JP2993634B2 - Precise detection method of underground excavator position - Google Patents

Precise detection method of underground excavator position

Info

Publication number
JP2993634B2
JP2993634B2 JP8110872A JP11087296A JP2993634B2 JP 2993634 B2 JP2993634 B2 JP 2993634B2 JP 8110872 A JP8110872 A JP 8110872A JP 11087296 A JP11087296 A JP 11087296A JP 2993634 B2 JP2993634 B2 JP 2993634B2
Authority
JP
Japan
Prior art keywords
reference point
excavator
output
weight
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8110872A
Other languages
Japanese (ja)
Other versions
JPH09297022A (en
Inventor
峯 石坂
哲樹 菊地
信行 松井
達之 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP8110872A priority Critical patent/JP2993634B2/en
Publication of JPH09297022A publication Critical patent/JPH09297022A/en
Application granted granted Critical
Publication of JP2993634B2 publication Critical patent/JP2993634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地下掘削機(以下、掘
削機という場合がある。)位置の精密検出方法及び装置
に関し、とくに地表から吊下げられ鉛直に掘削する地下
掘削機の位置の精密な検出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for precisely detecting the position of an underground excavator (hereinafter, sometimes referred to as an excavator), and particularly to the position of an underground excavator suspended from the ground surface and excavated vertically. The present invention relates to a precise detection method and device.

【0002】[0002]

【従来の技術】図1(A)及び2(A)に、本出願人が特願平
6ー289490号に提案した下げ振り式地下掘削機の
位置検出方法を示す。地下掘削機1は、その頂面2に接
続した吊りワイヤ5により地表3の吊下げユニット4か
ら重力方向に吊下げられ鉛直に竪孔8を掘削する。実際
には、地層の硬軟によって先端が水平方向にずれ掘削機
1の姿勢が鉛直から離れ、竪孔8の鉛直性が損われるこ
とがある。鉛直性確保のため、掘削機1上に設けた二つ
の参照点17の位置を検出してそれらの位置から掘削機姿
勢を算出し、掘削機1に対し所要の姿勢又は位置の修正
を加えることが行われている。図2(A)及び図4は、か
かる二点のうち一方の点の位置測定方法を示し、他方の
点についても同様な測定が可能である。吊下げユニット
4により地表3の基準点7から重錘9を計測用ワイヤ6
によって吊下げる。掘削機1の頂面2に対する重錘9の
位置検出のため、各参照点17に位置検出ユニット20を設
ける。地表3の二つの基準点7に対する掘削機1上の二
つの参照点17の座標を測定すれば、掘削機1の姿勢は計
算可能であり、例えば図3の計算機34によりその計算を
行いその計算結果を表示部36に表示することができる。
2. Description of the Related Art FIGS. 1 (A) and 2 (A) show a method of detecting the position of a down swing type underground excavator proposed by the present applicant in Japanese Patent Application No. 6-289490. The underground excavator 1 is suspended in the direction of gravity from a suspension unit 4 on the ground surface 3 by a suspension wire 5 connected to the top surface 2 thereof, and excavates a vertical hole 8 vertically. In practice, the tip of the excavator 1 may be displaced from the vertical direction due to the hardness of the stratum, and the verticality of the pit 8 may be impaired. To ensure verticality, detect the positions of the two reference points 17 provided on the excavator 1, calculate the excavator posture from those positions, and correct the required posture or position of the excavator 1. Has been done. FIGS. 2A and 4 show a method for measuring the position of one of the two points, and the same measurement can be performed for the other point. The weight 9 is measured by the suspension unit 4 from the reference point 7 on the ground surface 3 to the measuring wire 6.
Hang by. A position detection unit 20 is provided at each reference point 17 for detecting the position of the weight 9 with respect to the top surface 2 of the excavator 1. If the coordinates of the two reference points 17 on the excavator 1 with respect to the two reference points 7 on the ground 3 are measured, the attitude of the excavator 1 can be calculated. For example, the computer 34 shown in FIG. The result can be displayed on the display unit 36.

【0003】図2(A)及び(C)は、9個のホール素子製接
近感知素子11を例えば10cmの素子間間隔で図4のC行と
第3列に十文字状に配列して位置検出ユニット20とし、
重錘9を磁石10付きとした例を示す。重錘9が図4の第
2列でB行とC行との間にある場合を検討する。ホール
素子の出力は、磁界に比例するので、磁石10とホール素
子との間の距離の減少に応じて増大し、磁石に最も近い
ホール素子の出力が最も大きくなる。図4(B)は第3列
の直線上の接近検知素子11の出力の分布を示し、図4
(C)はC行の直線上の接近検知素子11の出力の分布を示
す。図4(D)は、図4(B)の接近検知素子出力値を補間法に
より結んでカーブとし、同様に図4(C)の接近検知素子出
力値を補間法により結んでカーブとし、両カーブのピー
ク値を通り且つ行及び列に平行な直線の交点として重錘
9の掘削機1に対する座標を測定する原理を示す。重錘
9の掘削機1に対する座標を測定すれば、既に説明した
ように地表3の基準点7に対する掘削機1の位置を検出
できる。図2(B)は、25個の接近感知素子11をマトリク
ス状に配列した位置検出ユニット20であり、その作用は
図2(A)のものと同様である。
FIGS. 2 (A) and 2 (C) show position detection by arranging nine approach sensing elements 11 made of Hall elements in a C-shaped and third column of FIG. 4 at an interval of, for example, 10 cm. Unit 20
An example in which the weight 9 is provided with a magnet 10 is shown. Consider a case where the weight 9 is located between the B and C rows in the second column of FIG. Since the output of the Hall element is proportional to the magnetic field, it increases as the distance between the magnet 10 and the Hall element decreases, and the output of the Hall element closest to the magnet becomes the largest. FIG. 4B shows the output distribution of the approach detection element 11 on the straight line in the third column.
(C) shows the distribution of the output of the approach detection element 11 on the straight line in row C. FIG. 4D shows a curve obtained by connecting the output values of the proximity detection elements of FIG. 4B by interpolation, and similarly forms a curve obtained by connecting the output values of the proximity detection elements of FIG. 4C by interpolation. The principle of measuring the coordinates of the weight 9 with respect to the excavator 1 as an intersection of a straight line passing through the peak value of the curve and parallel to the row and the column is shown. If the coordinates of the weight 9 with respect to the excavator 1 are measured, the position of the excavator 1 with respect to the reference point 7 on the ground surface 3 can be detected as described above. FIG. 2B shows a position detection unit 20 in which 25 proximity sensing elements 11 are arranged in a matrix, and the operation is the same as that of FIG. 2A.

【0004】位置検出ユニット20の構成の一例を示す図
3において、マルチプレクサ22は、制御電流発生部30の
電流Iを順次各接近感知素子11に加えると共にその出力
電圧Ehを増幅器25を介してレベル検知部26に与える。
マルチプレクサ制御部32は、マルチプレクサ22の切替え
により、制御電流I及び出力電圧Ehの接続を各接近感
知素子11に順次切り替える。判別部28は、レベル検知部
26からの電圧と位置メモリ29からの当該電圧が発生した
接近感知素子11の位置とに基づき、複数の接近感知素子
11に対向する磁石10の位置を決定する。計算機34が、地
表3の基準点7の座標、掘削機1上の複数の接近感知素
子11の座標、及び位置検出ユニット20からの接近感知素
子11に対する磁石10の位置に基づき、掘削機1の地表座
標を算定する。算定結果は表示部36における表示又は記
録部38による記録に供される。
In FIG. 3 showing an example of the configuration of the position detection unit 20, a multiplexer 22 sequentially applies a current I of a control current generator 30 to each proximity sensing element 11, and outputs an output voltage Eh via an amplifier 25 to a level. This is given to the detection unit 26.
The multiplexer control unit 32 sequentially switches the connection of the control current I and the output voltage Eh to each proximity sensing element 11 by switching the multiplexer 22. The determination unit 28 is a level detection unit
Based on the voltage from 26 and the position of the proximity sensing element 11 at which the voltage was generated from the location memory 29, a plurality of proximity sensing elements
The position of the magnet 10 facing 11 is determined. The computer 34 determines the position of the excavator 1 based on the coordinates of the reference point 7 on the ground surface 3, the coordinates of the plurality of proximity sensing elements 11 on the excavator 1, and the position of the magnet 10 with respect to the proximity sensing element 11 from the position detection unit 20. Calculate surface coordinates. The calculation result is provided for display on the display unit 36 or recording by the recording unit 38.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記提案の地
下掘削機の位置検出方法には次の問題点がある。 (1) 複数の接近感知素子11の出力をそのまま測定値とし
て使用するので、接近感知素子11の特性のばらつきに起
因する誤差が生ずる。 (2) 掘削後の竪孔内の空気又は安定液の温度が変動する
場合に、接近感知素子11の出力の温度変化による誤差が
生ずる。 (3) 接近感知素子11が本来の機能上又は感度向上のため
磁性体を含む場合に、重錘9に取付けた磁石10の強い磁
場への接近・離隔を繰返すとその磁性体に残留磁気が残
り、誤差の原因となる。
However, the position detection method of the underground excavator proposed above has the following problems. (1) Since the outputs of the plurality of proximity sensing elements 11 are used as measured values as they are, errors occur due to variations in the characteristics of the proximity sensing elements 11. (2) When the temperature of the air or the stable liquid in the pit after excavation fluctuates, an error occurs due to a temperature change in the output of the proximity sensing element 11. (3) When the proximity sensing element 11 includes a magnetic material for its original function or to improve sensitivity, when the magnet 10 attached to the weight 9 repeatedly approaches and separates from a strong magnetic field, residual magnetism is generated in the magnetic material. It remains and causes an error.

【0006】従って本発明の目的は、接近感知素子の特
性のばらつきの影響を抑制した地下掘削機位置の精密検
出方法及び装置の提供にある。
Accordingly, an object of the present invention is to provide a method and an apparatus for accurately detecting the position of an underground excavator in which the influence of variations in the characteristics of the approach sensing element is suppressed.

【0007】[0007]

【課題を解決するための手段】本発明者は、図4の位置
決定手法では複数の接近感知素子11の出力から求めた二
つの座標軸における座標値で直接に定まる点として重錘
9の位置を求めているので、接近感知素子11相互間の特
性のばらつきの影響が生じやすい点に着目した。重錘9
の位置をなんらかの手法で複数の接近感知素子11の出力
の平均値として求めれば、素子11の特性のばらつきの影
響を抑制できるはずである。
According to the position determination method shown in FIG. 4, the present inventor determines the position of the weight 9 as a point directly determined by the coordinate values on two coordinate axes obtained from the outputs of the plurality of proximity sensing elements 11. Therefore, attention was paid to the point that the influence of the variation in the characteristics between the proximity sensing elements 11 is likely to occur. Weight 9
If the position is obtained as an average value of the outputs of the plurality of proximity sensing elements 11 by some method, the influence of the variation in the characteristics of the elements 11 can be suppressed.

【0008】図1の実施例を参照するに、本発明の地下
掘削機位置の精密検出方法によれば、地表3より吊下げ
られて鉛直に掘削する地下掘削機1の位置を検出する方
法において、掘削機頂面2に1個以上の固定参照点17を
設け、各参照点17において相互に120度で交わる3本の
線分α、β、γを頂面2上に定め、近接重錘9との距離
に応じた出力が出る複数の接近感知素子11を各線分α、
β、γ上に一定間隔で固定し(以下、スター配置という
場合がある)、地表3の基準点7から地下掘削機1上の
対応参照点17の直上まで前記一定間隔に比し小径の重錘
9を吊下げ、3本の線分α、β、γの各々における接近
感知素子11の出力の分布から各線分上で前記出力が最大
の点Pa、Pb、Pc(図5参照)を定め、頂面2上における
3本の線分に対する前記出力最大の点での垂線La、Lb、
Lc(図5参照)が囲む三角領域31(図5参照)の重心33
(図5参照)を定めてこれを重錘9の鉛直投影位置と
し、当該参照点17に対する重心33の座標に基づき前記地
上基準点7に対する掘削機1の当該参照点17の座標を定
める。
Referring to the embodiment of FIG. 1, according to the method for accurately detecting the position of an underground excavator according to the present invention, the method of detecting the position of an underground excavator 1 suspended from the ground surface 3 and excavating vertically. , One or more fixed reference points 17 are provided on the excavator top surface 2, and three line segments α, β, γ intersecting each other at 120 degrees at each reference point 17 are determined on the top surface 2, 9, a plurality of approach sensing elements 11 that output according to the distance to each line segment α,
fixed on β and γ at a fixed interval (hereinafter, also referred to as a star arrangement), from the reference point 7 on the ground surface 3 to just above the corresponding reference point 17 on the underground excavator 1, the weight having a smaller diameter than the fixed interval The weight 9 is suspended, and points Pa, Pb, and Pc (see FIG. 5) where the outputs are maximum on each of the three line segments α, β, and γ are determined from the distribution of the output of the proximity sensing element 11 in each of the three line segments. , The perpendiculars La, Lb, at the point of maximum output for the three line segments on the top surface 2
Center of gravity 33 of triangular region 31 (see FIG. 5) surrounded by Lc (see FIG. 5)
(See FIG. 5), this is defined as the vertical projection position of the weight 9, and the coordinates of the reference point 17 of the excavator 1 with respect to the ground reference point 7 are determined based on the coordinates of the center of gravity 33 with respect to the reference point 17.

【0009】好ましくは、複数の接近感知素子11の各々
の出力の温度変化特性を予め測定して記憶し、それら接
近検知素子11の近傍に温度計23(図6参照)を設け、地
下掘削機1の位置検出時の各接近検知素子11の出力を該
検出時に温度計23で測定される温度と記憶された温度変
化特性とにより補正する。さらに好ましくは、重錘9に
磁石10を取付け、各接近感知素子11に磁石10の接近・離
隔に応じて磁化の強さが増減する磁性体(図示せず)を
含め、一定回数の地下掘削機1の位置検出の後に各感知
素子11の磁性体の残留磁気を消磁する。
Preferably, the temperature change characteristics of the output of each of the plurality of approach sensing elements 11 are measured and stored in advance, and a thermometer 23 (see FIG. 6) is provided near the approach sensing elements 11, and an underground excavator is provided. The output of each approach detection element 11 at the time of detecting the position 1 is corrected by the temperature measured by the thermometer 23 at the time of the detection and the stored temperature change characteristic. More preferably, a magnet 10 is attached to the weight 9, and each of the proximity sensing elements 11 includes a magnetic body (not shown) whose magnetization intensity increases or decreases according to the approach / separation of the magnet 10, and a certain number of underground excavations After detecting the position of the machine 1, the residual magnetism of the magnetic material of each sensing element 11 is demagnetized.

【0010】[0010]

【作用】本発明の作用を図5により説明する。この例で
は、接近感知素子11をホール素子とし、複数の接近検知
素子11を掘削機1上の参照点17において120゜で交る3本
の線分α、β、γ上にスター配置で固定し、それぞれ磁
石10を有する二つの重錘9を二つの基準位置7A、7Bが設
けられた吊下げユニット4から吊下げているが、本発明
はこの例に限定されない。
The operation of the present invention will be described with reference to FIG. In this example, the approach sensing element 11 is a hall element, and the plurality of approach sensing elements 11 are fixed in a star arrangement on three line segments α, β, and γ intersecting at 120 ° at a reference point 17 on the excavator 1. Then, the two weights 9 each having the magnet 10 are suspended from the suspension unit 4 provided with the two reference positions 7A and 7B, but the present invention is not limited to this example.

【0011】地表3の基準点7から地下掘削機1の参照
点17の直上まで吊下げた重錘9は基準点7の鉛直下方に
あるから、基準点7の地表における平面座標はこの重錘
9の地表に平行な平面座標においても維持される。重錘
9が図5(A)の線分βの同図で参照点17から上向きに1
番目と2番目の接近感知素子11の間で僅かに線分βの右
側において実質上頂面2に接しているとする。この場
合、スター配置の接近感知素子11の出力が図5(B)のよ
うになることが想定される。図5(B)は、作図の便宜上
スター配置の中心点Sから線分α、β及びγをそれぞれ
図5(A)の位置と平行に等距離だけ後退させたもので、
各線分α、β、γから直角方向に隔たった黒丸は各接近
感知素子11の出力を表し当該線分からの隔たりの大きさ
が各接近感知素子11の出力の大きさに比例するものとす
る。各線分α、β、γに対する黒丸を滑らかな曲線で結
ぶことにより、接近感知素子11の出力の連続的分布を推
定することができる。但し黒丸の位置は推定値ではなく
実測値である。この分布から、各線分において接近感知
素子11の出力が最大となる位置、即ち当該線分上で重錘
9に最も近い点をピーク点Pa、Pb、Pcとして定め得る。
頂面2上でピーク点Pa、Pb、Pcにおける線分α、β、γ
に対する垂線La、Lb、Lcは三角領域31を画成する。
Since the weight 9 suspended from the reference point 7 on the ground surface 3 to just above the reference point 17 on the underground excavator 1 is vertically below the reference point 7, the plane coordinates of the reference point 7 on the ground surface are determined by this weight. 9 are also maintained in plane coordinates parallel to the ground surface. The weight 9 is 1 upward from the reference point 17 in the line segment β in FIG.
It is assumed that the second and third proximity sensing elements 11 substantially touch the top surface 2 slightly to the right of the line segment β. In this case, it is assumed that the output of the proximity sensing element 11 in the star arrangement is as shown in FIG. FIG. 5B is a diagram in which the line segments α, β, and γ are respectively retracted from the center point S of the star arrangement by the same distance in parallel with the position of FIG.
Black circles separated from the respective line segments α, β, γ in a direction perpendicular to each other represent the output of each proximity sensing element 11, and the size of the distance from the line segment is proportional to the magnitude of the output of each proximity sensing element 11. The continuous distribution of the output of the proximity sensing element 11 can be estimated by connecting the black circles for the line segments α, β, and γ with a smooth curve. However, the position of the black circle is not an estimated value but an actually measured value. From this distribution, the position where the output of the proximity sensing element 11 is maximum in each line segment, that is, the point closest to the weight 9 on the line segment can be determined as the peak points Pa, Pb, and Pc.
Line segments α, β, γ at peak points Pa, Pb, Pc on top surface 2
Perpendiculars La, Lb, and Lc to define a triangular area 31.

【0012】いま、接近感知素子11が理想的なセンサー
であって誤差やばらつきが全くないと仮定すると、上記
垂線La、Lb、Lcは一点で交わりその点が重錘9の鉛直投
影位置となる。しかし、現実の接近感知素子11には誤差
やばらつきがあるので、3本の垂線La、Lb、Lcは一点で
交わらず三角領域31を画成する。図4の従来技術では、
二つの座標のみしか用いないので、重錘9の鉛直投影位
置を、補間曲線ピーク値を通る直線の交点として求めて
いる。このため、図4の場合には、接近感知素子11の誤
差やばらつきを含む2直線の交点を重錘9の鉛直投影位
置とするので、これらの誤差やばらつきに対する補償が
全くなされず、それらの誤差やばらつきが直接に測定に
影響している。
Now, assuming that the approach sensing element 11 is an ideal sensor and has no error or variation, the perpendiculars La, Lb, and Lc intersect at one point, and that point becomes the vertical projection position of the weight 9. . However, since the actual approach sensing element 11 has errors and variations, the three perpendicular lines La, Lb, and Lc do not intersect at one point and define a triangular area 31. In the prior art of FIG.
Since only two coordinates are used, the vertical projection position of the weight 9 is determined as the intersection of a straight line passing through the peak value of the interpolation curve. For this reason, in the case of FIG. 4, since the intersection of the two straight lines including the error and the variation of the approach sensing element 11 is used as the vertical projection position of the weight 9, no compensation for these errors and variations is made, and Errors and variations directly affect the measurement.

【0013】他方、本発明では上記の三角領域31の重心
33を求めこれを重錘9の鉛直投影位置とする。この重心
33を求めることは複数の接近感知素子11の誤差やばらつ
きを平均してその影響を抑制することになる。従って、
これら誤差やばらつきの影響の少ない高精度計測が可能
になる。
On the other hand, in the present invention, the center of gravity of the triangular region 31 is described.
33 is obtained and set as the vertical projection position of the weight 9. This center of gravity
Obtaining 33 means that errors and variations of the plurality of approach sensing elements 11 are averaged to suppress the influence. Therefore,
High-accuracy measurement with less influence of these errors and variations becomes possible.

【0014】こうして、本発明の目的である「接近感知
素子の特性のばらつきの影響を抑制した地下掘削機位置
の精密検出方法及び装置の提供」が達成される。
In this manner, the object of the present invention is to provide "a method and an apparatus for accurately detecting the position of an underground excavator in which the influence of variations in the characteristics of the proximity sensing element is suppressed."

【0015】[0015]

【実施例】図1の実施例では、複数の接近感知素子11の
配置を図2(B)のマトリクス型ではなく図2(D)のスター
型としているので、素子11の数を少なくして故障率の低
減と低コスト化が可能である。また、図2(C)のクロス
型の場合に比し、位置検出ユニット20の隅部での計測精
度を高く維持することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of FIG. 1, the arrangement of the plurality of proximity sensing elements 11 is not the matrix type of FIG. 2 (B) but the star type of FIG. 2 (D). The failure rate can be reduced and the cost can be reduced. In addition, the measurement accuracy at the corners of the position detection unit 20 can be maintained higher than in the case of the cross type shown in FIG.

【0016】位置検出素子11の出力の温度変化は素子11
ごとにばらつき易いので、一定温度環境で使用する場合
には、重大な問題とならないが、測定環境の温度が著し
く変化する場合には、例えば図6の接近感知素子11の支
持台21等の接近感知素子11近傍に温度計23を設け、予め
工場で作成した温度ー出力電圧特性により温度変化に対
する補償をすることが望ましい。さらに具体的には、ホ
ール素子からなる接近感知素子11に対して次のような手
法を用いることができる。
The temperature change of the output of the position detecting element 11
This is not a serious problem when used in a constant temperature environment, but when the temperature of the measurement environment changes significantly, for example, the approach of the support 21 of the approach sensing element 11 in FIG. It is desirable to provide a thermometer 23 in the vicinity of the sensing element 11 to compensate for a temperature change using a temperature-output voltage characteristic created in advance at a factory. More specifically, the following method can be used for the proximity sensing element 11 composed of a Hall element.

【0017】(a) 恒温槽内等の温度変化試験環境で測定
を行い、各ホール素子ごとの出力電圧ー温度特性曲線を
図6(B)のように作成してコンピュータ(図示せず)に
これを記憶する。 (b) 現場での測定開始時に、磁界がない状態で各ホール
素子の出力電圧を初期ホール素子電圧として計測する。
(キャリブレーション) (c) 複数のホール素子の初期ホール素子電圧を測定時温
度(例えば20゜C)と共に次表のような初期ホール素子電
圧テーブルとしてコンピュータ内に記憶する。
(A) Measurement is performed in a temperature change test environment such as in a thermostat, and an output voltage-temperature characteristic curve for each Hall element is created as shown in FIG. This is stored. (b) At the start of measurement in the field, the output voltage of each Hall element is measured as the initial Hall element voltage in the absence of a magnetic field.
(Calibration) (c) The initial Hall element voltages of the plurality of Hall elements are stored in the computer together with the temperature at the time of measurement (for example, 20 ° C.) as an initial Hall element voltage table as shown in the following table.

【0018】[0018]

【表1】 重錘(磁石)がない時のホール素子出力初期値 ホール素子番号 出力電圧(ボルト) 10゜C 20゜C 30゜C 1 4.0 4.5 5.0 2 4.1 4.0 4.9 3 4.2 4.5 5.3 ・ ・ ・ n … … …[Table 1] Hall element output initial value when there is no weight (magnet) Hall element number Output voltage (volt) 10 ゜ C 20 ゜ C 30 ゜ C 1 4.0 4.5 5.0 2 4.1 4.0 4.9 3 4.2 4.5 5.3 ・ ・ ・n………

【0019】(d) 磁石10付き重錘9を吊り降ろし、本計
測を開始する。 (e) 計測中に温度変化(例えば20゜Cから18゜Cへ)があっ
た場合、出力電圧ー温度特性曲線から、ホール素子No.1
〜No.nの各々について20゜Cにおける電圧と18゜Cにおける
電圧との差分を求め、求めた差分を現在計測中のホール
素子電圧に加算して補正する。こうしてホール素子の違
いによる温度特性のばらつきを補償することができる。
(D) The weight 9 with the magnet 10 is suspended and the main measurement is started. (e) If there is a temperature change during measurement (for example, from 20 ° C to 18 ° C), the output voltage-temperature characteristic curve indicates that the Hall element No. 1
To No. n, the difference between the voltage at 20 ° C. and the voltage at 18 ° C. is obtained, and the obtained difference is added to the Hall element voltage currently being measured and corrected. In this way, it is possible to compensate for variations in temperature characteristics due to differences in Hall elements.

【0020】重錘9に取付けた磁石10が強い磁場を有す
る場合に、接近感知素子11が本来の機能上又は感度向上
のため磁性体を含む時は、重錘9のこれら素子11への接
近・離隔が繰返されると、その磁性体に残留磁気が残
り、誤差の原因となる。この誤差を避けるため例えば図
7に示すように、位置検出ユニット20の一部となる圧力
容器40内の基板41に取付けた接近感知素子11の付近に、
消磁回路43から付勢される消磁ヘッド44を配置してもよ
い。図中符号42は圧力容器40の天板を示し、符号45は各
素子11を制御ケーブル19に接続するための端子を示す。
表示部36(図3)において、接近感知素子11の出力に異
常な変動が認められる等の異常検出時に、又は定期的に
消磁ヘッド44による消磁を行えば、上記の残留磁気によ
る誤差を避けることができる。
In the case where the magnet 10 attached to the weight 9 has a strong magnetic field and the proximity sensing element 11 includes a magnetic material for its original function or to improve the sensitivity, the approach of the weight 9 to these elements 11 is considered. When the separation is repeated, residual magnetism remains in the magnetic material, causing an error. In order to avoid this error, for example, as shown in FIG. 7, near the proximity sensing element 11 attached to the substrate 41 in the pressure vessel 40 which is a part of the position detection unit 20,
A degaussing head 44 energized by the degaussing circuit 43 may be provided. In the figure, reference numeral 42 indicates a top plate of the pressure vessel 40, and reference numeral 45 indicates a terminal for connecting each element 11 to the control cable 19.
If the display unit 36 (FIG. 3) detects an abnormality such as an abnormal change in the output of the proximity sensing element 11 or periodically performs degaussing by the degaussing head 44, the error due to the residual magnetism can be avoided. Can be.

【0021】[0021]

【発明の効果】以上説明したように本発明による地下掘
削機位置の精密検出方法及び装置は、120゜の角度で相互
に交差する線分上に接近感知素子を配置して、接近感知
素子の単体ごとの特性のばらつきを補償するので、次の
顕著な効果を奏する。 (イ) 簡単な構造の装置で地下掘削機の位置を精密に検
出することができる。 (ロ) スター配置の採用により少ない数の接近感知素子
で精密検出ができる。 (ハ) 接近感知素子の数を少なくし装置全体の故障率低
減を図ることができる。 (ニ) 接近感知素子出力の温度変動のばらつきに対する
補償が可能である。 (ホ) 必要に応じ、接近感知素子等の磁性部品の残留磁
気の消磁が可能である。
As described above, the method and the apparatus for accurately detecting the position of an underground excavator according to the present invention provide an approach sensing element on a line segment intersecting with each other at an angle of 120 °. The following remarkable effects are achieved because the variation in the characteristics of each unit is compensated. (B) The position of the underground excavator can be accurately detected with a device having a simple structure. (B) Use of a star arrangement enables precise detection with a small number of proximity sensing elements. (C) The number of proximity sensing elements can be reduced, and the failure rate of the entire apparatus can be reduced. (D) It is possible to compensate for variations in the temperature fluctuation of the output of the proximity sensing element. (E) If necessary, it is possible to demagnetize the residual magnetism of the magnetic components such as the proximity sensing element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は接近検知素子の各種配列の説明図である。FIG. 2 is an explanatory diagram of various arrangements of approach detection elements.

【図3】は位置検知ユニットのブロック図である。FIG. 3 is a block diagram of a position detection unit.

【図4】はクロス配置の接近感知素子の出力の説明図で
ある。
FIG. 4 is an explanatory diagram of an output of a proximity sensing element in a cross arrangement.

【図5】は本発明による接近感知素子出力の補間法を説
明する図表である。
FIG. 5 is a table illustrating a method of interpolating the output of the proximity sensing element according to the present invention.

【図6】は温度計を設けた位置検知ユニットの説明図で
ある。
FIG. 6 is an explanatory diagram of a position detection unit provided with a thermometer.

【図7】は消磁手段を設けた位置検知ユニットの説明図
である。
FIG. 7 is an explanatory diagram of a position detection unit provided with demagnetizing means.

【符号の説明】[Explanation of symbols]

1 地下掘削機 2 頂面 3 地表 4 吊下げユニット 5 吊下げワイヤ 6 計測用ワイヤ 7 基準点 8 竪孔 9 重錘 10 磁石 11 接近感知素子 15 深度センサー 17 参照点 19 制御ケーブル 20 位置検出ユニット 21 支持台 22 マルチプレクサ 23 温度計 24 コントローラ 25 増幅器 26 レベル検知部 28 判別部 29 位置メモリ 30 制御電流発生部 31 三角領域 32 マルチプレクサ制御部 33 重心 34 計算機 36 表示部 38 記録部 40 圧力容器 41 基板 42 天板 43 消磁回路 44 消磁ヘッド 45 端子。 Reference Signs List 1 underground excavator 2 top surface 3 ground surface 4 hanging unit 5 hanging wire 6 measuring wire 7 reference point 8 vertical hole 9 weight 10 magnet 11 approach sensing element 15 depth sensor 17 reference point 19 control cable 20 position detecting unit 21 Support base 22 Multiplexer 23 Thermometer 24 Controller 25 Amplifier 26 Level detector 28 Discriminator 29 Position memory 30 Control current generator 31 Triangle area 32 Multiplexer controller 33 Center of gravity 34 Computer 36 Display 38 Recording unit 40 Pressure vessel 41 Substrate 42 Top Plate 43 Degaussing circuit 44 Degaussing head 45 Terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越智 達之 東京都港区元赤坂一丁目2番7号 鹿島 建設株式会社内 (56)参考文献 特開 平6−94463(JP,A) 特開 平8−145671(JP,A) 特開 昭64−68613(JP,A) 特開 昭61−53513(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01C 15/00 - 15/14 G01C 9/00 - 9/36 G01B 7/00 G01B 21/00 G01D 5/12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuyuki Ochi Kashima Construction Co., Ltd. 1-2-7 Moto-Akasaka, Minato-ku, Tokyo (56) References JP-A-6-94463 (JP, A) JP Hei 8-144571 (JP, A) JP-A-64-68613 (JP, A) JP-A-61-53513 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01C 15 / 00-15/14 G01C 9/00-9/36 G01B 7/00 G01B 21/00 G01D 5/12

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】地表から吊下げられて鉛直に掘削する地下
掘削機の位置を検出する方法において、掘削機頂面に1
個以上の固定参照点を設け、各参照点において相互に12
0度で交わる3本の線分を前記頂面上に定め、近接重錘
との距離に応じた出力が出る複数の接近感知素子を前記
各線分上に一定間隔で固定し、地表の基準点から地下掘
削機上の対応参照点直上まで前記一定間隔に比し小径の
重錘を吊下げ、前記3本の線分の各々における前記接近
感知素子の出力の分布から各線分上で前記出力が最大の
点を定め、前記頂面上における3本の線分に対する前記
出力最大の点での垂線が囲む三角領域の重心位置を定め
て前記重錘の鉛直投影位置とし、当該参照点に対する前
記重心位置の座標に基づき前記地上基準点に対する掘削
機の当該参照点の座標を定めてなる地下掘削機位置の精
密検出方法。
1. A method for detecting the position of an underground excavator suspended from the surface of a ground and excavating vertically, comprising:
More than one fixed reference point, and each reference point
Three line segments that intersect at 0 degrees are defined on the top surface, and a plurality of approach sensing elements that output an output according to the distance to the adjacent weight are fixed on each of the line segments at regular intervals, and a reference point on the ground surface , A weight having a smaller diameter than the constant interval is suspended from above to the corresponding reference point on the underground excavator, and the output on each line is obtained from the distribution of the output of the approach sensing element in each of the three lines. A maximum point is determined, a center of gravity of a triangular area surrounded by a perpendicular line at the point of maximum output with respect to three line segments on the top surface is defined as a vertical projection position of the weight, and the center of gravity with respect to the reference point is determined. A method for accurately detecting the position of an underground excavator, wherein the coordinates of the reference point of the excavator with respect to the ground reference point are determined based on the coordinates of the position.
【請求項2】 請求項1の精密検出方法において、前記
複数の接近感知素子の各々の出力の温度変化特性を予め
測定して記憶し、それら接近検知素子の近傍に温度計を
設け、地下掘削機の位置検出時の各接近検知素子の出力
を該検出時に前記温度計で測定される温度と記憶された
温度変化特性とにより補正してなる地下掘削機位置の精
密検出方法。
2. The underground excavation method according to claim 1, wherein a temperature change characteristic of an output of each of the plurality of proximity sensing elements is measured and stored in advance, and a thermometer is provided near the proximity sensing elements. A method for accurately detecting the position of an underground excavator, wherein the output of each approach detection element at the time of detecting the position of the excavator is corrected by the temperature measured by the thermometer and the stored temperature change characteristic at the time of the detection.
【請求項3】 請求項1又は2の精密検出方法におい
て、前記重錘に磁石を取付け、前記各接近感知素子に前
記磁石の接近・離隔に応じて磁化の強さが増減する磁性
体を含め、一定回数の地下掘削機の位置検出の後に前記
各感知素子の磁性体の残留磁気を消磁してなる地下掘削
機位置の精密検出方法。
3. The precision detection method according to claim 1, wherein a magnet is attached to the weight, and each of the proximity sensing elements includes a magnetic body whose magnetization intensity increases or decreases according to the approach / separation of the magnet. And a method for accurately detecting the position of an underground excavator, wherein the residual magnetism of the magnetic material of each of the sensing elements is demagnetized after a predetermined number of times of detecting the position of the underground excavator.
【請求項4】 請求項1、2又は3の精密検出方法にお
いて、前記地表の基準点に前記重錘の深さを検出する深
度センサーを設け、前記地表基準点に対する前記掘削機
の三次元位置を検出してなる地下掘削機位置の精密検出
方法。
4. The precision detection method according to claim 1, further comprising a depth sensor for detecting a depth of the weight at a reference point on the ground surface, wherein a three-dimensional position of the excavator with respect to the ground reference point is provided. Precise detection method of underground excavator position by detecting.
【請求項5】 請求項4の精密検出方法において、前記
掘削機の頂面上に一定間隔を隔てた二つの参照点を設
け、各参照点において相互に120度で交わる3本の線分
を前記頂面上に定め、近接重錘との距離に応じた出力が
出る複数の接近感知素子を前記各線分上に一定間隔で固
定し、地表で前記一定間隔を隔てた二つの基準位置から
前記重錘をそれぞれ吊下げ、前記各重錘に対応する参照
点における3本線上の前記接近感知素子からの出力及び
各重錘に対応する前記深度センサーの出力を検出し、検
出された前記接近感知素子及び深度センサーの出力から
前記各地表基準点に対応する各参照点の三次元位置を検
出することにより前記掘削機の位置及び姿勢を検出して
なる地下掘削機位置の精密検出方法。
5. The precision detection method according to claim 4, wherein two reference points are provided on the top surface of the excavator at a constant interval, and three line segments that intersect each other at 120 degrees at each reference point. A plurality of approach sensing elements, which are determined on the top surface and output according to the distance to the proximity weight, are fixed at a constant interval on each of the line segments, and the two reference positions spaced at the constant interval on the ground surface from the two reference positions. Each of the weights is suspended, and an output from the approach sensing element on three lines at a reference point corresponding to each of the weights and an output of the depth sensor corresponding to each of the weights are detected, and the detected proximity sensing is detected. A method for accurately detecting the position of an underground excavator by detecting the position and attitude of the excavator by detecting the three-dimensional position of each reference point corresponding to the reference point on each area from the outputs of an element and a depth sensor.
【請求項6】 請求項1、2、3、4又は5の精密検出
方法において、前記接近感知素子をホール素子とし、前
記重錘に磁石を設けてなる地下掘削機位置の精密検出方
法。
6. The method of claim 1, 2, 3, 4, or 5, wherein the proximity sensing element is a hall element, and the weight is provided with a magnet to accurately detect the position of the underground excavator.
【請求項7】 請求項1、2、3、4又は5の精密検出
方法において、前記接近感知素子を磁気抵抗素子とし、
前記重錘に磁石を設けてなる地下掘削機位置の精密検出
方法。
7. The precision detection method according to claim 1, wherein said proximity sensing element is a magnetoresistive element,
An accurate method for detecting the position of an underground excavator, wherein the weight is provided with a magnet.
【請求項8】 地表基準点に対する地下掘削機の位置を
検出する装置において、地下掘削機の頂面上の所定参照
点において相互に120度で交わる前記頂面上の3本の線
分に沿って一定間隔で固定され且つ近接重錘との距離に
応じた出力を発生する複数の接近感知素子;前記一定間
隔より小さい径を有する重錘;地表の所定位置から前記
重錘を前記地下掘削機の直上まで吊下げる吊下げユニッ
ト;及び前記3本の線分の各々における前記接近感知素
子の出力の分布から各線分上で前記出力が最大の点を定
め、前記頂面上における3本の線分に対する前記出力最
大の点での垂線が囲む三角領域の重心位置を定めて前記
重錘の鉛直投影位置とし、当該参照点に対する前記重心
位置を検出する位置検出ユニットを備え、当該参照点に
対する前記重心位置の座標に基づき前記地上基準点に対
する掘削機の当該参照点の座標を定めてなる地下掘削機
位置の精密検出装置。
8. An apparatus for detecting the position of an underground excavator with respect to a ground reference point, said apparatus comprising three lines on said top surface intersecting at a predetermined reference point on said top surface at 120 degrees with each other. A plurality of approach sensing elements fixed at regular intervals and generating an output according to the distance to the adjacent weight; a weight having a diameter smaller than the constant interval; the underground excavator removing the weight from a predetermined position on the ground surface A suspension unit for suspending the unit immediately above the unit; and a distribution of the output of the proximity sensing element in each of the three line segments, the point where the output is maximum on each line segment, and three lines on the top surface. The position of the center of gravity of the triangular area surrounded by the perpendicular line at the point of maximum output with respect to the minute is determined as the vertical projection position of the weight, and a position detection unit that detects the position of the center of gravity with respect to the reference point is provided. Of the center of gravity An underground excavator position precise detection device that determines coordinates of the reference point of the excavator with respect to the ground reference point based on the coordinates.
JP8110872A 1996-05-01 1996-05-01 Precise detection method of underground excavator position Expired - Lifetime JP2993634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8110872A JP2993634B2 (en) 1996-05-01 1996-05-01 Precise detection method of underground excavator position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8110872A JP2993634B2 (en) 1996-05-01 1996-05-01 Precise detection method of underground excavator position

Publications (2)

Publication Number Publication Date
JPH09297022A JPH09297022A (en) 1997-11-18
JP2993634B2 true JP2993634B2 (en) 1999-12-20

Family

ID=14546850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8110872A Expired - Lifetime JP2993634B2 (en) 1996-05-01 1996-05-01 Precise detection method of underground excavator position

Country Status (1)

Country Link
JP (1) JP2993634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663304B2 (en) * 2007-06-27 2015-02-04 ブルックス オートメーション インコーポレイテッド Multi-dimensional position sensor
JP5164584B2 (en) * 2008-01-22 2013-03-21 日本電子技術株式会社 Magnetized object position detecting unit and magnetized object position detecting device using the same

Also Published As

Publication number Publication date
JPH09297022A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
EP2717060B1 (en) Dynamic self-calibration of an accelerometer system
US4472884A (en) Borehole azimuth determination using magnetic field sensor
US9234736B2 (en) Sensor assembly for determining a spatial position of a first part relative to a second part
US6539639B2 (en) Monitoring accuracy of an electronic compass
JP2006133230A (en) Inclination sensor and utilization method therefor
KR20140094333A (en) Flexible display and method for measuring angle of the same
JP2002022403A (en) Displacement detector and displacement detecting method
JPH01219610A (en) Running azimuth detector for vehicle
KR100965608B1 (en) Apparartus and method for measuring vibration
JPH05340709A (en) Three-dimensional shape measuring instrument
JP2993634B2 (en) Precise detection method of underground excavator position
JP7200780B2 (en) Information processing device, information processing method, and information processing system
JP2000304533A (en) Ship position displacement detector
JP2911101B2 (en) Underground excavator position detection method
JP4144851B2 (en) Ship position detection method, position detection apparatus and system
JPH06207827A (en) Displacement measuring apparatus for building of vibration isolation construction
SE505763C2 (en) Inductive device for determining the dimensions and position of measuring objects of electrically conductive material
JP2002106286A (en) Propulsion head position and direction measuring method and propulsion head position and direction measuring instrument
JP2611642B2 (en) Coordinate position detector
JP4426784B2 (en) Direction measuring device
JP3711878B2 (en) Propulsion head position direction measuring method and propulsion head position direction measuring apparatus
JPH09329438A (en) Measuring method and device for geological discontinuous plane
JP2001264351A (en) Inertia measuring device
JP2813263B2 (en) Non-destructive surveying method and apparatus for underground structures
JP2763464B2 (en) Moving state detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141022

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term