JP2991472B2 - Refractory for ladle lining - Google Patents

Refractory for ladle lining

Info

Publication number
JP2991472B2
JP2991472B2 JP2265060A JP26506090A JP2991472B2 JP 2991472 B2 JP2991472 B2 JP 2991472B2 JP 2265060 A JP2265060 A JP 2265060A JP 26506090 A JP26506090 A JP 26506090A JP 2991472 B2 JP2991472 B2 JP 2991472B2
Authority
JP
Japan
Prior art keywords
refractory
ladle
hollow particles
alumina
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2265060A
Other languages
Japanese (ja)
Other versions
JPH04144981A (en
Inventor
良三 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Nippon Kokan Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2265060A priority Critical patent/JP2991472B2/en
Publication of JPH04144981A publication Critical patent/JPH04144981A/en
Application granted granted Critical
Publication of JP2991472B2 publication Critical patent/JP2991472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は断熱性が改善されたアルミナ−スピネル系の
取鍋内張り用耐火物に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to an alumina-spinel-based ladle refractory with improved heat insulation.

[従来の技術] 取鍋内張り用耐火物としては大型の取鍋の施工が容易
であることから流し込み耐火物が、塩基性スラグを用い
る精錬等を行うとき耐用が良いことからアルミナ−スピ
ネル系の耐火物が好んで利用されている。しかしながら
耐火性を構成する鉱物であるアルミナ(Al2O3)やスピ
ネル(MgO・Al2O3等)は熱伝導率が比較的良好であるこ
とから、これらを主成分とする耐火物の熱伝導率も良
く、この種の耐火物を取鍋に内張して使用すると、取鍋
からの熱損失が大きく、このため取鍋の内側にスラグや
地金が徐々に付着して取鍋の容量が徐々に減少するとい
う問題が起きている。これに対し特公昭59−32423には
スラグや地金が付着しない取鍋内張り用耐火物が提案さ
れている。即ち、このスピネル系取鍋内張り用耐火物で
は耐火物中に黒鉛あるいは黒鉛と炭化珪素との混合物を
1〜20重量%添加しており、黒鉛は地金やスラグに対し
て耐火物を濡れにくくすることにより、炭化珪素はスラ
グ中にSiO2などとなって溶け込んでスラグの融点を低下
せしめることにより、スラグや地金の耐火物への付着を
防ぐ。しかしながらこれらの添加物はいずれも熱伝導率
が良好な物質であり、取鍋から熱損失を低減することは
できず、次の工程に移る前にしばしば中に入っている溶
鋼の温度を上げる手段を別途講じなければならないとい
う問題点があった。
[Related Art] As a refractory for ladle lining, it is easy to construct a large-sized ladle, and the cast refractory has good durability when performing refining or the like using a basic slag. Refractories are preferred. From However, it alumina mineral constituting the refractory (Al 2 O 3), spinel (MgO · Al 2 O 3, etc.) is a relatively good thermal conductivity, these refractories mainly heat When this kind of refractory is lined with a ladle, the heat loss from the ladle is large, so slag and metal are gradually attached to the inside of the ladle and the ladle There is a problem that the capacity gradually decreases. On the other hand, Japanese Patent Publication No. 59-32423 proposes a refractory for lining a ladle to which slag and metal do not adhere. That is, in this refractory for lining a spinel ladle, 1 to 20% by weight of graphite or a mixture of graphite and silicon carbide is added to the refractory, and graphite is less likely to wet the refractory with metal or slag. By doing so, the silicon carbide dissolves into the slag as SiO 2 or the like and lowers the melting point of the slag, thereby preventing the slag and the ingot from adhering to the refractory. However, all of these additives are substances with good thermal conductivity, cannot reduce the heat loss from the ladle, and often increase the temperature of the molten steel contained before moving on to the next step. Had to be taken separately.

本発明はスラグや地金の付着を防止し、かつ取鍋中に
入っている溶鋼の熱損失を低減できる取鍋の内張り用耐
火物を提供しようとするものである。
An object of the present invention is to provide a refractory for lining a ladle that can prevent slag and metal from adhering and reduce heat loss of molten steel contained in the ladle.

[発明の効果] 本発明は前述の問題点を解決すべくなされたものであ
り、本発明の取鍋内張り用耐火物はアルミナ−スピネル
質の流し込み耐火物であって、耐火物中に粒子径0.3〜3
mmの中空粒子が2.5〜12wt%含まれ、かつ見掛け気孔率
が20〜32%であり、耐火物中にスピネル化していないマ
グネシアが含まれていることを特徴とする。
[Effects of the Invention] The present invention has been made to solve the above-mentioned problems, and the refractory for ladle lining of the present invention is an alumina-spinel cast refractory, and has a particle diameter in the refractory. 0.3-3
It is characterized by containing 2.5 to 12% by weight of hollow particles having a diameter of 2.5 mm, an apparent porosity of 20 to 32%, and non-spinelized magnesia in the refractory.

本発明の取鍋内張り用耐火物の好ましい態様では、耐
火物中に前記中空粒子が4〜10wt%含まれる。
In a preferred embodiment of the refractory for ladle lining according to the present invention, the refractory contains 4 to 10% by weight of the hollow particles.

本発明の取鍋内張り用耐火物の他の好ましい態様で
は、中空粒子が電融されてなる中空粒子であり、更に好
ましくは中空粒子がアルミナ質のものである。
In another preferred embodiment of the refractory for ladle lining according to the present invention, the hollow particles are electroformed hollow particles, and more preferably the hollow particles are alumina-based.

本発明の取鍋内張り用耐火物では、主要な構成原料と
してアルミナクリンカー、スピネルクリンカーおよび中
空粒子が配合されているが、耐食性をより向上せしめる
ためにマグネシアクリンカーが添加されている。アルミ
ナクリンカーとしては、礬土頁岩のような天然鉱物、焼
成したボーキサイト、合成アルミナクリンカー、電融ア
ルミナクリンカー等が使用され、スピネルクリンカーと
しては、合成スピネルクリンカー、電融スピネルクリン
カー等が使用される。
In the refractory for ladle lining of the present invention, alumina clinker, spinel clinker and hollow particles are blended as main constituent materials, but magnesia clinker is added to further improve corrosion resistance. As the alumina clinker, natural minerals such as alumite shale, calcined bauxite, synthetic alumina clinker, electrofused alumina clinker, and the like are used. As the spinel clinker, synthetic spinel clinker, electrofused spinel clinker, and the like are used.

中空粒子としては電融した溶湯に気流を吹きつけて0.
1mm程度の肉厚を有する中空粒子としたアルミナやスピ
ネルの中空粒子を用いるのが好ましい。マグネシア(Mg
O)については現在の技術では電融法によって中空粒子
が得られていないが、粉末を燒結して中空粒子とするこ
とは可能である。中空粒子としては、耐食性を確保する
ために緻密な組織を有するものを用いるのが好ましく、
電融されてなる中空粒子は緻密な組織を有し、かつ粗大
な結晶粒子から構成されていることにより耐食性が良
く、電融されてなる中空粒子が配合された流れ込み耐火
物は耐久性に優れている。
As hollow particles, an air stream is blown against the electro-fused molten metal to achieve 0.
It is preferable to use hollow particles of alumina or spinel as hollow particles having a thickness of about 1 mm. Magnesia (Mg
Regarding O), hollow particles cannot be obtained by the electrofusion method with the current technology, but hollow particles can be obtained by sintering powder. As the hollow particles, it is preferable to use those having a dense structure in order to ensure corrosion resistance,
The electrofused hollow particles have a dense structure, and have good corrosion resistance due to being composed of coarse crystal particles, and the cast refractories containing the electrofused hollow particles have excellent durability. ing.

中空粒子の粒子径が0.3mmより小さいものでは中空粒
子の気孔率が小さいので断熱性の付与効果が小さく、流
し込み耐火物の断熱性を向上せしめる効果も小さいので
好ましくなく、粒子径が3mmより大きいものでは内部の
気孔が大きいため断熱性を付与する効果の割に耐食性が
小さくなるので好ましくない。また、中空粒子の添加量
は2.5%以上とすることにより断熱性の付与効果が認め
られ、12%を越えて添加されると流し込み耐火物の耐食
性が低下するので好ましくない。
If the particle diameter of the hollow particles is smaller than 0.3 mm, the porosity of the hollow particles is small, so the effect of imparting heat insulating properties is small, and the effect of improving the heat insulating properties of the poured refractory is also unpreferable because the particle diameter is larger than 3 mm. In this case, the internal pores are large, so that the corrosion resistance is reduced in spite of the effect of imparting heat insulation, which is not preferable. When the amount of the hollow particles is 2.5% or more, the effect of imparting heat insulation is recognized. When the amount exceeds 12%, the corrosion resistance of the cast refractory decreases, which is not preferable.

耐火物中の気孔は中空粒により導入される閉気孔と、
原料の粒子の間に存在する開気孔の両方があり、断熱性
はこの両者の存在によりもたらされる。しかしながら、
開気孔が多いと耐食性が低下し、少ないと断熱性が低下
するので、耐火物の見掛け気孔率(開気孔のみの気孔率
を示す)20〜32%とするのが適当である。中空粒子の含
有量は耐食性と断熱性の双方の性能のバランスを考慮し
て4〜10wt%とするのが更に好ましい。
The pores in the refractory are closed pores introduced by hollow particles,
There are both open pores present between the particles of the raw material, and the insulation is provided by the presence of both. However,
If the number of open pores is large, the corrosion resistance is reduced, and if the number is small, the heat insulating property is reduced. Therefore, it is appropriate to set the apparent porosity of the refractory (showing the porosity of only open pores) to 20 to 32%. The content of the hollow particles is more preferably 4 to 10% by weight in consideration of the balance between the corrosion resistance and the heat insulation performance.

本発明の耐火物はスピネル化していないマグネシアを
含むため、使用中に耐火物表面に高融点化合物が生成し
て良好な耐食性を示す。
Since the refractory material of the present invention contains magnesia which is not spinelized, a high melting point compound is formed on the surface of the refractory material during use and shows good corrosion resistance.

中空粒子としては、緻密で粗大な結晶の組織を有する
ことにより耐食性の良い電融されてなる中空素子を用い
るのが好ましく、特にアルミナの電融中空素子は市販品
の入手が容易であるとともに耐食性があり、かつ有効な
断熱性を付与できるので、本発明の耐火物の構成成分と
して好ましい。
As the hollow particles, it is preferable to use an electrofused hollow element having a dense and coarse crystal structure and good corrosion resistance. Particularly, the electrofused alumina element of alumina is easily available as a commercial product and has a high corrosion resistance. It is preferred as a component of the refractory of the present invention because it has a good thermal insulation property.

[実施例] 以下本発明を実施例によって更に詳しく説明するが、
実施例は本発明の1例であって本発明をなんら限定する
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.
The examples are merely examples of the present invention and do not limit the present invention in any way.

第1表のNo.1〜No.5は本発明の実施例である取鍋流し
込み用耐火物であり、No.6はその比較例である。原料と
しては、電融アルミナクリンカーの3〜10mmの粗粒、3m
m以下の中粒および325メッシュより細かい合成アルミナ
クリンカーの微粒と電融スピネルクリンカーの325メッ
シュより細かい微粒、合成マグネシアクリンカーの1mm
以下の中粒、および電融アルミナの中空粒子で粒径が0.
5mm〜2.5mmのものを用い、これらをそれぞれ第1表に示
した割合で調合し、これに結合剤であるアルミナセメン
トとピロリン酸ソーダなどの解膠剤を合せて3重量部及
び適当量の水を加えて万能ミキサーで混練し、型に流し
込んで40mm×40mm×160mmの試験片を作製した。
Nos. 1 to 5 in Table 1 are refractories for ladle pouring according to an embodiment of the present invention, and No. 6 is a comparative example thereof. As raw materials, 3 to 10 mm coarse particles of fused alumina clinker, 3 m
Fine particles of synthetic alumina clinker finer than 325 mesh, and fine particles finer than 325 mesh of fused spinel clinker, 1 mm of synthetic magnesia clinker
The following medium-sized, and hollow particles of fused alumina with a particle size of 0.
A mixture of 5 mm to 2.5 mm was prepared in the proportions shown in Table 1, and 3 parts by weight of an appropriate amount of alumina cement as a binder and a peptizer such as sodium pyrophosphate were added. Water was added, the mixture was kneaded with a universal mixer, and poured into a mold to prepare a 40 mm × 40 mm × 160 mm test piece.

得られた試験片について嵩比重、見掛気孔率および熱
伝導率を測定し、その結果を第1表に併せて示した。
The bulk specific gravity, apparent porosity, and thermal conductivity of the obtained test piece were measured, and the results are shown in Table 1.

耐食性試験は回転式侵食試験炉を用いて行った。即
ち、前記試験片6個をスタンプ材を間に充填し円筒状に
組んで縁付のルツボを構成し、横向きに配置したこのル
ツボの中に、CaO54.8wt%、Al2O328.5wt%、SiO28.6wt
%、MgO7.1wt%、およびFe2O31.0wt%の組成からなる塩
基性スラグ0.6Kgと同重量のSS41の鋼片を合わせて入
れ、これをガスバーナーで加熱して溶かし、1650℃でル
ツボを回転しながら6時間保持した。耐食性指数は前記
のスラグと溶鋼からなる侵食成分によって侵食された試
験片の最大侵食深さを試験片の試験前の厚さと試験後の
厚さとの差から計算して求め、中空粒子を含まないNo.6
耐火物の最大侵食深さC6に対する各種耐火物の最大侵食
深さCnからC6/Cn×100で計算し、比較した耐食性指数を
同じく第1表に併せて示した。
The corrosion resistance test was performed using a rotary erosion test furnace. That is, the six test pieces were filled with a stamp material therebetween and assembled into a cylindrical shape to form a crucible with an edge. In this crucible arranged horizontally, 54.8 wt% of CaO and 28.5 wt% of Al 2 O 3 were placed. , SiO 2 8.6wt
%, MgO7.1wt%, and Fe 2 O 3 were placed together 1.0 wt% of a basic slag 0.6Kg same weight billet SS41 consisting of a composition, This was dissolved by heating with a gas burner, at 1650 ° C. The crucible was held for 6 hours while rotating. The corrosion resistance index is determined by calculating the maximum erosion depth of the test piece eroded by the erosion component consisting of the slag and the molten steel from the difference between the thickness before the test and the thickness after the test, and does not include hollow particles. No.6
Calculated from the maximum corrosion depth C n of the various refractory to the maximum corrosion depth C 6 refractory in C 6 / C n × 100, showed corrosion resistance index of comparison also in conjunction with Table 1.

取鍋にこの耐火物を施工したときの湯温降下は雰囲気
温度20℃において、250t容量の取鍋に250tの1650℃の溶
鋼を入れた状態を想定し、厚さ20mmの鉄皮と厚さ65mmの
アルミナ−シリカ質のパーマネント耐火物(熱伝導率2.
05Kcal/mh℃)および厚さ65mmの蝋石質の準パーマネン
ト耐火物(熱伝導率2.0Kcal/mh℃)に180mmの厚さの流
し込み内張り耐火物を組み合わせて施工したときの、始
めに1650℃であった溶鋼の1時間後の溶鋼の温度降下を
伝熱計算により求めた結果であり、計算結果を同じく第
1表に併せて示した。計算結果が正しいことを確かめる
ために、No.3の流し込み耐火物を同容量の取鍋に施工
し、250tの1650℃の溶鋼を入れた状態で1時間後の温度
降下を測定したところ計算結果と良く一致し、従来の流
し込み耐火物を用いたときのデータと比べて4.5℃温度
降下が少なくなっている。また、湯温の低下が少なくな
ったことにより、スラグや地金の付着も非常に軽微にな
っていることを認めた。
The temperature drop of the hot water when this refractory is constructed on a ladle is assuming a state in which 250 t of 1650 ° C molten steel is put in a 250 t capacity ladle at an ambient temperature of 20 ° C. 65mm alumina-silica permanent refractory (thermal conductivity 2.
05Kcal / mh ℃) and a waxy quasi-permanent refractory with a thickness of 65mm (thermal conductivity 2.0Kcal / mh ℃) combined with a 180mm-thick cast lining refractory. This is the result of calculating the temperature drop of the molten steel one hour after the occurrence of the molten steel by heat transfer calculation, and the calculation results are also shown in Table 1. To confirm that the calculation results were correct, No. 3 cast refractory was installed on a ladle of the same capacity, and the temperature drop after 1 hour was measured with 250t of 1650 ° C molten steel put in. And the temperature drop of 4.5 ° C is smaller than that of the data when using the conventional cast refractory. Also, it was recognized that the adhesion of slag and ingots was also very small due to the decrease in the temperature of the hot water being reduced.

[発明の効果] 本発明の取鍋流し込み用耐火物は溶鋼の湯温低下を低
減し、併せてスラグや地金などのノロ付きを防止しうる
優れた効果を有している。即ち、従来の耐火物を施工し
たときと比べてノロ付きを大幅に減少させたことによ
り、スラグライン(溶鋼の上面のスラグのレベルを言
う)が安定し、取鍋の容量低下が殆どなくなり、溶鋼の
オーバーフローの危険性を回避できるようになった他、
4.5℃の温度低下の減少によって、250tの溶鋼を入れた
取鍋の溶鋼の温度を再度上げる必要がなくなり、1Kgの
溶鋼の温度を1℃上げるのに1円のエネルギー費用がか
かるとするとき、250tの取鍋一杯分では約100万円のエ
ネルギー費用が節減できることになる。この節減効果は
耐火物の耐食性が少々犠牲になったことによる耐火物の
原単位の増加を大幅に上回る効果であり、本発明の取鍋
流し込み用耐火物の産業上の利用効果は多大である。
[Effect of the Invention] The refractory for pouring a ladle of the present invention has an excellent effect of reducing a drop in the temperature of molten steel and preventing sticking of slag and ingot. In other words, the slag line (refers to the level of slag on the upper surface of molten steel) is stabilized by drastically reducing the slagging compared to when the conventional refractory is constructed, and there is almost no decrease in the capacity of the ladle, In addition to avoiding the risk of molten steel overflow,
By reducing the temperature drop of 4.5 ° C, there is no need to raise the temperature of the molten steel in the ladle containing 250t of molten steel again. A full 250t ladle saves about one million yen in energy costs. This saving effect is an effect that greatly exceeds the increase in the basic unit of the refractory due to the sacrificed corrosion resistance of the refractory, and the industrial use effect of the ladle pouring refractory of the present invention is great. .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミナ−スピネル質流し込み耐火物であ
って、耐火物中に粒子径0.3〜3mmの中空粒子が2.5〜12w
t%含まれ、かつ耐火物の見掛け気孔率が20〜32%であ
り、耐火物中にスピネル化していないマグネシアが含ま
れていることを特徴とする取鍋内張り用耐火物。
An alumina-spinel cast refractory, wherein hollow particles having a particle diameter of 0.3 to 3 mm are contained in the refractory in an amount of 2.5 to 12 watts.
A refractory for lining a ladle, characterized in that the refractory contains 20% to 32% by mass, an apparent porosity of the refractory is 20 to 32%, and magnesia which is not spineled is contained in the refractory.
JP2265060A 1990-10-04 1990-10-04 Refractory for ladle lining Expired - Lifetime JP2991472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2265060A JP2991472B2 (en) 1990-10-04 1990-10-04 Refractory for ladle lining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2265060A JP2991472B2 (en) 1990-10-04 1990-10-04 Refractory for ladle lining

Publications (2)

Publication Number Publication Date
JPH04144981A JPH04144981A (en) 1992-05-19
JP2991472B2 true JP2991472B2 (en) 1999-12-20

Family

ID=17412030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2265060A Expired - Lifetime JP2991472B2 (en) 1990-10-04 1990-10-04 Refractory for ladle lining

Country Status (1)

Country Link
JP (1) JP2991472B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9308363D0 (en) * 1993-04-22 1993-06-09 Foseco Int Refractory compositions for use in the casting of metals
JP4572521B2 (en) * 2003-10-06 2010-11-04 住友金属工業株式会社 Castable refractories, manufacturing method thereof and lance pipe
JP6219764B2 (en) * 2014-03-27 2017-10-25 黒崎播磨株式会社 Lined casting material
CN111390149B (en) * 2020-04-24 2021-06-22 中信戴卡股份有限公司 Casting ladle for casting aluminum alloy

Also Published As

Publication number Publication date
JPH04144981A (en) 1992-05-19

Similar Documents

Publication Publication Date Title
JPH0737344B2 (en) Irregular refractory with basic properties
JP2011241093A (en) Inner lining pouring material
JP2991472B2 (en) Refractory for ladle lining
JPH07330447A (en) Flow-in refractory material
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JPH0323275A (en) Monolithic refractory for casting
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH026373A (en) Cast amorphous refractory
US3540899A (en) Basic fused refractory material
JPH06345550A (en) Castable refractory
JP2007001827A (en) Alumina-chromia based monolithic refractory
JPH07237978A (en) Refractory for lining ladle
JP2607963B2 (en) Pouring refractories
JPH08157267A (en) Castable refractory for flow-in execution
JPH08175877A (en) Castable refractory
JPH04130066A (en) Magnesia-olivine monolithic refractory material
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JP3027721B2 (en) Porous plug refractory and manufacturing method thereof
JPH09157043A (en) Casting refractory for blast-furnace launder
JP4404515B2 (en) Unshaped refractories for waste treatment furnaces
JPH04325466A (en) Unshaped refractory and stainless hot metal ladle lined inside therewith
JPH07330450A (en) Flow-in refractory material
JP2000327406A (en) Chromia-containing brick excellent in slag infiltration resistance, and molten metal vessel
JP2005067930A (en) Alumina cement, alumina cement composition, and monolithic refractory using it
JP2872670B2 (en) Irregular refractories for lining of molten metal containers