せるものと推察されるが、Alとの共存下でNiAlを
析出させるのに不可欠の元素である。機械的性質の向上
に十分効果的であるためには2重量%以上のNiを必要
とする。Ni量が増加すれば、NiAlの析出には好都
合であるが、オーステナイト生成元素であるNiの含有
量を増加すれば、それに伴ってCrおよびAlの含有量
を増加させる必要がある。しかし、Ni量が30重量%
を越えると、Cr量を増加させねばならず、そうすると
脆化し易くなるので、Niの上限値は30重量%であ
る。
[Ni: 2 to 30% by weight (preferably 10% by weight)
Ni is presumed to precipitate fine NiAl in the alloy and improve the mechanical properties (for example, hardness) of the base material. However, Ni precipitates NiAl in the presence of Al. Is an indispensable element. In order to be sufficiently effective for improving the mechanical properties, 2% by weight or more of Ni is required. If the amount of Ni increases, it is advantageous for the precipitation of NiAl. However, if the content of Ni, which is an austenite-forming element, is increased, the contents of Cr and Al must be increased accordingly. However, the Ni content is 30% by weight.
Is exceeded, the amount of Cr must be increased, which tends to cause embrittlement. Therefore, the upper limit of Ni is 30% by weight.

【0014】〔Al:2〜15重量%〕 Alは、微細
なNiAlを合金中に析出させ母材硬度を十分に確保す
るために不可欠な元素である。そのためには、2重量%
以上のAlを含有することが必要である。Al含有量の
増加は、NiAlの析出に有利であるが、15重量%を
越えると合金の加工性が低下するので、Alの上限は1
5重量%である。
[Al: 2 to 15% by weight] Al is an indispensable element for precipitating fine NiAl into the alloy and ensuring sufficient base metal hardness. For that, 2% by weight
It is necessary to contain the above Al. An increase in the Al content is advantageous for the precipitation of NiAl, but if it exceeds 15% by weight, the workability of the alloy is reduced.
5% by weight.

【0015】〔Zr,Y,Hf,Ce,La,Ndおよ
びGdのうちのいずれか1種または2種以上:0.05
〜3.0重量%(好ましくは0.05〜2.0重量)〕
これらの各添加元素は、材料の加工性を改善するため
に入れられるのであるが、その効果を期待するには0.
05重量%以上で含有させることが必要であり、他方、
3.0重量%を越えて含有すると、合金の加工性は逆に
劣化の方向に転じるので上限は3.0重量%である。
[One or more of Zr, Y, Hf, Ce, La, Nd and Gd: 0.05
To 3.0% by weight (preferably 0.05 to 2.0% by weight)]
Each of these additional elements is added in order to improve the workability of the material.
It is necessary to contain at least 05% by weight.
If the content exceeds 3.0% by weight, the workability of the alloy reversely deteriorates, so the upper limit is 3.0% by weight.

【0016】〔Ti:0〜0.5重量%〕 Tiは必要
に応じて添加されるものであり、材料の加工性を改善す
るが、0.5重量%を越えて含有すると、合金特性の劣
化等を招来するため、上限は0.5重量%に抑えるよう
にする。 〔Fe:残部〕 以上の成分の他をFeが占める。ただ
し、残部が完全にFeである場合のみに限定されず、不
可避的に不純物としてFe中に存在するもの(Si等)
があってもよい。
[Ti: 0 to 0.5% by weight] Ti is added as needed, and improves the workability of the material. In order to cause deterioration or the like, the upper limit is set to 0.5% by weight. [Fe: balance] Fe occupies other than the above components. However, the present invention is not limited to the case where the balance is completely Fe, but is inevitably present in Fe as impurities (such as Si).
There may be.

【0017】この発明の方法で表面処理したフェライト
系ステンレス材は、例えば、刃物、ギア、シャフトなど
の部品に用いられるが、これ以外の用途に用いることが
出来ることは言うまでもない。
The ferrite stainless steel surface-treated by the method of the present invention is used, for example, for components such as blades, gears, and shafts, but it goes without saying that it can be used for other purposes.

【0018】[0018]

【作用】この発明にかかるフェライト系ステンレス材の
表面処理方法では、Fe−Cr−Ni−Al系フェライ
ト合金の表面は、イオン窒化により、密着力の強い緻密
で厚い窒化物層で覆われるため、十分な表面硬度(Hv
=1000程度)および耐磨耗性が確保されることにな
る。
In the surface treatment method for a ferritic stainless steel material according to the present invention, the surface of the Fe—Cr—Ni—Al ferrite alloy is covered with a dense and thick nitride layer having strong adhesion by ion nitriding. Sufficient surface hardness (Hv
= About 1000) and abrasion resistance is ensured.

【0019】また、Fe−Cr−Ni−Al系フェライ
ト合金の組成が、十分な母材硬度と母材靱性が確保され
る適切な組成であり、イオン窒化では700℃程度以下
の比較的低い温度で窒化処理がなされており、Fe−C
r−Ni−Al系フェライト合金の十分な母材硬度と母
材靱性が窒化処理後も、合金を所定の形状に成形したよ
うな場合にも、合金の変形が起こり難く十分な寸法精度
が出るようになる。Fe−Cr−Ni−Al系フェライ
ト合金を1000℃を越える高温酸化雰囲気で酸化し合
金表面にアルミナ皮膜を形成すれば、やはり十分な表面
硬度と耐磨耗性が確保されるのであるが、1000℃を
越える高温であるため合金の変質や変形を招き易い。こ
の発明のように、700℃程度以下の比較的低い温度で
すむ場合は、合金の変質や変形を回避できるため、非常
に実用的と言える。
Further, the composition of the Fe—Cr—Ni—Al ferrite alloy is an appropriate composition that ensures sufficient base material hardness and base material toughness, and a relatively low temperature of about 700 ° C. or less in ion nitriding. Nitriding treatment is performed, and Fe-C
The r-Ni-Al ferrite alloy has sufficient base material hardness and base material toughness, even after nitriding, even when the alloy is formed into a predetermined shape, the deformation of the alloy hardly occurs and sufficient dimensional accuracy is obtained. Become like If a Fe—Cr—Ni—Al ferrite alloy is oxidized in a high-temperature oxidizing atmosphere exceeding 1000 ° C. to form an alumina film on the surface of the alloy, sufficient surface hardness and abrasion resistance can be ensured. Since the temperature is higher than ℃, the alloy is liable to be deteriorated or deformed. In the case where a relatively low temperature of about 700 ° C. or less is required as in the present invention, it is possible to avoid the deterioration and deformation of the alloy, which is very practical.

【0020】Fe−Cr−Ni−Al系フェライト合金
が、非酸化性雰囲気で1250〜1350℃の範囲の温
度に昇温し所定時間保持したあと10℃/秒以上の冷却
速度で急冷する適切な熱処理が予め施されている場合
は、より母材硬度が高く好ましい。
An appropriate ferrite alloy of Fe-Cr-Ni-Al is heated to a temperature in the range of 1250 to 1350 ° C in a non-oxidizing atmosphere, held for a predetermined time, and then rapidly cooled at a cooling rate of 10 ° C / sec or more. When the heat treatment is performed in advance, the base material hardness is preferably higher.

【0021】[0021]

【実施例】以下、この発明の実施例を説明する。この発
明は、下記の実施例に限らないことは言うまでもない。 −実施例1− 表1に示す組成の鋳塊を圧延し、板厚0.1mmにした
後、真空雰囲気中、1250℃に昇温、30分間保持し
た後、窒素ガスを導入し、50℃/秒の速度で急冷し、
研磨・洗浄して、イオン窒化するべきFe−Cr−Ni
−Al系フェライト合金を得た。
Embodiments of the present invention will be described below. It goes without saying that the present invention is not limited to the following embodiments. Example 1 After rolling an ingot having a composition shown in Table 1 to a sheet thickness of 0.1 mm, the temperature was raised to 1250 ° C. in a vacuum atmosphere, and the temperature was maintained for 30 minutes. Quench at a rate of
Fe-Cr-Ni to be polished, washed and ion-nitrided
-An Al-based ferrite alloy was obtained.

【0022】続いて、イオン窒化炉の炉壁を陽極、試料
台を陰極として炉内試料台上に吊し、表2にみるよう
に、炉内雰囲気を窒素ガスと水素ガスのガス混合比1:
1(体積比)とし、雰囲気圧力800Paにした後、陽
極・陰極間に300Vの直流電圧を印加し、印加電力1
50Wでグロー放電させ、合金を550℃(窒化温度)
に加熱、3時間(窒化時間)保持し、Fe−Cr−Ni
−Al系フェライト合金をイオン窒化し、窒化クロムを
主成分とする厚み約5μmの窒化物膜を形成した。
Subsequently, the furnace wall of the ion nitriding furnace was suspended on the sample table in the furnace with the anode as the anode and the sample table as the cathode. As shown in Table 2, the atmosphere in the furnace was set at a gas mixture ratio of nitrogen gas and hydrogen gas of 1%. :
1 (volume ratio), the atmospheric pressure was set to 800 Pa, and then a DC voltage of 300 V was applied between the anode and the cathode, and the applied power was 1
Glow discharge is performed at 50 W, and the alloy is heated to 550 ° C (nitriding temperature).
For 3 hours (nitriding time)
An Al-based ferrite alloy was ion-nitrided to form a nitride film having a thickness of about 5 μm and containing chromium nitride as a main component.

【0023】表面処理後のフェライト系ステンレス材の
母材硬度と表面硬度の測定結果を表3に示す。 −実施例2− 合金組成が表1の通りであり、印加電力、ガス混合比、
窒化温度、窒化時間が表2の通りである他は、実施例1
と同じようにしてイオン窒化処理し、窒化クロムを主成
分とする厚み約3μmの窒化物膜を形成した。母材硬度
と表面硬度の測定結果は表3の通りである。
Table 3 shows the measurement results of the base material hardness and the surface hardness of the ferritic stainless steel after the surface treatment. -Example 2-The alloy composition is as shown in Table 1, the applied power, the gas mixture ratio,
Example 1 except that the nitriding temperature and the nitriding time were as shown in Table 2.
In the same manner as in the above, an ion nitriding treatment was performed to form a nitride film having a thickness of about 3 μm containing chromium nitride as a main component. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0024】−実施例3− 合金組成が表1の通りであり、印加電力、ガス混合比、
窒化温度、窒化時間が表2の通りである他は、実施例1
と同じようにしてイオン窒化処理し、窒化クロムを主成
分とする厚み約10μmの窒化物膜を形成した。母材硬
度と表面硬度の測定結果は表3の通りである。
Example 3 The alloy composition is as shown in Table 1, and the applied power, gas mixture ratio,
Example 1 except that the nitriding temperature and the nitriding time were as shown in Table 2.
In the same manner as in the above, an ion nitriding treatment was performed to form a nitride film having a thickness of about 10 μm and containing chromium nitride as a main component. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0025】−実施例4− 合金組成が表1の通りであり、印加電力、ガス混合比、
窒化温度、窒化時間が表2の通りである他は、実施例1
と同じようにしてイオン窒化処理し、窒化クロムを主成
分とする厚み約10μmの窒化物膜を形成した。母材硬
度と表面硬度の測定結果は表3の通りである。
Example 4 The alloy composition is as shown in Table 1, and the applied power, gas mixture ratio,
Example 1 except that the nitriding temperature and the nitriding time were as shown in Table 2.
In the same manner as in the above, an ion nitriding treatment was performed to form a nitride film having a thickness of about 10 μm and containing chromium nitride as a main component. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0026】−実施例5− 合金組成が表1の通りであるとともに板厚みが1.4m
mであり、印加電力、ガス混合比、窒化温度、窒化時間
が表2の通りである他は、実施例1と同じようにしてイ
オン窒化処理し、窒化クロムを主成分とする厚み約20
μmの窒化物膜を形成した。母材硬度と表面硬度の測定
結果は表3の通りである。
Example 5 The alloy composition is as shown in Table 1 and the plate thickness is 1.4 m.
m, and the applied power, the gas mixture ratio, the nitriding temperature, and the nitriding time are as shown in Table 2.
A μm nitride film was formed. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0027】−実施例6− 水アトマイズ法により表1に示す組成の合金粉末を得
て、この粉末を直径30mm、高さ5mmの円盤状に圧
粉成形し、真空雰囲気中、1350℃に昇温、3時間保
持し焼結させたものを、真空雰囲気中、1250℃に昇
温、30分間保持した後、窒素ガスを導入し、10℃/
秒の速度で急冷し、研磨・洗浄して、イオン窒化するべ
きFe−Cr−Ni−Al系フェライト合金を得た。
Example 6 An alloy powder having the composition shown in Table 1 was obtained by a water atomizing method, and the powder was compacted into a disk having a diameter of 30 mm and a height of 5 mm, and heated to 1350 ° C. in a vacuum atmosphere. After sintering at a temperature of 3 hours, the temperature was raised to 1250 ° C. in a vacuum atmosphere, and the temperature was maintained for 30 minutes.
It was rapidly cooled at a speed of seconds, polished and washed to obtain an Fe-Cr-Ni-Al-based ferrite alloy to be ion-nitrided.

【0028】この後、印加電力、ガス混合比、窒化温
度、窒化時間が表2の通りである他は、実施例1と同じ
ようにしてイオン窒化処理し、窒化クロムを主成分とす
る厚み約30μmの窒化物膜を形成した。母材硬度と表
面硬度の測定結果は表3の通りである。 −実施例7− 水アトマイズ法により表1に示す組成の合金粉末を得た
後、実施例6と同じようにして、イオン窒化するべきF
e−Cr−Ni−Al系フェライト合金を得た。
Thereafter, ion nitriding was performed in the same manner as in Example 1 except that the applied power, the gas mixture ratio, the nitriding temperature, and the nitriding time were as shown in Table 2. A 30 μm nitride film was formed. Table 3 shows the measurement results of the base metal hardness and the surface hardness. -Example 7-After obtaining an alloy powder having a composition shown in Table 1 by a water atomizing method, F to be ion-nitrided in the same manner as in Example 6.
An e-Cr-Ni-Al ferrite alloy was obtained.

【0029】この後、印加電力、ガス混合比、窒化温
度、窒化時間が表2の通りである他は、実施例1と同じ
ようにしてイオン窒化処理し、窒化クロムを主成分とす
る厚み約15μmの窒化物膜を形成した。母材硬度と表
面硬度の測定結果は表3の通りである。 −実施例8− 合金組成が表1の通りであり、印加電力、ガス混合比、
窒化温度、窒化時間が表2の通りである他は、実施例1
と同じようにしてイオン窒化処理し、窒化クロムを主成
分とする厚み約5μmの窒化物膜を形成した。母材硬度
と表面硬度の測定結果は表3の通りである。
Thereafter, ion nitriding was performed in the same manner as in Example 1 except that the applied power, the gas mixture ratio, the nitriding temperature, and the nitriding time were as shown in Table 2. A 15 μm nitride film was formed. Table 3 shows the measurement results of the base metal hardness and the surface hardness. -Example 8-The alloy composition is as shown in Table 1, and the applied power, gas mixture ratio,
Example 1 except that the nitriding temperature and the nitriding time were as shown in Table 2.
In the same manner as in the above, an ion nitriding treatment was performed to form a nitride film having a thickness of about 5 μm containing chromium nitride as a main component. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0030】−実施例9− 合金組成が表1の通りであり、印加電力、ガス混合比、
窒化温度、窒化時間が表2の通りである他は、実施例1
と同じようにしてイオン窒化処理し、窒化クロムを主成
分とする厚み約5μmの窒化物膜を形成した。母材硬度
と表面硬度の測定結果は表3の通りである。
Example 9 The alloy composition is as shown in Table 1, and the applied power, gas mixture ratio,
Example 1 except that the nitriding temperature and the nitriding time were as shown in Table 2.
In the same manner as in the above, an ion nitriding treatment was performed to form a nitride film having a thickness of about 5 μm containing chromium nitride as a main component. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0031】−実施例10− 合金組成が表1の通りであり、印加電力、ガス混合比、
窒化温度、窒化時間が表2の通りである他は、実施例1
と同じようにしてイオン窒化処理し、窒化クロムを主成
分とする厚み約5μmの窒化物膜を形成した。母材硬度
と表面硬度の測定結果は表3の通りである。
Example 10 The alloy composition is as shown in Table 1, and the applied power, gas mixture ratio,
Example 1 except that the nitriding temperature and the nitriding time were as shown in Table 2.
In the same manner as in the above, an ion nitriding treatment was performed to form a nitride film having a thickness of about 5 μm containing chromium nitride as a main component. Table 3 shows the measurement results of the base metal hardness and the surface hardness.

【0032】−比較例1− 表1に示す組成の鋳塊を圧延し、板厚0.1mmにした
後、洗浄して、イオン窒化するべきFe−Cr−Al系
フェライト合金を得た。合金組成が表1の通りであり、
印加電力、ガス混合比、窒化温度、窒化時間が表2の通
りである他は、実施例1と同じようにしてイオン窒化処
理し、窒化クロムを主成分とする厚み約10μmの窒化
物膜を形成した。母材硬度と表面硬度の測定結果は表3
の通りである。
Comparative Example 1 An ingot having the composition shown in Table 1 was rolled to a thickness of 0.1 mm and then washed to obtain an Fe-Cr-Al-based ferrite alloy to be ion-nitrided. The alloy composition is as shown in Table 1,
Except that the applied power, the gas mixture ratio, the nitriding temperature, and the nitriding time are as shown in Table 2, an ion nitriding treatment was performed in the same manner as in Example 1 to form a nitride film having a thickness of about 10 μm and containing chromium nitride as a main component. Formed. Table 3 shows the measurement results of base metal hardness and surface hardness.
It is as follows.

【0033】−比較例2− 表1に示す組成の鋳塊を圧延し、板厚0.1mmにした
後、窒素ガス中で800℃に昇温・30分保持したあと
徐冷することにより焼鈍し、ついで、窒素ガス中、10
50℃に昇温・5分間保持したあと空冷することにより
焼き入れし、ついで、100℃に昇温・10分間保持し
たあと空冷することにより焼き戻して、Fe−Cr系フ
ェライト合金を得た。
-Comparative Example 2- An ingot having the composition shown in Table 1 was rolled to a thickness of 0.1 mm, heated to 800 ° C in nitrogen gas, held for 30 minutes, and then annealed by slow cooling. Then, in nitrogen gas, 10
The temperature was raised to 50 ° C. for 5 minutes, followed by cooling by air cooling, followed by quenching. Then, the temperature was raised to 100 ° C., held for 10 minutes, and then tempered by air cooling to obtain an Fe—Cr ferrite alloy.

【0034】続いて、イオン窒化炉の炉壁を陽極、試料
台を陰極として炉内試料台上に吊し、表2にみるよう
に、炉内雰囲気を窒素ガスと水素ガスのガス混合比1:
1とし、雰囲気圧力800Paにした後、陽極・陰極間
に280Vの直流電圧を印加し、印加電力160Wでグ
ロー放電させ、合金を550℃(窒化温度)に加熱、3
時間(窒化時間)保持し、Fe−Cr系フェライト合金
をイオン窒化し、窒化クロムを主成分とする厚み約3μ
mの窒化物膜を形成した。
Subsequently, the furnace wall of the ion nitriding furnace was suspended on the furnace sample table with the anode as the anode and the sample table as the cathode. As shown in Table 2, the atmosphere in the furnace was set at a gas mixture ratio of nitrogen gas and hydrogen gas of 1%. :
After the atmospheric pressure was set to 800 Pa, a DC voltage of 280 V was applied between the anode and the cathode, glow discharge was performed at an applied power of 160 W, and the alloy was heated to 550 ° C. (nitriding temperature).
Holding time (nitriding time), ion-nitriding of Fe-Cr ferrite alloy, thickness of about 3μ mainly composed of chromium nitride
m of nitride film was formed.

【0035】なお、実施例1〜4の表面処理後のフェラ
イト系ステンレス材については、表面から内部に向けて
とった距離と硬度の関係を、図1にグラフ化してあらわ
してある。
The relationship between the distance from the surface toward the inside and the hardness of the ferritic stainless steel material after the surface treatment in Examples 1 to 4 is shown in a graph in FIG.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】実施例と比較例の硬度測定結果から分かる
ように、この発明のフェライト系ステンレス材の表面処
理方法によれば、十分な母材硬度をも確保できることが
よく分かる。
As can be seen from the hardness measurement results of the example and the comparative example, it is clear that the surface treatment method for ferritic stainless steel of the present invention can secure a sufficient base material hardness.

【0040】[0040]

【発明の効果】この発明にかかるフェライト系ステンレ
ス材の表面処理方法の場合、Fe−Cr−Ni−Al系
フェライト合金の表面は、イオン窒化により、密着力の
強い緻密で厚い窒化物層で覆われ、十分な表面硬度・耐
磨耗性が確保される上、イオン窒化の場合には合金のも
つ十分な母材硬度と母材靱性が保持されるため、表面硬
度が高くて、耐磨耗性、母材硬度および母材靭性がいず
れも十分であって、刃物、ギア、シャフトなどの部品に
適するものが得られるようになり、したがって、この発
明は非常に有用であるということが出来る。
According to the surface treatment method for a ferritic stainless steel material according to the present invention, the surface of the Fe-Cr-Ni-Al ferrite alloy is covered with a dense and thick nitride layer having strong adhesion by ion nitriding. In addition, sufficient surface hardness and abrasion resistance are ensured, and in the case of ion nitriding, sufficient base material hardness and base material toughness of the alloy are maintained. The properties, base material hardness, and base material toughness are all sufficient, so that what is suitable for components such as blades, gears, shafts, and the like can be obtained. Therefore, it can be said that the present invention is very useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4の表面処理後のフェライト系ステ
ンレス材における表面から内部に向けてとった距離と硬
度の関係をあらわすグラフである。
FIG. 1 is a graph showing the relationship between the distance taken from the surface to the inside and the hardness of the ferritic stainless steel material after surface treatment of Examples 1 to 4.

フロントページの続き (72)発明者 中田 一博 大阪市阿倍野区阪南町2−12−8 (58)調査した分野(Int.Cl.7,DB名) C23C 8/38 C21D 6/00 Continuation of the front page (72) Inventor Kazuhiro Nakada 2-12-8 Hannan-cho, Abeno-ku, Osaka-shi (58) Field surveyed (Int. Cl. 7 , DB name) C23C 8/38 C21D 6/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素を含む減圧雰囲気中にFe−Cr−
Ni−Al系フェライト合金をセットしグロー放電を生
起させて窒化処理することによりフェライト合金表面に
窒化物層を生成させるようにするフェライト系ステンレ
ス材の表面処理方法であって、前記フェライト合金の組
成が、Cr:20〜40重量%、Ni:2〜30重量
%、Al:2〜15重量%、Zr,Y,Hf,Ce,L
a,NdおよびGdのうちのいずれか1種または2種以
上:0.05〜3.0重量%、Ti:0〜0.5重量
%、残部:Feであることを特徴とするフェライト系ス
テンレス材の表面処理方法。
1. The method of claim 1, wherein Fe-Cr-
A ferrite-based stainless steel surface treatment method comprising: setting a Ni-Al-based ferrite alloy, generating glow discharge, and performing nitriding treatment to form a nitride layer on the ferrite alloy surface. But Cr: 20 to 40% by weight, Ni: 2 to 30% by weight, Al: 2 to 15% by weight, Zr, Y, Hf, Ce, L
one or more of a, Nd and Gd: 0.05 to 3.0% by weight, Ti: 0 to 0.5% by weight, and balance: Fe Surface treatment method for materials.
【請求項2】 Fe−Cr−Ni−Al系フェライト合
金は、窒化処理前に、非酸化性雰囲気で1250〜13
50℃の範囲の温度に昇温し所定時間保持したあと10
℃/秒以上の冷却速度で急冷する熱処理が施されている
請求項1記載のフェライト系ステンレス材の表面処理方
法。
2. An Fe—Cr—Ni—Al-based ferrite alloy is set in a non-oxidizing atmosphere at 1250 to 13
After heating to a temperature in the range of 50 ° C. and holding for a predetermined time, 10
The surface treatment method for a ferritic stainless steel material according to claim 1, wherein a heat treatment for quenching at a cooling rate of at least C / sec is performed.
【請求項3】 グロー放電生起中のFe−Cr−Ni−
Al系フェライト合金の温度が400〜700℃である
請求項1または2記載のフェライト系ステンレス材の表
面処理方法。
3. Fe-Cr-Ni- during glow discharge occurrence
The surface treatment method for a ferritic stainless steel material according to claim 1 or 2, wherein the temperature of the Al-based ferrite alloy is 400 to 700 ° C.
【請求項4】 減圧雰囲気中の窒素はN2 とH2 の混合
ガスおよびNH3 ガスのうちの少なくとも1つのガスの
導入による窒素である請求項1から3までのいずれかに
記載のフェライト系ステンレス材の表面処理方法。
4. The ferrite system according to claim 1, wherein the nitrogen in the reduced pressure atmosphere is nitrogen obtained by introducing at least one of a mixed gas of N 2 and H 2 and an NH 3 gas. Surface treatment method for stainless steel.
JP4273245A 1992-10-12 1992-10-12 Surface treatment method for ferritic stainless steel Expired - Fee Related JP3005371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273245A JP3005371B2 (en) 1992-10-12 1992-10-12 Surface treatment method for ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273245A JP3005371B2 (en) 1992-10-12 1992-10-12 Surface treatment method for ferritic stainless steel

Publications (2)

Publication Number Publication Date
JPH06122957A JPH06122957A (en) 1994-05-06
JP3005371B2 true JP3005371B2 (en) 2000-01-31

Family

ID=17525152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273245A Expired - Fee Related JP3005371B2 (en) 1992-10-12 1992-10-12 Surface treatment method for ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP3005371B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335731A (en) * 1995-06-06 1996-12-17 Fanuc Ltd Air blower in gas laser system
KR100831022B1 (en) * 2007-03-13 2008-05-20 동아대학교 산학협력단 Nitrogen permeation and high tempering heat treatment of ferritic stainless steel
JP5590339B2 (en) * 2011-10-11 2014-09-17 学校法人トヨタ学園 Nitriding method
TWI521090B (en) * 2012-04-16 2016-02-11 財團法人工業技術研究院 Composite cutter
JP7268983B2 (en) * 2018-09-14 2023-05-08 三井化学株式会社 Building materials and methods of manufacturing building materials

Also Published As

Publication number Publication date
JPH06122957A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
EP0266149B1 (en) High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine
Quadakkers et al. Composition, structure and protective properties of alumina scales on iron-based oxide dispersion strengthened alloys
JPH0931605A (en) Iron aluminide useful for electric resistance heating element
CN114807776A (en) Steel, product made of said steel and method for manufacturing same
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
TWI248976B (en) Fe-Cr-Si non-oriented electromagnetic steel sheet and process for producing the same
EP3868913A1 (en) Precipitation strengthened carburizable and nitridable steel alloys
JP3005371B2 (en) Surface treatment method for ferritic stainless steel
Birol Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures
JP2943626B2 (en) Surface hardening method for titanium material
EP4119697A1 (en) Ferritic stainless steel and method for manufacturing same
JP2637250B2 (en) Fe-Cr-Ni-Al ferrite alloy
JPH0971855A (en) Carbohardened table ware and production thereof
Peng et al. Plasma Nitriding Properties of Sintered Body Formed Using CoCrFeMnNi High-Entropy Alloy Powder by Varying Ball-Milling Duration
JP2525786B2 (en) Method for producing steel with ultrafine grain structure
US20080128052A1 (en) Method and Process for Thermochemical Treatment of High-Strength, High-Toughness Alloys
Ahamad et al. Surface properties and activation energy of superplastically carburized duplex stainless steel
CN113073177B (en) Control method for improving components of oxidation layer of oriented steel
JPH0483820A (en) Production of mechanism element
JPH07278782A (en) Carburization treatment of tial-based intermetallic compound
JP2501941B2 (en) Fe-Cr-Ni-A (1) series ferrite alloy
JP3959671B2 (en) High-strength Fe-Cr-Ni-Al-based ferrite alloy with excellent oxidation resistance and alloy plate using the same
JP2846941B2 (en) Electrode material and method for manufacturing electrode material
JPH08319555A (en) Treatment of iron-chrome-nickel-aluminum ferritic alloy
JPH04251693A (en) Electrode blank material and production of electrode blank material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees