JP2961629B2 - Manufacturing method of microfiltration membrane - Google Patents

Manufacturing method of microfiltration membrane

Info

Publication number
JP2961629B2
JP2961629B2 JP3121282A JP12128291A JP2961629B2 JP 2961629 B2 JP2961629 B2 JP 2961629B2 JP 3121282 A JP3121282 A JP 3121282A JP 12128291 A JP12128291 A JP 12128291A JP 2961629 B2 JP2961629 B2 JP 2961629B2
Authority
JP
Japan
Prior art keywords
membrane
film
less
microfiltration membrane
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3121282A
Other languages
Japanese (ja)
Other versions
JPH04349927A (en
Inventor
祐子 小園
純 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3121282A priority Critical patent/JP2961629B2/en
Publication of JPH04349927A publication Critical patent/JPH04349927A/en
Application granted granted Critical
Publication of JP2961629B2 publication Critical patent/JP2961629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は精密濾過膜の製造方法に
関するものであり、特に製薬工業における薬剤、食品工
業におけるアルコール飲料、前記製造工業及び半導体製
造工業をはじめとする微細な加工を行なう電子工業分
野、さらに諸工業の実験室などにおいて使用される超純
水製造のための精製水、純水などの濾過、その他の精密
濾過に用いられ、10μm以下特に1μm以下サブミク
ロンオーダーの微粒子や微生物を効率よくろ過する精密
濾過膜に関するものである。本発明の製造方法によって
得られた精密濾過膜は、種々の高分子、微生物、酵母、
微粒子を含有あるいは懸濁する液体の分離、精製、回
収、濃縮などに適用され、特に濾過を必要とする微細な
微粒子を含有する液体からその微粒子を分離する必要の
ある場合に適用することができ、例えば微粒子を含有す
る各種の懸濁液、発酵液あるいは培養液などの他、顔料
の懸濁液などから微粒子を分離する、原子力発電の復水
からクラッドを分離除去する場合にも適用される。また
近年バイオテクノロジーの急速な発展に伴い、培養、発
酵、酵素反応等による生化学物質の生産は、医薬品・食
品・化学製品など多くの分野で盛んに行われるようにな
ってきた。これらの生産物質は精製することによって付
加価値が高まるが、この精製操作に多くのコストがかけ
られるのが現状である。本発明の製造方法によって得ら
れた精密濾過膜はこれらの分野で特に有効であり、例え
ば培養液中から反応阻害物質を連続的に除去することに
より高密度培養を行う、菌体外酵素生産菌を用いた時に
酵素を連続回収する、菌体内酵素生産菌を破砕した溶液
から酵素を回収する、バッチ式で得られた培養液から除
去する、など多岐にわたって適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a microfiltration membrane, and more particularly, to a drug in the pharmaceutical industry, an alcoholic beverage in the food industry, and an electronic device which performs fine processing including the manufacturing industry and the semiconductor manufacturing industry. It is used for filtration of purified water and pure water for the production of ultrapure water and other microfiltration used in the industrial field and also in laboratories of various industries, and fine particles and microorganisms of submicron order of 10 μm or less, especially 1 μm or less. And a microfiltration membrane for efficiently filtering the same. Microfiltration membrane obtained by the production method of the present invention, various polymers, microorganisms, yeast,
It is applied to separation, purification, recovery, concentration, etc. of liquids containing or suspending fine particles, and can be applied particularly when it is necessary to separate the fine particles from a liquid containing fine fine particles that require filtration. For example, in addition to various kinds of suspensions containing fine particles, fermentation liquid or culture liquid, etc., it is also applied to the case of separating fine particles from a pigment suspension or the like, and separating and removing clad from condensate of nuclear power generation. . With the rapid development of biotechnology in recent years, production of biochemical substances by cultivation, fermentation, enzymatic reaction, and the like has been actively performed in many fields such as pharmaceuticals, foods, and chemical products. Purification of these products increases their added value, but the purification operation is currently costly. The microfiltration membrane obtained by the production method of the present invention is particularly effective in these fields, for example, an extracellular enzyme-producing bacterium that performs high-density culture by continuously removing a reaction inhibitor from a culture solution. The method can be applied to a wide variety of applications, such as continuous recovery of enzyme when is used, recovery of enzyme from a solution obtained by crushing intracellular enzyme-producing bacteria, and removal from a culture solution obtained by a batch method.

【0002】[0002]

【従来の技術】従来、膜を用いて懸濁物質を含有する原
液体から懸濁物質を分離する技術としては、たとえば圧
力を駆動力とする逆浸透法、限外濾過法、精密濾過法、
電位差を駆動力とする電気透析法、濃度差を駆動力とす
る拡散透析法等がある。これらの方法は、連続操作が可
能であり、分離操作中に温度やpHの条件を大きく変化
させることなく分離、精製あるいは濃縮ができ、粒子、
分子、イオン等の広範囲にわたって分離が可能であり、
小型プラント処理能力を大きく保つことができるので経
済的であり、分離操作に要するエネルギーが小さく、か
つ他の分離方法では難しい低濃度原液体の処理が可能で
あるなどの理由により広範囲に実施されている。更にバ
イオテクノロジーの進歩に伴い、高純度化、高性能化、
高精密化が要求されるようになり、従来から行なわれて
いる遠心分離や珪藻土濾過に代わって連続操作が可能で
大量処理できる、濾過助剤や凝集剤の添加が必要ない、
分離の効率は菌体と懸濁液の比重差に無関係であり培養
液の物性や菌体の種類に関係なく清澄な濾液が得られ
る、高濃度培養ができ生産効率が向上する、完全密閉系
が可能で菌の漏れがない、濃縮後菌体の洗浄が可能であ
る、スケールアップが用容易で経済性が高い等の理由で
精密濾過あるいは限外濾過技術の応用分野が拡大しつつ
ある。
2. Description of the Related Art Conventionally, techniques for separating a suspended substance from a raw liquid containing the suspended substance using a membrane include, for example, a reverse osmosis method using pressure as a driving force, an ultrafiltration method, a microfiltration method, and the like.
There are an electrodialysis method using a potential difference as a driving force and a diffusion dialysis method using a concentration difference as a driving force. These methods can be operated continuously, and can be separated, purified or concentrated without greatly changing the conditions of temperature and pH during the separation operation, and can be used for particles,
It is possible to separate a wide range of molecules, ions, etc.
It is economical because the processing capacity of a small plant can be kept large, the energy required for the separation operation is small, and it is possible to process low-concentration raw liquid which is difficult with other separation methods. I have. Furthermore, with the advancement of biotechnology, higher purity, higher performance,
High precision is required, and continuous operation is possible instead of conventional centrifugation and diatomaceous earth filtration, and large-scale processing can be performed.Addition of filter aids and flocculants is not required.
Separation efficiency is independent of the specific gravity difference between the cells and the suspension, and a clear filtrate can be obtained regardless of the properties of the culture solution and the type of cells. The application field of microfiltration or ultrafiltration technology is expanding because of the fact that cell filtration is possible, there is no leakage of bacteria, cells can be washed after concentration, scale-up is easy, and economic efficiency is high.

【0003】以上のような分離技術に用いられる膜とし
ては、酢酸セルロース、硝酸セルロース、再生セルロー
ス、ポリスルホン、ポリアクリロニトリル、ポリアミ
ド、ポリイミド等の有機高分子等を主体とした高分子膜
(例えば特公昭48−40050号、特開昭58−37
842号,特開昭58−91732号、特開昭56−1
54051号各公報参照)や耐熱性、耐薬品性などの耐
久性に優れている多孔質セラミック膜などがあり主とし
てコロイドの濾過を対象とする場合は限外濾過膜が使用
され、微細な粒子の濾過を対象とする精密濾過ではそれ
に適した微孔を有する精密濾過膜が使用されている。こ
のような精密濾過膜は、その内部に存在する微孔の孔径
が実質的に変化せず、膜の両表面の孔径が実質的に変わ
らない所謂等方性膜と、膜厚方向に孔径が連続的または
不連続的に変化し、膜の一方の表面の孔径と他方の表面
の孔径とが異なっている所謂異方性膜と呼ばれる構造を
有するものとに分類される。これらのうち等方性膜は、
特開昭58−98015号に記載されているが、濾過に
あたって膜全体が流体の流れに対して大きな抵抗を示
し、小さな流速しか得られない(即ち、単位面積当り、
単位時間当り、単位差圧当り小さな流量しか得られな
い)上、目詰まりがしやすく濾過寿命が短い、耐ブロッ
キング性がない等の欠点があった。一方異方性膜は特公
昭55−6406、特開昭56−154051号に記載
されている緻密層と呼ばれている孔径の小さな層を膜の
片方の表面または膜の内部に持ち、比較的大きな孔をあ
るいは極端に大きな指型ボイドを膜の内部からもう一方
の表面にかけて持ったものである。懸濁物質は等方性膜
を用いるかまたは異方性膜の孔径の小さい側に原液体を
供給する場合は微孔性膜表面で捕捉され、一方異方性膜
の孔径の大きい側に原液体を供給する場合は懸濁物質は
微孔性膜の内部で捕捉される。すなわち懸濁物質を精密
濾過膜の表面で阻止する場合は阻止された懸濁物質が非
常に大きな濾過抵抗となって透過流速が急激に低下し結
果として総濾過量は低くなるが、精密濾過膜が膜厚方向
に孔径が連続的または不連続的に変化し精密濾過膜の一
方の表面の孔径と他方の孔径とが異なる構造を有するい
わゆる異方性膜の表面孔径の大きい側を原液体側に向け
て使用することにより、精密濾過膜内部で懸濁物質が阻
止できるため大きな総濾過量を得ることが可能となる。
As the membrane used for the above-mentioned separation technique, a polymer membrane mainly composed of an organic polymer such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, polyimide, etc. No. 48-40050, JP-A-58-37
842, JP-A-58-91732, JP-A-56-1
No. 54051) and porous ceramic membranes having excellent durability such as heat resistance and chemical resistance. When mainly used for filtering colloids, an ultrafiltration membrane is used, and fine particles are used. In microfiltration for filtration, a microfiltration membrane having micropores suitable for the filtration is used. Such a microfiltration membrane has a so-called isotropic membrane in which the pore size of the micropores present therein does not substantially change and the pore sizes of both surfaces of the membrane do not substantially change, and a pore size in the thickness direction. The film is classified as having a structure called a so-called anisotropic film, which changes continuously or discontinuously and has a different pore size on one surface and the other surface. Of these, isotropic membranes
As described in Japanese Patent Application Laid-Open No. 58-98015, the entire membrane shows a large resistance to the flow of the fluid during filtration, and only a small flow rate can be obtained (that is, per unit area,
(A small flow rate can be obtained per unit time and per unit differential pressure.) In addition, there are drawbacks such as easy clogging, short filtration life, and no blocking resistance. On the other hand, the anisotropic film has a layer having a small pore diameter called a dense layer described in JP-B-55-6406 and JP-A-56-154051 on one surface of the film or inside the film. It has large holes or extremely large finger-shaped voids from the inside of the membrane to the other surface. Suspended substances are trapped on the microporous membrane surface when an isotropic membrane is used or when the raw liquid is supplied to the small pore side of the anisotropic membrane, while the original liquid is trapped on the large pore side of the anisotropic membrane. When supplying a liquid, the suspended matter is trapped inside the microporous membrane. In other words, when suspended substances are blocked on the surface of the microfiltration membrane, the suspended substances that have been blocked have an extremely large filtration resistance and the permeation flow rate drops rapidly, resulting in a low total filtration rate. The pore size changes continuously or discontinuously in the film thickness direction and the pore size of one surface of the microfiltration membrane is different from that of the other. When used in this manner, suspended substances can be prevented inside the microfiltration membrane, so that a large total filtration amount can be obtained.

【0004】[0004]

【発明が解決しようとする課題】前述のように、精密濾
過膜が膜厚方向に孔径が連続的または不連続的に変化し
精密濾過膜の一方の表面の孔径と他方の孔径とが異なる
構造を有するいわゆる異方性膜の表面孔径の大きい側を
原液体側に向けて使用することにより、精密濾過膜内部
で懸濁物質が阻止できるため大きな総濾過量を得ること
が可能となる。異方性膜の表面孔径が大きい側の平均孔
径が最も孔径の小さい緻密層の平均孔径より極端に大き
い場合は、懸濁物質が膜内部の断層方向に均一に分散し
て捕捉されず緻密層部分に集中して捕捉されるため、結
果として異方性膜の特性が得られず等方性膜のように表
面で捕捉される場合と同様の結果となる。一方、異方性
膜の表面孔径が大きい側の平均孔径が最も孔径の小さい
緻密層の平均孔径とあまり変わらないつまり等方性膜に
近い構造の場合、懸濁物質は濾過膜表面で捕捉され結果
として総濾過量は低くなる。すなわち異方性膜の特性を
得るには懸濁物質が膜内部に分散して捕捉されるための
適切な異方性構造が必要である。すなわち、懸濁物質の
大きさ、種類、物性等によって異方性膜の表面孔径が大
きい側の平均孔径と最も孔径の小さい緻密層の平均孔径
の比を変化させる技術が必要となってくる。そうするこ
とによって、懸濁物質に応じた最適な捕捉性能を有する
膜構造を得、最大の総濾過量が得られることが期待され
る。
As described above, the microfiltration membrane has a structure in which the pore size changes continuously or discontinuously in the film thickness direction and the pore size on one surface of the microfiltration membrane differs from the other. By using the so-called anisotropic membrane having a large surface pore diameter toward the raw liquid side, suspended substances can be prevented inside the microfiltration membrane, so that a large total filtration amount can be obtained. If the average pore size on the side with the larger surface pore size of the anisotropic film is extremely larger than the average pore size on the dense layer with the smallest pore size, the suspended substance is uniformly dispersed in the Since the particles are intensively captured at the portion, the characteristics of the anisotropic film cannot be obtained as a result, and the same result as in the case of being captured on the surface like an isotropic film is obtained. On the other hand, in the case where the average pore size on the side where the surface pore size of the anisotropic membrane is large is not so different from the average pore size of the dense layer having the smallest pore size, that is, in the case of a structure close to an isotropic membrane, suspended substances are trapped on the filtration membrane surface. As a result, the total filtration amount is low. That is, in order to obtain the properties of the anisotropic film, an appropriate anisotropic structure is necessary for the suspended substance to be dispersed and trapped inside the film. That is, a technique for changing the ratio of the average pore diameter on the side with the larger surface pore diameter of the anisotropic film to the average pore diameter on the dense layer with the smallest pore diameter depending on the size, type, physical properties, and the like of the suspended substance is required. By doing so, it is expected that a membrane structure having an optimum trapping performance according to the suspended substance will be obtained, and the maximum total filtration amount will be obtained.

【0005】[0005]

【課題を解決するための手段】本発明は、ポリスルホン
とポリビニルピロリドンをN−メチル−2−ピロリドン
に溶解して水を加えてなる製膜原液を溶解状態で支持体
上に流延し、流延された液膜の表面に調温湿風を当てた
後該液膜を凝固浴に浸漬させることによって精密濾過膜
を形成させ、しかる後前記支持体上より精密濾過膜を剥
離する製造方法において、凝固浴の温度を−10℃以上
80℃以下の1つの温度に設定して該裏面の平均表面孔
径を1μm以上100μm以下とすることにより精密濾
過膜の異方性比を制御することを特徴とする製膜方法に
より達成された。以下、本発明を詳細に説明する。異方
性構造は緻密層が膜の片方の表面に存在する場合、膜の
内部に存在する場合ともに表面孔径の大きい側の平均孔
径と緻密層の平均孔径の比で定義される。すなわち異方
性構造の異方性比とは、表面孔径の大きい側の平均孔径
を緻密層の平均孔径で割った値で定義される。ここで示
す膜表面の平均孔径は電子顕微鏡によって得られた写真
より算出したもので、緻密層の平均孔径は、図1に示す
ように、ASTM−316−80法により測定したもの
である。 図1に於いて、aは測定された緻密層の最小
口径層の平均口径を示し、bは最小口径層厚さを示す。
A面は表面口径の小さい側を示し、B面は表面口径の大
きい側を示す。精密濾過膜では通常緻密層の平均孔径は
上記で示した通り0.05μm以上10μm以下である
が、異方性膜の場合表面孔径の大きい側の平均孔径は通
常1μm以上100μm以下であり、表面孔径の大きい
面と緻密層の平均孔径の比は2倍以上1000倍以下で
ある。高い濾過量を得るための好ましい異方性構造は表
面孔径の大きい側の平均孔径が緻密層の平均孔径の2倍
以上500倍以下、好ましくは5倍以上50倍以下であ
る。また、表面孔径の大きい面から緻密層にいたるまで
の構造は、懸濁物質が膜内部で均一に分散するためには
平均孔径が連続的に変化することが好ましい。また、懸
濁物質の捕捉効果を向上するためには濾過膜の厚みは厚
い方が好ましいが、濾過膜強度及び取扱性の点から一般
的に20μm以上1000μm以下、好ましくは100
μm以上300μm以下のものが使用される。更に好ま
しくは、170μm以上300μm以下のものが使用さ
れる。
SUMMARY OF THE INVENTION According to the present invention, there is provided a film-forming stock solution obtained by dissolving polysulfone and polyvinylpyrrolidone in N-methyl-2-pyrrolidone and adding water thereto, dispersing the solution on a support in a dissolved state, In a manufacturing method, a microfiltration membrane is formed by immersing the liquid membrane in a coagulation bath after applying a temperature-controlled wet air to the surface of the extended liquid membrane, and then the microfiltration membrane is peeled off from the support. Controlling the anisotropy ratio of the microfiltration membrane by setting the temperature of the coagulation bath to one temperature of -10 ° C or more and 80 ° C or less and setting the average surface pore diameter of the back surface to 1 µm or more and 100 µm or less. Was achieved by the following film forming method. Hereinafter, the present invention will be described in detail. The anisotropic structure is defined by the ratio of the average pore diameter on the side with the larger surface pore diameter to the average pore diameter of the dense layer both when the dense layer exists on one surface of the film and when it exists inside the film. That is, the anisotropy ratio of the anisotropic structure is defined as a value obtained by dividing the average pore diameter on the side having the larger surface pore diameter by the average pore diameter of the dense layer. The average pore diameter of the film surface shown here was calculated from a photograph obtained by an electron microscope, and the average pore diameter of the dense layer was measured by the ASTM-316-80 method as shown in FIG. In FIG. 1, a indicates the average diameter of the measured minimum diameter layer of the dense layer, and b indicates the minimum diameter layer thickness.
A side shows the side with a small surface diameter, and B side shows the side with a large surface diameter. In a microfiltration membrane, the average pore diameter of the dense layer is usually 0.05 μm or more and 10 μm or less as described above. In the case of an anisotropic membrane, the average pore diameter on the side with a large surface pore diameter is usually 1 μm or more and 100 μm or less. The ratio of the average pore diameter of the surface having a large pore diameter to the average pore diameter of the dense layer is 2 times or more and 1000 times or less. A preferable anisotropic structure for obtaining a high filtration amount is such that the average pore size on the side with the larger surface pore size is 2 times or more and 500 times or less, preferably 5 times or more and 50 times or less of the average pore size of the dense layer. Further, in the structure from the surface having a large surface pore size to the dense layer, it is preferable that the average pore size is continuously changed in order to uniformly disperse the suspended substance inside the film. In order to improve the effect of trapping suspended substances, it is preferable that the thickness of the filtration membrane is large, but from the viewpoint of the strength of the filtration membrane and handleability, it is generally 20 μm or more and 1000 μm or less, preferably 100 μm or less.
Those having a size of not less than μm and not more than 300 μm are used. More preferably, those having a size of 170 μm or more and 300 μm or less are used.

【0006】本発明の精密濾過膜は、ポリスルホンとポ
リビニルピロリドンをN−メチル−2−ピロリドンに溶
解して水を加えてなる製膜原液を溶解状態で支持体上に
流延し、流延された液膜の表面に1秒以上30秒以下の
時間調温湿風を当てることによって、該液膜に溶媒の蒸
発と非溶媒蒸気の吸収の制御を行い液膜の表面から内部
に向かってコアセルベーションを起こさせ、その後ポリ
マーに対し非溶媒でありポリマーの溶媒に相溶性を有す
る液を収容する凝固液に浸漬することによって、上記の
コアセルベーション相を微細孔として固定させ微細孔以
外の細孔を形成することによって得られる。一方、本発
明の精密濾過膜の異方性比制御方法は、上記の凝固液に
浸漬する過程において凝固液の温度を−10℃以上80
℃以下に変化させることによって、緻密層より内部(裏
面側へ向かって)におけるコアセルベーション相の形成
から凝固に至るまでの時間を調節し、裏面に至るまでの
孔径の大きさを制御することにより可能である。凝固液
の温度を高くすると、コアセルベーション相の形成が早
くなり凝固に至るまでの時間が長くなるため、裏面へ向
かう孔径は大きくなる。一方、凝固液の温度を低くする
と、コアセルベーション相の形成が遅くなり凝固に至る
までの時間が短くなるため、裏面へ向かう孔径の大きさ
はあまり大きくならない。すなわち凝固液の温度を制御
することによって異方性膜の異方性比を制御することが
出来る。また、微細孔を有する緻密層の平均孔径は、製
膜原液中の含有水分量、流延後に当てる調温湿風中に含
まれる水分濃度、調温湿風を当てる時間によって制御出
来る。
[0006] The microfiltration membrane of the present invention is prepared by dissolving polysulfone and polyvinylpyrrolidone in N-methyl-2-pyrrolidone and adding water, and then casting the solution on a support in a dissolved state. By applying a controlled temperature and humid air to the surface of the liquid film for 1 second or more and 30 seconds or less, the evaporation of the solvent and the absorption of the non-solvent vapor are controlled to the liquid film, and the core is formed from the surface of the liquid film toward the inside. The celvation is caused, and thereafter, the coacervation phase is fixed as micropores by immersing in a coagulation liquid containing a liquid that is non-solvent for the polymer and is compatible with the solvent of the polymer. Obtained by forming pores. On the other hand, the method for controlling an anisotropic ratio of a microfiltration membrane of the present invention is characterized in that the temperature of the coagulation liquid is in the range of −10 ° C. to 80
Adjusting the time from formation of the coacervation phase to solidification inside the dense layer (toward the back side) by controlling the temperature below ℃, and controlling the size of the pore diameter up to the back side Is possible. When the temperature of the coagulation liquid is increased, the formation of the coacervation phase is accelerated, and the time until solidification is increased, so that the pore diameter toward the back surface increases. On the other hand, when the temperature of the coagulation liquid is lowered, the formation of the coacervation phase is delayed and the time until solidification is shortened, so that the size of the pore diameter toward the back surface is not so large. That is, the anisotropic ratio of the anisotropic film can be controlled by controlling the temperature of the coagulating liquid. The average pore size of the dense layer having fine pores can be controlled by the amount of water contained in the stock solution for film formation, the concentration of water contained in the temperature-adjusted moist air after casting, and the time for applying the temperature-adjusted moist air.

【0007】本発明において用いられる膜形成用ポリマ
ーはポリスルホン以外に、多孔質膜の用途や他の目的の
合わせて選択することが出来る。このようなポリマ−と
してセルロースアセテート、ニトロセルロース、スルホ
ン化ポリスルホン、ポリエーテルスルホン、ポリアクリ
ロニトリル、スチレン−アクリロニトリルコポリマー、
スチレン−ブタジエンコポリマー、エチレン−酢酸ビニ
ルコポリマーのケン化物ポリビニルアルコール、ポリカ
ーボネート、オルガノシロキサン−ポリカーボネートコ
ポリマー、ポリエステルカーボネート、オルガノポリシ
ロキサン、ポリフェニレンオキシド、ポリアミド、ポリ
イミド、ポリアミドイミド、ポリベンズイミダゾール等
を挙げることができる。
[0007] In addition to polysulfone, the polymer for forming a membrane used in the present invention can be selected according to the purpose of the porous membrane or other purposes. Such polymers include cellulose acetate, nitrocellulose, sulfonated polysulfone, polyethersulfone, polyacrylonitrile, styrene-acrylonitrile copolymer,
Styrene-butadiene copolymer, saponified ethylene-vinyl acetate copolymer polyvinyl alcohol, polycarbonate, organosiloxane-polycarbonate copolymer, polyester carbonate, organopolysiloxane, polyphenylene oxide, polyamide, polyimide, polyamideimide, polybenzimidazole, etc. .

【0008】また、多孔質構造を制御するものとして膨
潤剤と称される無機電解質、有機電解質、高分子叉はそ
の電解質はポリビニルピロリドン以外に、食塩、塩化リ
チウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウ
ム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ
酸ナトリウム等の有機酸の金属塩、ポリエチレングリコ
ール、ポリビニルピロリドン等の高分子、ポリスチレン
スルホン酸ナトリウム、ポリビニルベンジルトリメチル
アンモニウムクロライド等の高分子電解質、ジオクチル
スルホコハク酸ナトリウム、アルキルメチルタウリン酸
ナトリウム等のイオン系界面活性剤等を挙げることがで
きる膜形成用ポリマーの良溶媒として、通常膜形成用ポ
リマーの溶媒でありかつ凝固液に浸漬した場合速やかに
凝固液と置換されるものが使用され、N−メチル−2−
ピロリドン以外に、膜形成用ポリマーの種類によって選
択出来る。膜形成用ポリマーがポリスルホンの場合、ジ
オキサン、テトラヒドロフラン、ジメチルホルムアミ
ド、ジメチルアセトアミドあるいはこれらの混合溶媒が
適当であり、ポリアクリロニトリルの場合にはジオキサ
ン、N−メチル−2−ピロリドン、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシド等
が、ポリアミドの場合にはジメチルホルムアミドやジメ
チルアセトアミド等が、セルロースアセテートの場合は
アセトン、ジオキサン、テトラヒドロフラン、N−メチ
ル−2−ピロリドン等が適当である。
An inorganic electrolyte, an organic electrolyte, a polymer, or an electrolyte called a swelling agent for controlling the porous structure is not limited to polyvinylpyrrolidone, but may be sodium chloride, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate, Metal salts of inorganic acids such as zinc chloride; metal salts of organic acids such as sodium acetate and sodium formate; polymers such as polyethylene glycol and polyvinylpyrrolidone; polymer electrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethylammonium chloride; dioctyl As a good solvent for a film-forming polymer, which can be mentioned as an ionic surfactant such as sodium sulfosuccinate and sodium alkylmethyltaurate, it is usually a solvent for a film-forming polymer and rapidly solidifies when immersed in a coagulating liquid. Replaced with liquid One is used, N- methyl-2
In addition to pyrrolidone, it can be selected depending on the type of the film-forming polymer. When the polymer for forming a membrane is polysulfone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide or a mixed solvent thereof is suitable.For polyacrylonitrile, dioxane, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, When dimethyl sulfoxide and the like are polyamides, dimethylformamide and dimethylacetamide are suitable, and when cellulose acetate is used, acetone, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone and the like are suitable.

【0009】本発明における非溶媒としては、水以外に
セルソルブ類、メタノール、エタノール、プロパノー
ル、アセトン、テトラヒドロフラン、ポリエチレングリ
コール、グリセリン等が挙げられる。製膜原液としての
ポリマー濃度は5重量%以上35重量%以下、好ましく
は10重量%以上30重量%以下である。35重量%を
超えると、得られる精密濾過膜の透水性が実用的に意味
を持たない程小さくなり、5重量%以下より低い濃度で
は十分な分離機能を持った精密濾過膜は得られない。ま
た膨潤剤の添加量は添加によって製膜原液の均一性が失
われることが無い限り特に制限は無いが、通常溶媒に対
して0.5容量%以上10容量%以下である。非溶媒の
良溶媒に対する割合は混合液が均一状態を保てる範囲な
らば如何なる範囲でもよいが5重量%以上50重量%以
下が好ましい。凝固浴としては、水、メタノール、エタ
ノール、ブタノールなどのアルコール類。エチレングリ
コール、ジエチレングリコールなどのグリコール類エー
テル、n−ヘキサン、n−ヘプタン、等の脂肪族炭化水
素類、グリセリン等のグリセロール類などポリマーを溶
解しないものなら何でも用いることが出来る。好ましい
のは水、アルコール類またはこれらの液体との2種以上
の混合液体である。
The non-solvent in the present invention includes, in addition to water, cellosolves, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, glycerin and the like. The polymer concentration as a film forming stock solution is 5% by weight or more and 35% by weight or less, preferably 10% by weight or more and 30% by weight or less. If it exceeds 35% by weight, the water permeability of the obtained microfiltration membrane becomes so small as to have no practical significance, and if it is lower than 5% by weight, a microfiltration membrane having a sufficient separation function cannot be obtained. The addition amount of the swelling agent is not particularly limited as long as the uniformity of the film forming stock solution is not lost by the addition, but is usually 0.5% by volume or more and 10% by volume or less based on the solvent. The ratio of the non-solvent to the good solvent may be in any range as long as the mixed solution can maintain a uniform state, but is preferably 5% by weight or more and 50% by weight or less. Coagulation baths include water, alcohols such as methanol, ethanol, and butanol. Any material can be used as long as it does not dissolve the polymer, such as glycol ethers such as ethylene glycol and diethylene glycol, aliphatic hydrocarbons such as n-hexane and n-heptane, and glycerols such as glycerin. Preference is given to water, alcohols or a mixture of two or more of these.

【0010】[0010]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 実施例 ポリスルホン(アモコ社製 P3500)15部、ポリ
ビニルピロリドン15部、水3部をNーメチルー2ーピ
ロリドン67部に溶解して製膜原液を得る。ガラス板に
液膜厚さ180μmでキャスティングコーターを通し
て、流延しその液膜表面に25℃相対湿度45%に調節
した空気を2m/secで5秒間当て、その後直ちに水
を満たした凝固液槽へ浸漬して精密濾過膜を得た。凝固
液の温度を5℃、25℃、45℃と変化させた時の膜の
緻密層の平均孔径、表面孔径の大きい側の平均孔径、異
方性比を表1に示した。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. Example 15 parts of polysulfone (P3500, manufactured by Amoco), 15 parts of polyvinylpyrrolidone, and 3 parts of water are dissolved in 67 parts of N-methyl-2-pyrrolidone to obtain a stock solution. A glass plate is cast through a casting coater with a liquid film thickness of 180 μm, and the surface of the liquid film is exposed to air adjusted to 25 ° C. and a relative humidity of 45% at 2 m / sec for 5 seconds, and then immediately into a coagulating liquid tank filled with water. It was immersed to obtain a microfiltration membrane. Table 1 shows the average pore diameter of the dense layer, the average pore diameter on the side with the larger surface pore diameter, and the anisotropy ratio when the temperature of the coagulating liquid was changed to 5 ° C., 25 ° C., and 45 ° C.

【0011】[0011]

【表1】 [Table 1]

【0012】なおここで示す膜表面の平均孔径は電子顕
微鏡によって得られた写真より算出したもので、緻密層
の平均孔径はASTM−316−80法により測定した
ものである。
The average pore size of the film surface shown here was calculated from a photograph obtained by an electron microscope, and the average pore size of the dense layer was measured by the ASTM-316-80 method.

【0013】[0013]

【発明の効果】本発明により、濾過対象物に応じた最適
な捕捉性能を有する膜構造を形成するすなわち濾過対象
物の性質に合わせ膜の異方性構造を自由に変化させ得る
もので濾過膜及びシステム設計上極めて有力な技術と考
えられる。
According to the present invention, it is possible to form a membrane structure having an optimum trapping performance according to an object to be filtered, that is, to freely change the anisotropic structure of the membrane according to the properties of the object to be filtered. It is considered to be a very powerful technology in system design.

【図面の簡単な説明】[Brief description of the drawings]

【図1】精密濾過膜の断面の模式図を示す。FIG. 1 shows a schematic diagram of a cross section of a microfiltration membrane.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−139930(JP,A) 特開 昭63−141607(JP,A) 特開 昭63−93309(JP,A) 特開 昭60−206416(JP,A) 特開 昭61−38603(JP,A) 特開 昭61−232860(JP,A) 特開 昭61−238306(JP,A) 特開 昭55−35969(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 71/68 B01D 71/44 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-139930 (JP, A) JP-A-63-141607 (JP, A) JP-A-63-93309 (JP, A) JP-A-60-1985 206416 (JP, A) JP-A-61-38603 (JP, A) JP-A-61-232860 (JP, A) JP-A-61-238306 (JP, A) JP-A-55-35969 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) B01D 71/68 B01D 71/44

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリスルホンとポリビニルピロリドンを
N−メチル−2−ピロリドンに溶解して水を加えてなる
製膜原液を溶解状態で支持体上に流延し、流延された液
膜の表面に調温湿風を当てた後該液膜を凝固浴に浸漬さ
せることによって精密濾過膜を形成させ、しかる後前記
支持体上より精密濾過膜を剥離する製造方法において、
凝固浴の温度を−10℃以上80℃以下の1つの温度に
設定して該裏面の平均表面孔径を1μm以上100μm
以下とすることにより精密濾過膜の異方性比を制御する
ことを特徴とする製膜方法。
1. A film-forming stock solution obtained by dissolving polysulfone and polyvinylpyrrolidone in N-methyl-2-pyrrolidone and adding water is cast on a support in a dissolved state, and is applied to the surface of the cast liquid film. In a production method of forming a microfiltration membrane by immersing the liquid membrane in a coagulation bath after applying a controlled temperature humid air, and then peeling the microfiltration membrane from the support.
The temperature of the coagulation bath is set to one temperature of -10 ° C or more and 80 ° C or less, and the average surface pore diameter of the back surface is 1 µm or more and 100 µm or less.
A membrane production method comprising controlling the anisotropy ratio of a microfiltration membrane by:
【請求項2】 該平均表面孔径を5.0μm以上50.
0μm以下とすることすることを特徴とする請求項1に
記載の製膜方法。
2. An average surface pore size of not less than 5.0 μm and not more than 50.
2. The method according to claim 1, wherein the thickness is set to 0 μm or less.
【請求項3】 緻密層の微細孔が凝固液に浸漬すること
により固定されることを特徴とする請求項1又は請求項
2に記載の製膜方法。
3. The film forming method according to claim 1, wherein the fine pores of the dense layer are fixed by immersion in a coagulating liquid.
JP3121282A 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane Expired - Fee Related JP2961629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121282A JP2961629B2 (en) 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121282A JP2961629B2 (en) 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane

Publications (2)

Publication Number Publication Date
JPH04349927A JPH04349927A (en) 1992-12-04
JP2961629B2 true JP2961629B2 (en) 1999-10-12

Family

ID=14807399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121282A Expired - Fee Related JP2961629B2 (en) 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane

Country Status (1)

Country Link
JP (1) JP2961629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002597B1 (en) * 2008-12-31 2010-12-20 웅진케미칼 주식회사 Method for Manufacturing Porous membrane

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297179A (en) * 2005-04-15 2006-11-02 Ngk Insulators Ltd Filtration membrane for membrane filtration of clarified water
DE102005026804B3 (en) * 2005-06-09 2007-02-22 Membrana Gmbh Microfiltration membrane with improved filtration behavior
PL1875957T3 (en) * 2006-07-07 2010-09-30 Gambro Lundia Ab Plasma separation membrane
US20140339165A1 (en) * 2013-05-14 2014-11-20 Pall Corporation High throughput membrane with rough surface
TWI658070B (en) 2013-11-14 2019-05-01 美商恩特葛瑞斯股份有限公司 Microporous polyamide-imide membranes
JP6818042B2 (en) 2016-11-11 2021-01-20 富士フイルム株式会社 Immune isolation membranes, transplant chambers, and transplant devices
CN109922839B (en) 2016-11-11 2022-01-11 富士胶片株式会社 Immunity isolation film, chamber for transplantation and device for transplantation
WO2019004378A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
CN110831637B (en) 2017-06-29 2022-03-18 富士胶片株式会社 Transplantation chamber and transplantation device
JP6870087B2 (en) 2017-06-29 2021-05-12 富士フイルム株式会社 Implantation chamber, method of manufacturing the implantation chamber, implantation device, and method of fusing the porous membrane.
WO2019044991A1 (en) 2017-08-30 2019-03-07 富士フイルム株式会社 Angiogenic agent and method for producing same
JP6941175B2 (en) 2017-08-30 2021-09-29 富士フイルム株式会社 Device for cell transplantation and its manufacturing method
WO2020111211A1 (en) * 2018-11-30 2020-06-04 富士フイルム株式会社 Method for producing porous membrane and porous membrane
EP3903881A4 (en) 2018-12-25 2022-01-19 FUJIFILM Corporation Cell transplant kit, method for manufacturing bag-like structure, and therapeutic agent for diabetes
EP3932528A4 (en) 2019-02-26 2022-04-20 FUJIFILM Corporation Hydrophilic porous membrane and method for producing hydrophilic porous membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002597B1 (en) * 2008-12-31 2010-12-20 웅진케미칼 주식회사 Method for Manufacturing Porous membrane

Also Published As

Publication number Publication date
JPH04349927A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
JP2961629B2 (en) Manufacturing method of microfiltration membrane
Zhao et al. Formation of dynamic membranes for oily water separation by crossflow filtration
US5221479A (en) Filtration system
JPS6227006A (en) Microporous membrane
EP3023138B1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JPWO2009060836A1 (en) Cellulosic porous membrane
TW201526979A (en) Membrane with plurality of charges
JPH057047B2 (en)
JPH04250834A (en) Precision filter membrane
JPH06862B2 (en) Microporous membrane manufacturing method
CN114618312B (en) Dual porous ion selective permeable membrane and preparation method thereof
JPH0549877A (en) Production of composite filter membrane
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JP2004105804A (en) Polysulfone microporous membrane and its manufacturing method
JP2530133B2 (en) Microporous membrane
JP4803341B2 (en) Flat membrane pore diffusion separator
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
JPH07289864A (en) Microporous membrane
JP2717458B2 (en) Filtration method
JPH0557149A (en) Filter system
JPH0561970B2 (en)
JPH0679147A (en) Filtration method
JP4689790B2 (en) Internal hydrophilic membrane of anionic copolymer blend
JPH04317708A (en) New filtration using filtration assistant
JPH01139116A (en) Asymmetric microporous membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees