JP2974023B1 - Method of growing II-VI compound semiconductor crystal - Google Patents

Method of growing II-VI compound semiconductor crystal

Info

Publication number
JP2974023B1
JP2974023B1 JP30519198A JP30519198A JP2974023B1 JP 2974023 B1 JP2974023 B1 JP 2974023B1 JP 30519198 A JP30519198 A JP 30519198A JP 30519198 A JP30519198 A JP 30519198A JP 2974023 B1 JP2974023 B1 JP 2974023B1
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
support member
compound semiconductor
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30519198A
Other languages
Japanese (ja)
Other versions
JP2000128699A (en
Inventor
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30519198A priority Critical patent/JP2974023B1/en
Application granted granted Critical
Publication of JP2974023B1 publication Critical patent/JP2974023B1/en
Publication of JP2000128699A publication Critical patent/JP2000128699A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

【要約】 【課題】 昇華法又はハロゲン化学輸送法で種結晶上に
II−VI族化合物半導体結晶を成長させるときに、前記支
持部材から種結晶に加わる応力を抑制して、結晶性に優
れたII−VI族化合物半導体結晶の結晶成長方法を提供し
ようとするものである。 【解決手段】 成長室中に原料多結晶を配置し、昇華法
又はハロゲン化学輸送法で種結晶上にII−VI族化合物半
導体結晶を成長させる方法において、前記種結晶の裏面
を予め平滑に仕上げておき、種結晶支持部材を可視光及
び/又は赤外光に対してほぼ透明な材質で構成し、前記
支持部材の少なくとも一端を平滑面に仕上げ、該平滑面
を通しての可視光及び/又は赤外光の実効的透過率が中
心部では高く、周辺部では低くなるように前記支持部材
を構成し、前記支持部材の平滑面上に前記種結晶の平滑
面を密着させて結晶成長を行うことを特徴とするII−VI
族化合物半導体結晶の成長方法である。
Abstract: PROBLEM TO BE SOLVED: To provide a seed crystal by sublimation or halogen chemical transport
When growing a II-VI compound semiconductor crystal, the stress applied to the seed crystal from the support member is suppressed, and a crystal growth method of a II-VI compound semiconductor crystal having excellent crystallinity is provided. is there. SOLUTION: In a method of arranging a raw material polycrystal in a growth chamber and growing a II-VI compound semiconductor crystal on a seed crystal by a sublimation method or a halogen chemical transport method, a back surface of the seed crystal is previously smoothed in advance. In addition, the seed crystal support member is made of a material that is substantially transparent to visible light and / or infrared light, and at least one end of the support member is finished to a smooth surface, and visible light and / or red light passing through the smooth surface. The supporting member is configured such that the effective transmittance of external light is high in the central portion and low in the peripheral portion, and crystal growth is performed by closely contacting the smooth surface of the seed crystal on the smooth surface of the supporting member. II-VI characterized by
This is a method for growing a group III compound semiconductor crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、昇華法又はハロゲ
ン化学輸送法で種結晶上にZnSe、ZnS、CdT
e、CdS等のII−VI族化合物半導体結晶を成長する方
法に関する。
The present invention relates to a method of sublimation or halogen chemical transport on ZnSe, ZnS, CdT on a seed crystal.
e, a method for growing a II-VI group compound semiconductor crystal such as CdS.

【0002】[0002]

【従来の技術】II−VI族化合物半導体結晶の成長方法
は、融液成長法、固相成長法、溶液成長法、気相成長法
の4種の方法に大きく分類される。その中で気相成長法
には、原料の昇華及び凝結を利用して結晶成長を行う昇
華法(PVT法、Physical VaporTransport 法)、及
び、ハロゲンを原料と反応させてハロゲン化物を生成
し、そのハロゲン化物を種結晶上に輸送して分解し、結
晶成長を行うハロゲン化学輸送法(CVT法、Chemical
VaporTransport 法)がある。
2. Description of the Related Art II-VI compound semiconductor crystal growth methods are broadly classified into four types: melt growth method, solid phase growth method, solution growth method, and vapor phase growth method. Among them, the vapor phase growth method includes a sublimation method (PVT method, Physical Vapor Transport method) in which crystal growth is performed by utilizing the sublimation and coagulation of the raw material, and a method in which a halogen is produced by reacting a halogen with the raw material. Halogen chemical transport method (CVT method, Chemical method) for transporting halides onto seed crystals to decompose and grow crystals
VaporTransport method).

【0003】例えば、J. Crystal Growth 94 (1989) p.
1 〜5 には、石英アンプルの一端に5gのZnSe粉末
原料を、他端にZnSe単結晶種結晶を設置してアンプ
ルを封入し、このアンプルを加熱してZnSe粉末側の
温度を約1080℃に、種結晶側の温度を約1070℃
に設定することにより、種結晶上にZnSe結晶を成長
させたことが報告されている。
[0003] For example, J. Crystal Growth 94 (1989) p.
1 to 5, a quartz ampoule was filled with 5 g of ZnSe powder raw material at one end and a ZnSe single crystal seed crystal was placed at the other end, the ampule was sealed, and the ampule was heated to raise the temperature of the ZnSe powder side to about 1080 ° C. The temperature on the seed crystal side is about 1070 ° C
It has been reported that a ZnSe crystal was grown on a seed crystal by setting to.

【0004】ところで、昇華法又はハロゲン化学輸送法
で種結晶上にII−VI族化合物半導体結晶を成長させる結
晶成長方法において、成長結晶を冷却するときに種結晶
又は成長結晶が周囲の部材に固着し、成長結晶と前記部
材の熱膨張率の差により成長結晶に応力が加わり、結晶
性を悪化する。
Incidentally, in a crystal growth method for growing a II-VI compound semiconductor crystal on a seed crystal by a sublimation method or a halogen chemical transport method, the seed crystal or the grown crystal adheres to surrounding members when the grown crystal is cooled. However, a stress is applied to the grown crystal due to the difference in the coefficient of thermal expansion between the grown crystal and the member, and the crystallinity deteriorates.

【0005】また、気相成長法では、種結晶の周囲に種
結晶よりも低温の部分が存在すると、種結晶自身がその
低温部に輸送され、種結晶の結晶性を劣化させ、ボイド
を発生する。場合によっては、多結晶化を引き起こす。
種結晶の結晶性の低下は、その上に成長する結晶に引き
継がれ、その結晶性を低下させる。それ故、気相成長に
おいて種結晶を保護する必要があり、少なくとも成長室
内の局所的最低温部に種結晶を設置することにより、種
結晶自身の成分輸送を防止することが重要になる。
[0005] In the vapor phase growth method, if there is a portion around the seed crystal at a temperature lower than that of the seed crystal, the seed crystal itself is transported to the low temperature portion, thereby deteriorating the crystallinity of the seed crystal and generating voids. I do. In some cases, it causes polycrystallization.
The decrease in the crystallinity of the seed crystal is inherited by the crystal growing thereon, thereby reducing its crystallinity. Therefore, it is necessary to protect the seed crystal in the vapor phase growth, and it is important to prevent the component transport of the seed crystal itself by installing the seed crystal at least in the local lowest temperature part in the growth chamber.

【0006】さらに、成長結晶は、通常成長容器の壁に
接触して成長するが、結晶成長後の冷却過程において、
成長結晶と成長容器、成長結晶と種結晶支持部材の熱膨
張係数の差に起因する応力がその接触面で結晶に加わ
り、転位密度の増大などの結晶性の悪化を引き起こす原
因となる。
Further, the grown crystal usually grows in contact with the wall of the growth vessel.
Stress caused by the difference in the thermal expansion coefficient between the grown crystal and the growth vessel, and between the grown crystal and the seed crystal supporting member is applied to the crystal at the contact surface, causing deterioration in crystallinity such as an increase in dislocation density.

【0007】これらの問題を解決するために、透明な材
質からなるロッド状の種結晶支持部材上に種結晶を載せ
て結晶成長を行う方法が提案されている(J.Crystal Gr
owth,Vol.161,(1996),p.51-59;Yu.V.Korostelin )。図
3は、前記の方法を実施する装置の概念図である。この
方法では、透明な種結晶支持部材を通して下部の低温部
への輻射冷却により、種結晶だけが局所的に冷却されて
周囲の容器壁に保持される。そのため、種結晶を熱的に
安定な位置に存在させることができ、周囲への種結晶の
成分輸送を防止し、種結晶を劣化させることなく保持す
ることができる。
In order to solve these problems, a method has been proposed in which a seed crystal is mounted on a rod-shaped seed crystal supporting member made of a transparent material to grow the crystal (J. Crystal Gr.).
owth, Vol. 161, (1996), p. 51-59; Yu. V. Korostelin). FIG. 3 is a conceptual diagram of an apparatus for performing the above method. In this method, only the seed crystal is locally cooled and held on the surrounding vessel wall by radiant cooling through the transparent seed crystal support member to the lower temperature part. For this reason, the seed crystal can be located at a thermally stable position, the transport of the component of the seed crystal to the surroundings can be prevented, and the seed crystal can be held without deterioration.

【0008】また、この方法によれば、容器壁を十分に
高温に保持できるため、成長結晶を周囲の容器壁に無接
触の状態で成長させることができる。そして、この成長
方法では、成長結晶が種結晶の裏面を介して他の材料に
唯一接する状態にあるため、成長結晶が容器壁に接する
場合に比べると、結晶に加わる応力はかなり低減され
る。
Further, according to this method, since the vessel wall can be maintained at a sufficiently high temperature, the grown crystal can be grown without contact with the surrounding vessel wall. Then, in this growth method, the stress applied to the crystal is considerably reduced as compared with the case where the grown crystal is in contact with the container wall since the grown crystal is only in contact with another material via the back surface of the seed crystal.

【0009】しかし、種結晶裏面全体が支持部材に密着
しているため、成長結晶の冷却過程で両者の熱膨張率の
差による応力が種結晶部に加わる。この応力により種結
晶部では、転位密度が増加し、転位は成長結晶に伝搬す
る。気相成長においては、通常結晶形状のアスペクト比
(結晶長/結晶径)が小さく結晶長が短いため、種結晶
部からの転位は、成長結晶の相当部分に伝搬し、結晶性
を低下させる。また、それ以外にも、成長条件によって
は結晶が種結晶支持部材を抱き込むように成長し、その
抱き込み部分で大きな応力を受ける。
However, since the entire back surface of the seed crystal is in close contact with the supporting member, a stress due to the difference in the coefficient of thermal expansion between the two is applied to the seed crystal during the cooling of the grown crystal. Due to this stress, the dislocation density increases in the seed crystal portion, and the dislocation propagates to the grown crystal. In the vapor phase growth, since the aspect ratio (crystal length / crystal diameter) of the crystal shape is usually small and the crystal length is short, dislocations from the seed crystal portion propagate to a considerable portion of the grown crystal, and the crystallinity is reduced. In addition, depending on the growth conditions, the crystal grows so as to embrace the seed crystal supporting member, and receives a large stress at the embraced portion.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明は、上
記の問題を解消し、透明な支持部材で種結晶を支持し
て、昇華法又はハロゲン化学輸送法で種結晶上にII−VI
族化合物半導体結晶を成長させるときに、前記支持部材
から種結晶に加わる応力を抑制して、結晶性に優れたII
−VI族化合物半導体結晶の結晶成長方法を提供しようと
するものである。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems, and has been disclosed in which a seed crystal is supported by a transparent support member, and II-VI is applied on the seed crystal by sublimation or halogen chemical transport.
When growing a group III compound semiconductor crystal, the stress applied to the seed crystal from the support member is suppressed, and excellent crystallinity II
It is intended to provide a method for growing a group VI compound semiconductor crystal.

【0011】[0011]

【課題を解決するための手段】本発明は、次の構成を採
用することにより、上記の課題の解決に成功した。 (1) 成長室中に原料多結晶を配置し、昇華法又はハロゲ
ン化学輸送法で種結晶上にII−VI族化合物半導体結晶を
成長させる方法において、前記種結晶の裏面を予め平滑
に仕上げておき、種結晶支持部材を可視光及び/又は赤
外光に対してほぼ透明な材質で構成し、前記支持部材の
少なくとも一端を平滑面に仕上げ、該平滑面を通しての
可視光及び/又は赤外光の実効的透過率が中心部では高
く、周辺部では低くなるように前記支持部材を構成し、
前記支持部材の平滑面上に前記種結晶の平滑面を密着さ
せて結晶成長を行うことを特徴とするII−VI族化合物半
導体結晶の成長方法。
The present invention has succeeded in solving the above problems by employing the following constitution. (1) placing a source polycrystal in a growth chamber, in a method of growing a II-VI group compound semiconductor crystal on a seed crystal by sublimation or halogen chemical transport method, the back surface of the seed crystal is previously finished to be smooth. The seed crystal support member is made of a material that is substantially transparent to visible light and / or infrared light, and at least one end of the support member is finished to have a smooth surface, and visible light and / or infrared light passing through the smooth surface. The support member is configured such that the effective transmittance of light is high in the central portion and low in the peripheral portion,
A method for growing a II-VI compound semiconductor crystal, wherein crystal growth is performed by bringing a smooth surface of the seed crystal into close contact with a smooth surface of the support member.

【0012】(2) 前記支持部材は、その側面に円周状の
溝状の切り込みを設けて、前記光の実効的透過率の分布
を形成することを特徴とする前記(1) 記載のII−VI族化
合物半導体結晶の成長方法。 (3) 前記支持部材は、可視光及び/又は赤外光の透過率
が比較的低い肉厚パイプに、前記透過率が比較的高いロ
ッドを挿入し、その上端に平滑な両面を有する前記透過
率が比較的高い円板を載せて構成し、前記円板上に前記
種結晶の平滑面を密着させて結晶成長を行うことを特徴
とする前記(1) 記載のII−VI族化合物半導体結晶の成長
方法。 (4) 前記支持部材又は前記円板と前記種結晶との接触面
に付着防止用コーティング膜を介在させることを特徴と
する前記(1) 〜(3) のいずれか1つに記載のII−VI族化
合物半導体結晶の成長方法。
(2) The support member according to (1), wherein the support member is provided with a circumferential groove-shaped cut in a side surface thereof to form a distribution of the effective transmittance of the light. -A method of growing a group VI compound semiconductor crystal. (3) The supporting member has a rod having the relatively high transmittance inserted into a thick pipe having a relatively low transmittance of visible light and / or infrared light, and the transmission member having smooth both surfaces at an upper end thereof. A II-VI group compound semiconductor crystal according to (1), wherein a disk having a relatively high ratio is placed on the disk, and the smooth surface of the seed crystal is brought into close contact with the disk to grow the crystal. Growth method. (4) The II- according to any one of (1) to (3), wherein an adhesion preventing coating film is interposed on a contact surface between the support member or the disc and the seed crystal. A method for growing a group VI compound semiconductor crystal.

【0013】[0013]

【発明の実施の形態】本発明は、種結晶から見た種結晶
支持部材の可視光及び/又は赤外光の実効的透過率が中
心部で高く、周辺部で低くなるように、種結晶支持部材
を構成することにより、上記の問題の解消に成功した。
図1は、本発明の1実施の形態であり、種結晶支持部材
において、種結晶を載せる研磨面の下部に円周状に切り
込みを入れてくびれを持たせることにより、種結晶支持
部材の研磨面の中心部では、可視光及び/又は赤外光の
高い透過率が維持され、周辺部ではくびれ部分により散
乱されて透過率を低下させることができる。上記の構成
を採用することにより、種結晶支持部材の下部低温部へ
の輻射による冷却は、種結晶の中心部で強く、周辺部で
弱くなり、相対的に結晶周辺部が高温化する。その結
果、種結晶支持部材に接触した部分のうち、結晶周辺部
は昇華して消失し、種結晶は実質的に裏面中心部のみで
種結晶支持部材と接触するようになり、接触面積の縮小
により冷却時の応力が低減し、成長結晶の結晶性を向上
させることが可能になった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is directed to a seed crystal supporting member, in which the effective transmittance of visible light and / or infrared light of the seed crystal supporting member viewed from the seed crystal is high at the center and low at the periphery. By configuring the support member, the above problem was successfully solved.
FIG. 1 shows an embodiment of the present invention, in which a seed crystal supporting member is polished by making a notch in a lower part of a polishing surface on which a seed crystal is placed so as to have a constriction. At the center of the surface, high transmittance of visible light and / or infrared light is maintained, and at the periphery, the transmittance is reduced by being scattered by a constricted portion. By employing the above configuration, the cooling of the seed crystal supporting member due to radiation to the lower low-temperature portion is strong at the central portion of the seed crystal and weak at the peripheral portion, and the peripheral portion of the crystal has a relatively high temperature. As a result, of the portion in contact with the seed crystal supporting member, the peripheral portion of the crystal sublimates and disappears, and the seed crystal comes into contact with the seed crystal supporting member substantially only at the center of the back surface, and the contact area is reduced. Thereby, the stress at the time of cooling is reduced, and the crystallinity of the grown crystal can be improved.

【0014】種結晶支持部材の材質は、結晶成長環境下
において分解したり、融解したり、昇華することがな
く、かつ種結晶と反応せず、ハロゲン化学輸送法におい
てはハロゲンと反応しない材質で、かつ可視光及び/又
は赤外光に対してほぼ透明な材質で作る必要がある。具
体的には、石英ガラス、マグネシア、水晶、サファイア
等で作ることができる。
The material of the seed crystal supporting member is a material that does not decompose, melt, or sublime in a crystal growth environment, does not react with the seed crystal, and does not react with halogen in the halogen chemical transport method. In addition, it must be made of a material that is substantially transparent to visible light and / or infrared light. Specifically, it can be made of quartz glass, magnesia, quartz, sapphire, or the like.

【0015】また、種結晶支持部材の形状は、熱環境の
対称性維持の観点から、平滑面の中心を通り、その平滑
面と垂直に交わる直線を対称中心とする軸対称な形状で
あることが望ましい。また、種結晶の支持部材への固着
を緩和するため、種結晶支持部材表面に緩和膜をコーテ
ィングすることも有効である。このコーティング膜は種
結晶の密着強度を低下させると同時に、冷却時に種結晶
支持部材から剥離されるので、応力緩和の効果が期待さ
れる。コーティング膜も種結晶支持部材と同様に、結晶
成長環境下において分解したり、融解したり、昇華する
ことがなく、かつ種結晶と反応せず、ハロゲン化学輸送
法においてはハロゲンと反応しない材質から選ばれなけ
ればならない。そのようなコーティング膜としては、カ
ーボン、炭化珪素等の炭化物、窒化珪素、窒化アルミニ
ウム、窒化ホウ素等の窒化物、及び、酸化アルミニウ
ム、酸化亜鉛等の酸化物を用いることができる。
The shape of the seed crystal supporting member should be axially symmetric with respect to a straight line passing through the center of the smooth surface and intersecting perpendicularly to the smooth surface from the viewpoint of maintaining the symmetry of the thermal environment. Is desirable. Further, in order to alleviate the adhesion of the seed crystal to the support member, it is also effective to coat the surface of the seed crystal support member with a relaxation film. This coating film reduces the adhesion strength of the seed crystal and, at the same time, separates from the seed crystal support member during cooling, so that an effect of stress relaxation is expected. Like the seed crystal support member, the coating film is also made of a material that does not decompose, melt, or sublime in the crystal growth environment, does not react with the seed crystal, and does not react with halogen in the halogen chemical transport method. Must be chosen. As such a coating film, carbides such as carbon and silicon carbide, nitrides such as silicon nitride, aluminum nitride and boron nitride, and oxides such as aluminum oxide and zinc oxide can be used.

【0016】[0016]

【実施例】〔比較例〕図3の装置を用いてZnSe単結
晶を成長させた。種結晶は、直径20mm、厚さ1mm
で表面をミラー研磨し、裏面をラッピング研磨した(11
1)B面のZnSe単結晶ウエハを用いた。事前にNaO
Hでエッチングして測定した種結晶の転位密度は、5×
104 cm-2〜1.5×105 cm-2であった。そし
て、内径22mmの垂直な石英製アンプルの底面に、直
径20mm、長さ60mmで端面を平滑に研磨した石英
製円柱状種結晶支持部材を設置し、その平滑端面に前記
種結晶を載せた。さらに種結晶より上方30mmの位置
に、原料保持用のメッシュを配置し、その上に原料とし
てZnSe多結晶20gを載せた。そして、このアンプ
ルを1×10-7Torrまで真空排気した後、アルゴン
ガスを20Torr導入し、封入蓋の部分で封着した。
EXAMPLE Comparative Example A ZnSe single crystal was grown using the apparatus shown in FIG. Seed crystal is 20mm in diameter and 1mm in thickness
The surface was mirror polished and the back was lap polished (11
1) A ZnSe single crystal wafer on the B side was used. NaO in advance
The dislocation density of the seed crystal measured by etching with H is 5 ×
It was 10 4 cm −2 to 1.5 × 10 5 cm −2 . Then, on the bottom surface of a vertical quartz ampoule having an inner diameter of 22 mm, a quartz columnar seed crystal support member having a diameter of 20 mm and a length of 60 mm and having an end surface polished smoothly was placed, and the seed crystal was placed on the smooth end surface. Further, a mesh for holding a raw material was arranged at a position 30 mm above the seed crystal, and 20 g of ZnSe polycrystal was placed thereon as a raw material. Then, the ampule was evacuated to 1 × 10 −7 Torr, and then argon gas was introduced at 20 Torr, and the ampule was sealed with a sealing lid.

【0017】このアンプルを縦型管状炉に挿入し、多結
晶原料部温度を1100℃に、種結晶部温度を1080
℃に、アンプル下端部温度を1000℃に加熱して10
日間結晶成長を行った。得られた結晶は底面の直径が2
0mm、重量17.2gでボイドを含まないものであっ
たが、種結晶支持部材を一部抱き込んで成長していた。
その結果、種結晶の転位密度は4×105 cm-2〜6×
105 cm-2に増加しており、その影響で成長結晶の転
位密度も1×105 cm-2〜4×105 cm-2と高い値
を示した。これは、石英製種結晶支持部材と種結晶の付
着が強く、また、種結晶支持部材を抱き込んでいたた
め、冷却過程で種結晶に応力が加わったものと考えられ
る。
The ampoule was inserted into a vertical tube furnace, and the temperature of the polycrystalline raw material was set to 1100 ° C. and the temperature of the seed crystal was set to 1080.
And the temperature at the lower end of the ampoule to 1000 ° C.
Crystal growth was performed for days. The obtained crystal has a bottom diameter of 2
Although it was 0 mm, weighed 17.2 g, and did not contain voids, it grew by partially embracing the seed crystal support member.
As a result, the dislocation density of the seed crystal is 4 × 10 5 cm −2 to 6 ×
Has increased to 10 5 cm -2, was high dislocation density 1 × 10 5 cm -2 ~4 × 10 5 cm -2 in the growing crystal at the impact. This is considered to be because the seed crystal was strongly attached to the quartz seed crystal supporting member and the seed crystal was embraced, so that stress was applied to the seed crystal during the cooling process.

【0018】〔実施例1〕図1の装置を用いてZnSe
単結晶を成長させた。種結晶は、直径20mm、厚さ1
mmで表面をミラー研磨し、裏面をラッピング研磨した
(111)B面のZnSe単結晶ウエハを用いた。事前にNa
OHでエッチングして測定した種結晶の転位密度は、5
×104 cm-2〜1.5×105 cm-2であった。そし
て、内径22mmの垂直な石英製アンプルの底面に、直
径20mm、長さ60mmで端面を平滑に研磨し、研磨
面から5mmの位置に直径が8mmになるように円周状
切り込みを入れた石英製円柱状種結晶支持部材を設置
し、その平滑端面に前記種結晶を載せた。さらに種結晶
より上方30mmの位置に、原料保持用のメッシュを配
置し、その上に原料としてZnSe多結晶20gを載せ
た。そして、このアンプルを1×10-7Torrまで真
空排気した後、アルゴンガスを20Torr導入し、封
入蓋の部分で封着した。
[Embodiment 1] Using the apparatus shown in FIG.
A single crystal was grown. The seed crystal has a diameter of 20 mm and a thickness of 1
mm, the front surface was mirror-polished and the back surface was lapped.
A (111) B plane ZnSe single crystal wafer was used. Na in advance
The dislocation density of the seed crystal measured by etching with OH was 5
× 10 4 cm -2 to 1.5 × 10 5 cm -2 . Then, on the bottom surface of a vertical quartz ampoule having an inner diameter of 22 mm, the end face was polished smoothly with a diameter of 20 mm and a length of 60 mm, and a circumferential cut was made at a position 5 mm from the polished surface so that the diameter became 8 mm. A columnar seed crystal support member was provided, and the seed crystal was placed on the smooth end face. Further, a mesh for holding a raw material was arranged at a position 30 mm above the seed crystal, and 20 g of ZnSe polycrystal was placed thereon as a raw material. Then, the ampule was evacuated to 1 × 10 −7 Torr, and then argon gas was introduced at 20 Torr, and the ampule was sealed with a sealing lid.

【0019】このアンプルを縦型管状炉に挿入し、多結
晶原料部温度を1100℃に、種結晶部温度を1080
℃に、アンプル下端部温度を1000℃に加熱して10
日間結晶成長を行った。得られた結晶は、重量15.5
gでボイドを含まないものであり、種結晶支持部材と接
触している底面は直径が約12mmで、成長にしたがっ
て、直径が増大し、最大で約20mm直径になってい
た。種結晶の転位密度は1×105 cm-2〜3×105
cm-2に増加していたが、成長結晶の転位密度は2×1
4 cm-2〜1×105 cm-2に低減していた。。これ
は、石英製種結晶支持部材と種結晶の付着面積が小さ
く、また、種結晶支持部材の抱き込みもなかったため、
冷却過程において種結晶に加わる応力も低かったものと
考えられる。また、種結晶から成長結晶へと結晶径が増
大しているため、種結晶から転位が伝搬しても、成長結
晶の転位密度の増大は抑制されたものと考えられる。
The ampoule was inserted into a vertical tube furnace, and the temperature of the polycrystalline raw material was set to 1100 ° C. and the temperature of the seed crystal was set to 1080.
And the temperature at the lower end of the ampoule to 1000 ° C.
Crystal growth was performed for days. The obtained crystals had a weight of 15.5.
g, containing no voids, and the bottom surface in contact with the seed crystal support member had a diameter of about 12 mm, and the diameter increased as it grew to a maximum of about 20 mm. The dislocation density of the seed crystal is 1 × 10 5 cm −2 to 3 × 10 5
cm −2 , but the dislocation density of the grown crystal was 2 × 1
0 4 was reduced to cm -2 ~1 × 10 5 cm -2 . . This is because the attachment area between the quartz seed crystal support member and the seed crystal is small, and there was no hiding of the seed crystal support member,
It is considered that the stress applied to the seed crystal during the cooling process was low. In addition, since the crystal diameter increases from the seed crystal to the grown crystal, it is considered that the increase in the dislocation density of the grown crystal was suppressed even if the dislocation propagated from the seed crystal.

【0020】〔実施例2〕図1の装置を用いてZnSe
単結晶を成長させた。種結晶は、直径20mm、厚さ1
mmで表面をミラー研磨し、裏面をラッピング研磨した
(111)B面のZnSe単結晶ウエハを用いた。事前にNa
OHでエッチングして測定した種結晶の転位密度は、5
×104 cm-2〜1.5×105 cm-2であった。実施
例1と同じ形状の石英製円柱状種結晶支持部材の表面
に、予めベンゼンを原料とした熱CVD法で厚さ300
0Åのカーボン膜を成膜し、その上に前記種結晶を載せ
た。垂直に配置した内径22mmの石英製アンプルの底
面に前記種結晶支持部材を設置し、その上に前記種結晶
を載せた。さらに種結晶より上方30mmの位置に、原
料保持用のメッシュを配置し、その上に原料としてZn
Se多結晶20gを載せた。そして、このアンプルを1
×10-7Torrまで真空排気した後、アルゴンガスを
20Torr導入し、封入蓋の部分で封着した。
[Embodiment 2] Using the apparatus of FIG.
A single crystal was grown. The seed crystal has a diameter of 20 mm and a thickness of 1
mm, the front surface was mirror-polished and the back surface was lapped.
A (111) B plane ZnSe single crystal wafer was used. Na in advance
The dislocation density of the seed crystal measured by etching with OH was 5
× 10 4 cm -2 to 1.5 × 10 5 cm -2 . On the surface of a cylindrical columnar seed crystal support member made of quartz having the same shape as in Example 1, a thickness of 300 was previously formed by a thermal CVD method using benzene as a raw material.
A 0 ° carbon film was formed, and the seed crystal was mounted thereon. The seed crystal support member was placed on the bottom surface of a vertically arranged quartz ampoule having an inner diameter of 22 mm, and the seed crystal was placed thereon. Further, a mesh for holding the raw material is arranged at a position 30 mm above the seed crystal, and Zn is placed thereon as a raw material.
20 g of Se polycrystal was placed. And this ampule is 1
After evacuation to × 10 −7 Torr, argon gas was introduced at 20 Torr, and sealing was performed at the sealing lid.

【0021】このアンプルを縦型管状炉に挿入し、多結
晶原料部温度を1100℃に、種結晶部温度を1080
℃に、アンプル下端部温度を1000℃に加熱して10
日間結晶成長を行った。得られた結晶は、重量16.3
gでボイドを含まないものであり、種結晶支持部材と接
触している底面は直径が約12mmで、成長にしたがっ
て、直径が増大し、最大で約20mm直径になってい
た。種結晶の転位密度は5×104 cm-2〜1.5×1
5 cm-2でほとんど増加はなく、成長結晶の転位密度
は1×104 cm-2〜5×104 cm-2に低減してい
た。。これは、石英製種結晶支持部材と種結晶の付着面
積が小さく、かつ、カーボン膜により付着強度が低下さ
れ、種結晶支持部材の抱き込みもなかったため、冷却過
程において種結晶に加わる応力も低かったものと考えら
れる。また、種結晶から成長結晶へと結晶径が増大して
いるため、種結晶から転位が伝搬しても、成長結晶の転
位密度の増大は抑制されたものと考えられる。
The ampoule was inserted into a vertical tube furnace, and the temperature of the polycrystalline raw material was set to 1100 ° C. and the temperature of the seed crystal was set to 1080.
And the temperature at the lower end of the ampoule to 1000 ° C.
Crystal growth was performed for days. The obtained crystals had a weight of 16.3.
g, containing no voids, and the bottom surface in contact with the seed crystal support member had a diameter of about 12 mm, and the diameter increased as it grew to a maximum of about 20 mm. The dislocation density of the seed crystal is 5 × 10 4 cm −2 to 1.5 × 1
There was almost no increase at 0 5 cm -2 , and the dislocation density of the grown crystal was reduced to 1 x 10 4 cm -2 to 5 x 10 4 cm -2 . . This is because the adhesion area between the seed crystal support member made of quartz and the seed crystal is small, the adhesion strength is reduced by the carbon film, and the seed crystal support member is not entangled, so that the stress applied to the seed crystal in the cooling process is low. It is thought that it was. In addition, since the crystal diameter increases from the seed crystal to the grown crystal, it is considered that the increase in the dislocation density of the grown crystal was suppressed even if the dislocation propagated from the seed crystal.

【0022】〔実施例3〕図2の装置を用いてZnSe
単結晶を成長させた。種結晶は、直径20mm、厚さ1
mmで表面をミラー研磨し、裏面をラッピング研磨した
(111)B面のZnSe単結晶ウエハを用いた。事前にNa
OHでエッチングして測定した種結晶の転位密度は、5
×104 cm-2〜1.5×105 cm-2であった。そし
て、外径20mm、内径7.5mm、長さ60mmで端
面を平滑に研磨した石英製パイプの中に、直径7mm、
長さ60mmで端面を平滑に研磨したサファイア製ロッ
ドを挿入し、その上に直径20mm、厚さ5mmで両面
を平滑に研磨したサファイア製円板を載せたものを種結
晶支持部材とし、垂直に配置した内径22mmの石英製
アンプルの底面に設置した。サファイアの赤外光の透過
率は石英より高いため、種結晶支持部材の中心部の光透
過率が周辺部に比べて高くなる。そして、種結晶の付着
を防止するために、サファイア製円板には、ベンゼンを
原料とした熱CVD法で厚さ1500Åのカーボン膜を
成膜し、その上に種結晶を載せた。垂直に配置した内径
22mmの石英製アンプルの底面に前記種結晶支持部材
を設置した。さらに種結晶より上方30mmの位置に、
原料保持用のメッシュを配置し、その上に原料としてZ
nSe多結晶20gを載せた。そして、このアンプルを
1×10-7Torrまで真空排気した後、アルゴンガス
を20Torr導入し、封入蓋の部分で封着した。
Embodiment 3 Using the apparatus of FIG.
A single crystal was grown. The seed crystal has a diameter of 20 mm and a thickness of 1
mm, the front surface was mirror-polished and the back surface was lapped.
A (111) B plane ZnSe single crystal wafer was used. Na in advance
The dislocation density of the seed crystal measured by etching with OH was 5
× 10 4 cm -2 to 1.5 × 10 5 cm -2 . Then, in a quartz pipe having an outer diameter of 20 mm, an inner diameter of 7.5 mm, a length of 60 mm and a smooth end face, a diameter of 7 mm,
A sapphire rod having a length of 60 mm and an end face polished smoothly is inserted, and a sapphire disc polished on both sides with a diameter of 20 mm and a thickness of 5 mm on both sides is used as a seed crystal support member. It was set on the bottom surface of the placed quartz ampoule having an inner diameter of 22 mm. Since the transmittance of infrared light of sapphire is higher than that of quartz, the light transmittance of the central portion of the seed crystal supporting member is higher than that of the peripheral portion. Then, in order to prevent the attachment of the seed crystal, a carbon film having a thickness of 1500 ° was formed on a sapphire disk by a thermal CVD method using benzene as a raw material, and the seed crystal was mounted thereon. The seed crystal supporting member was set on the bottom surface of a vertically arranged quartz ampoule having an inner diameter of 22 mm. Further, at a position 30 mm above the seed crystal,
A mesh for holding the raw material is arranged, and Z
20 g of nSe polycrystal was loaded. Then, the ampule was evacuated to 1 × 10 −7 Torr, and then argon gas was introduced at 20 Torr, and the ampule was sealed with a sealing lid.

【0023】このアンプルを縦型管状炉に挿入し、多結
晶原料部温度を1100℃に、種結晶部温度を1080
℃に、アンプル下端部温度を1000℃に加熱して10
日間結晶成長を行った。得られた結晶は、重量15.3
gでボイドを含まないものであり、種結晶支持部材と接
触している底面は直径が約10mmで、成長にしたがっ
て、直径が増大し、最大で約20mm直径になってい
た。種結晶の転位密度は5×104 cm-2〜1.5×1
5 cm-2でほとんど増加はなく、成長結晶の転位密度
は1×104 cm-2〜4×104 cm-2に低減してい
た。これは、石英製種結晶支持部材と種結晶の付着面積
が小さく、かつ、カーボン膜により付着強度が低下さ
れ、種結晶支持部材の抱き込みもなかったため、冷却過
程において種結晶に加わる応力も低かったものと考えら
れる。また、種結晶から成長結晶へと結晶径が増大して
いるため、種結晶から転位が伝搬しても、成長結晶の転
位密度の増大は抑制されたものと考えられる。
The ampoule was inserted into a vertical tube furnace, and the temperature of the polycrystalline raw material was set to 1100 ° C. and the temperature of the seed crystal was set to 1080.
And the temperature at the lower end of the ampoule to 1000 ° C.
Crystal growth was performed for days. The obtained crystals had a weight of 15.3.
g, containing no voids, and the bottom surface in contact with the seed crystal support member had a diameter of about 10 mm, and the diameter increased with growth to a maximum of about 20 mm. The dislocation density of the seed crystal is 5 × 10 4 cm −2 to 1.5 × 1
There was almost no increase at 0 5 cm -2 , and the dislocation density of the grown crystal was reduced to 1 x 10 4 cm -2 to 4 x 10 4 cm -2 . This is because the adhesion area between the seed crystal support member made of quartz and the seed crystal is small, the adhesion strength is reduced by the carbon film, and the seed crystal support member is not entangled, so that the stress applied to the seed crystal in the cooling process is low. It is thought that it was. In addition, since the crystal diameter increases from the seed crystal to the grown crystal, it is considered that the increase in the dislocation density of the grown crystal was suppressed even if the dislocation propagated from the seed crystal.

【0024】[0024]

【発明の効果】本発明は、上記の構成を採用することに
より、昇華法及び/又はハロゲン化学輸送法により、II
−VI族化合物半導体結晶を種結晶上に成長し冷却する過
程で、外部からの応力を低減することができ、結晶性の
優れたII−VI族化合物半導体結晶の提供を可能にした。
According to the present invention, by adopting the above structure, the sublimation method and / or the halogen chemical transport method can be used.
In the process of growing a group-VI compound semiconductor crystal on a seed crystal and cooling it, external stress can be reduced, and a group II-VI compound semiconductor crystal having excellent crystallinity can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1、2で使用した結晶成長用アンプルの
模式的断面図である。
FIG. 1 is a schematic cross-sectional view of a crystal growth ampule used in Examples 1 and 2.

【図2】実施例3で使用した結晶成長用アンプルの模式
的断面図である。
FIG. 2 is a schematic sectional view of a crystal growth ampule used in Example 3.

【図3】比較例で使用した結晶成長用アンプルの模式的
断面図である。
FIG. 3 is a schematic sectional view of a crystal growth ampule used in a comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Yu.V.Korostelin e t al.,”Vapour grow th and characteriz ation of bulk ZnSe single crystals," Journal of Crystal Growth,Vol.161,1996, pp.51−59 (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 H01L 21/363 ──────────────────────────────────────────────────続 き Continued on the front page (56) References Yu. V. Korostein et al. , "Vapour growth and characteristics of bulk ZnSe single crystals," Journal of Crystal Growth, Vol. 161, 1996, pp. 51-59 (58) Field surveyed (Int. Cl. 6 , DB name) C30B 1/00-35/00 H01L 21/363

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成長室中に原料多結晶を配置し、昇華法
又はハロゲン化学輸送法で種結晶上にII−VI族化合物半
導体結晶を成長させる方法において、前記種結晶の裏面
を予め平滑に仕上げておき、種結晶支持部材を可視光及
び/又は赤外光に対してほぼ透明な材質で構成し、前記
支持部材の少なくとも一端を平滑面に仕上げ、該平滑面
を通しての可視光及び/又は赤外光の実効的透過率が中
心部では高く、周辺部では低くなるように前記支持部材
を構成し、前記支持部材の平滑面上に前記種結晶の平滑
面を密着させて結晶成長を行うことを特徴とするII−VI
族化合物半導体結晶の成長方法。
1. A method of arranging a source polycrystal in a growth chamber and growing a II-VI compound semiconductor crystal on a seed crystal by a sublimation method or a halogen chemical transport method, wherein a back surface of the seed crystal is smoothed in advance. Finished, the seed crystal support member is made of a material that is substantially transparent to visible light and / or infrared light, and at least one end of the support member is finished to a smooth surface, and visible light and / or The support member is configured such that the effective transmittance of infrared light is high in the center portion and low in the peripheral portion, and crystal growth is performed by closely contacting the smooth surface of the seed crystal on the smooth surface of the support member. II-VI characterized by the following:
A method for growing a group III compound semiconductor crystal.
【請求項2】 前記支持部材は、その側面に円周状の溝
状の切り込みを設けて、前記光の実効的透過率の分布を
形成することを特徴とする請求項1記載のII−VI族化合
物半導体結晶の成長方法。
2. The II-VI according to claim 1, wherein said support member is provided with a circumferential groove-shaped notch on a side surface thereof to form a distribution of an effective transmittance of said light. A method for growing a group III compound semiconductor crystal.
【請求項3】 前記支持部材は、可視光及び/又は赤外
光の透過率が比較的低い肉厚パイプに、前記透過率が比
較的高いロッドを挿入し、その上端に平滑な両面を有す
る前記透過率が比較的高い円板を載せて構成し、前記円
板上に前記種結晶の平滑面を密着させて結晶成長を行う
ことを特徴とする請求項1記載のII−VI族化合物半導体
結晶の成長方法。
3. The supporting member has a rod having the relatively high transmittance inserted into a thick pipe having a relatively low transmittance of visible light and / or infrared light, and has a smooth upper surface at both ends. The II-VI group compound semiconductor according to claim 1, wherein the disk having the relatively high transmittance is mounted thereon, and crystal growth is performed by bringing a smooth surface of the seed crystal into close contact with the disk. Crystal growth method.
【請求項4】 前記支持部材又は前記円板と前記種結晶
との接触面に付着防止用コーティング膜を介在させるこ
とを特徴とする請求項1〜3のいずれか1項に記載のII
−VI族化合物半導体結晶の成長方法。
4. The II according to claim 1, wherein an adhesion preventing coating film is interposed on a contact surface between the support member or the disk and the seed crystal.
-A method of growing a group VI compound semiconductor crystal.
JP30519198A 1998-10-27 1998-10-27 Method of growing II-VI compound semiconductor crystal Expired - Fee Related JP2974023B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30519198A JP2974023B1 (en) 1998-10-27 1998-10-27 Method of growing II-VI compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30519198A JP2974023B1 (en) 1998-10-27 1998-10-27 Method of growing II-VI compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2974023B1 true JP2974023B1 (en) 1999-11-08
JP2000128699A JP2000128699A (en) 2000-05-09

Family

ID=17942155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30519198A Expired - Fee Related JP2974023B1 (en) 1998-10-27 1998-10-27 Method of growing II-VI compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2974023B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134576A (en) * 2021-12-02 2022-03-04 中国电子科技集团公司第四十六研究所 Seed crystal processing method for low dislocation density CdS single crystal growth

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489474A (en) * 2011-03-29 2012-10-03 Kromek Ltd Crystal growth apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yu.V.Korostelin et al.,"Vapour growth and characterization of bulk ZnSe single crystals,"Journal of Crystal Growth,Vol.161,1996,pp.51−59

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134576A (en) * 2021-12-02 2022-03-04 中国电子科技集团公司第四十六研究所 Seed crystal processing method for low dislocation density CdS single crystal growth

Also Published As

Publication number Publication date
JP2000128699A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
US5968261A (en) Method for growing large silicon carbide single crystals
JP4108782B2 (en) Apparatus and method for forming single crystal silicon carbide on a nucleus
JP3109659B2 (en) Crystal growth method and apparatus
EP0956381B1 (en) Apparatus for growing large silicon carbide single crystals
US5064497A (en) Crystal growth method and apparatus
JP4253974B2 (en) SiC single crystal and growth method thereof
JP2974023B1 (en) Method of growing II-VI compound semiconductor crystal
JP3698109B2 (en) II-VI compound semiconductor crystal growth method
JP3185731B2 (en) Method for growing II-VI compound semiconductor crystal
JP2002293686A (en) Method of growing compound semiconductor signal crystal and substrate cut out of the same
JP3026340B1 (en) Method of growing II-VI compound semiconductor crystal
JP2988434B2 (en) Method for growing II-IV compound semiconductor crystal
JP3717562B2 (en) Single crystal manufacturing method
JP2001181098A (en) Method for growing groups ii-vi compound-semiconductor crystal
JP3011214B1 (en) Method of growing II-VI compound semiconductor crystal
JP3237509B2 (en) Method for growing II-VI compound semiconductor crystal
JP2000344600A (en) Method and apparatus for growing compound semiconductor crystals of groups ii to iv
JPH10194899A (en) Growth of crystal
JP2000264798A (en) Method for growing ii-vi group compound semiconductor crystal
JP2003124235A (en) Ii-vi group compound semiconductor, its thermal treatment method and its thermal treatment device
JP2000327498A (en) Method for growing ii-vi compound semiconductor crystal and apparatus therefor
JPH11158000A (en) Ii-vi compound semiconductor wafer and its production
JPH07263345A (en) Method and device for growing bulk single crystal of compound semiconductor
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2766897B2 (en) Single crystal growth equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees