JP2955658B1 - Subcarrier optical transmission system - Google Patents

Subcarrier optical transmission system

Info

Publication number
JP2955658B1
JP2955658B1 JP10108621A JP10862198A JP2955658B1 JP 2955658 B1 JP2955658 B1 JP 2955658B1 JP 10108621 A JP10108621 A JP 10108621A JP 10862198 A JP10862198 A JP 10862198A JP 2955658 B1 JP2955658 B1 JP 2955658B1
Authority
JP
Japan
Prior art keywords
optical
optical fiber
signal
dispersion
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10108621A
Other languages
Japanese (ja)
Other versions
JPH11289294A (en
Inventor
研一 北山
Original Assignee
郵政省通信総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郵政省通信総合研究所長 filed Critical 郵政省通信総合研究所長
Priority to JP10108621A priority Critical patent/JP2955658B1/en
Application granted granted Critical
Publication of JP2955658B1 publication Critical patent/JP2955658B1/en
Publication of JPH11289294A publication Critical patent/JPH11289294A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

【要約】 【課題】副搬送波光伝送方式を提供する。 【解決手段】送信すべき情報で変調された角周波数ωm
の副搬送波を光ファイバ伝送する方式として、主搬送波
である周波数ω0の光波1を副搬送波信号6で強度変調
して得られる光DSB信号を単一モード光ファイバ4で伝
送し、光ファイバ4の入射端または出射端において、該
光ファイバ伝送において光ファイバ4の色分散よって発
生する光DSB信号における主搬送波に対する両側帯波の
群遅延時間差の和を、分散等化器3を用いて等化した
後、受信端で該光DSB信号を受光素子5を用いて自乗検
波し、元の副搬送波信号を再生する。
A subcarrier optical transmission system is provided. An angular frequency ωm modulated with information to be transmitted.
The optical DSB signal obtained by intensity-modulating the optical wave 1 having the frequency ω 0 , which is the main carrier, with the sub-carrier signal 6 is transmitted through the single-mode optical fiber 4. At the input end or output end of the optical DSB signal, the sum of the group delay time differences between the two sidebands with respect to the main carrier in the optical DSB signal generated by the chromatic dispersion of the optical fiber 4 in the optical fiber transmission is equalized using the dispersion equalizer 3. After that, the optical DSB signal is square-detected at the receiving end using the light receiving element 5, and the original subcarrier signal is reproduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ミリ波アクセスネ
ットワークなどに用いられる副搬送波光伝送方式に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a subcarrier optical transmission system used for an optical millimeter wave access network or the like.

【0002】[0002]

【従来の技術】従来、図6のような光スペクトルを示す
光DSB信号を光ファイバで伝送すると、ファイバ分散の
影響によって劣化が生じる。図7は信号強度と光ファイ
バ長の関係を示す理論計算結果である。この際fm=60GHz
としており周期的なフェージングが発生し、例えば1km
で信号が完全に消滅する。
2. Description of the Related Art Conventionally, when an optical DSB signal having an optical spectrum as shown in FIG. 6 is transmitted through an optical fiber, deterioration occurs due to the influence of fiber dispersion. FIG. 7 is a theoretical calculation result showing the relationship between the signal strength and the optical fiber length. At this time, fm = 60GHz
And periodic fading occurs, for example, 1 km
The signal disappears completely.

【0003】このようなファイバの分散の影響を回避す
るために、従来両側帯波のいずれか一方を除去し光SSB
信号として伝送する方法がとられていた。図7の理論値
が示すように、光SSB信号の場合には距離に対して信号
強度の変化は見られない。光DSB信号を光SSB信号(図
6)に変換するために、従来は図8に示すように光変調
器の後段に光フィルタによって一方の側帯波を除去する
方法が取られていた。図8は従来例であり、81は連続
発振のレーザ光源、82は光変調器、83は光フィル
タ、84は光ファイバ伝送路、85はフォトディテク
タ、86はミリ波信号、87は再生されたミリ波信号を
表す。
[0003] In order to avoid the influence of such fiber dispersion, conventionally, one of the two sidebands is removed and the optical SSB is removed.
A method of transmitting a signal has been used. As shown by the theoretical values in FIG. 7, in the case of the optical SSB signal, there is no change in the signal strength with respect to the distance. In order to convert an optical DSB signal into an optical SSB signal (FIG. 6), a method of removing one sideband by an optical filter after the optical modulator as shown in FIG. 8 has conventionally been adopted. FIG. 8 shows a conventional example, in which 81 is a continuous wave laser light source, 82 is an optical modulator, 83 is an optical filter, 84 is an optical fiber transmission line, 85 is a photodetector, 86 is a millimeter wave signal, and 87 is a reproduced millimeter. Represents a wave signal.

【0004】[0004]

【発明が解決しようとする課題】この方法では、光源の
周波数の変化に対して光フィルタを透過する光量が急峻
に変化するため、信号強度が大きくゆらぐという危険が
あり、実用的な方法とは言えなかった。
In this method, since the amount of light passing through the optical filter changes sharply with the change in the frequency of the light source, there is a danger that the signal intensity fluctuates greatly. I could not say it.

【0005】この方法以外にも、特殊な構造の光変調器
を用いることによって、レーザ光を変調して直接光SSB
信号を生成することも可能であるが、光変調器の高周波
数化が困難なため、変調可能な周波数が高々30〜40GHz
に制限されており、構成や操作も複雑なため実用的な方
法とはいえないという問題を有していた。
[0005] In addition to this method, by using an optical modulator having a special structure, the laser light is modulated and the direct light SSB is modulated.
Although it is possible to generate signals, it is difficult to increase the frequency of the optical modulator.
And the configuration and operation are complicated, which is not a practical method.

【0006】[0006]

【課題を解決するための手段】本発明は上記従来の欠点
に鑑み提案されたもので、送信すべき情報で変調された
角周波数ωm (周波数はfm)の副搬送波を光ファイバ伝
送する方式として、主搬送波である周波数ω0(周波数
はf0)の光波を該副搬送波信号で強度変調して得られる
光DSB信号を単一モード光ファイバで伝送し、光ファイ
バの入射端または出射端において、該光ファイバ伝送に
おいて光ファイバの色分散よって発生する光DSB信号に
おける主搬送波に対する両側帯波の群遅延時間差の和
を、分散等化器を用いて等化した後、受信端で上記光DS
B信号を受光素子を用いて自乗検波し、元の副搬送波信
号を再生する副搬送波光伝送方式を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned conventional drawbacks, and has been proposed as a method of transmitting a subcarrier having an angular frequency ωm (frequency is fm) modulated with information to be transmitted through an optical fiber. An optical DSB signal obtained by intensity-modulating an optical wave having a frequency ω 0 (frequency is f 0 ), which is a main carrier, with the sub-carrier signal is transmitted through a single-mode optical fiber. In the optical fiber transmission, the sum of the group delay time difference between the two sidebands with respect to the main carrier in the optical DSB signal generated by the chromatic dispersion of the optical fiber is equalized using a dispersion equalizer, and then, at the receiving end, the optical DS
An object of the present invention is to provide a subcarrier optical transmission system for performing square-law detection of a B signal using a light receiving element and reproducing an original subcarrier signal.

【0007】本発明は、分散等化の方法として、該光フ
ァイバの伝搬定数をβ(ω)とするとき、ファイバ長Lに
対する光DSB信号の両側帯波の主搬送波に対する群遅延
時間差数式1および数式2の平均値、即ち数式3を、逆
符号の分散特性を有する分散等化器中に光DSB信号を通
過させることによって等化する副搬送波光伝送方式を提
供するものである。
According to the present invention, as a method of dispersion equalization, when the propagation constant of the optical fiber is β (ω), the group delay time difference formula 1 with respect to the main carrier of both sidebands of the optical DSB signal with respect to the fiber length L and An object of the present invention is to provide a subcarrier optical transmission system for equalizing the average value of Expression 2, that is, Expression 3, by passing an optical DSB signal through a dispersion equalizer having dispersion characteristics of opposite signs.

【0008】また、本発明は、分散等化器として、分散
値がD'、長さがdの分散等化用光ファイバを用い、数式
4を満足するように設定する副搬送波光伝送方式を提供
するものである。
Further, the present invention provides a subcarrier optical transmission system which uses a dispersion equalizing optical fiber having a dispersion value of D 'and a length of d as a dispersion equalizer and which is set to satisfy Expression 4. To provide.

【0009】更に、本発明は、分散等化器として、いわ
ゆる光ファイバ格子を用い、その入射端で周波数の側帯
波を、他端で周波数の側帯波をそれぞれ選択的に反射さ
せるための数式5で表せる周期の格子を入出力端にそれ
ぞれ設け、光DSB信号が該光ファイバ伝搬中に生じる両
側帯波間の遅延時間差に相当するように、光ファイバ格
子の長さを数式6に設定する副搬送波光伝送方式を提供
するものである。
Further, the present invention uses a so-called optical fiber grating as the dispersion equalizer, and expresses a sideband of a frequency at the incident end thereof and a sideband of the frequency at the other end thereof. A sub-carrier is provided at each of the input and output ends, wherein the length of the optical fiber grating is set to Equation 6 so that the optical DSB signal corresponds to the delay time difference between the two sidebands generated during propagation of the optical fiber. An optical transmission system is provided.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施形態を図面に
基づいて説明する。図1は光ミリ波無線アクセスネット
ワークの概念図である。CS(Central Station)とその
周辺に多数点在するBS(Base Station)と無線端末WT
(Wireless Terminals)から構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of an optical millimeter wave wireless access network. CS (Central Station) and BS (Base Station) and wireless terminals WT scattered around it
(Wireless Terminals).

【0011】CSとBSは光ファイバで結ばれる。CS→BSの
ダウンリンクでは、CSにおいて情報を重畳した光信号を
光ファイバで各BSへ配信し、BSで受信光信号から変換し
て得られる無線信号を各WTにアンテナから送出する。一
方、BS→CSのアップリンクでは各WTからの無線信号をBS
内で光信号にし、光ファイバを通してCSへ集める 。こ
こでは無線搬送波として60GHz帯ミリ波を用い、半径100
m程度のピコセルを中心としたアクセスネットワークへ
の適用を想定している。
[0011] CS and BS are connected by an optical fiber. In the CS → BS downlink, an optical signal on which information is superimposed in the CS is distributed to each BS via an optical fiber, and a radio signal obtained by converting a received optical signal in the BS is transmitted to each WT from an antenna. On the other hand, in the uplink from BS to CS, the radio signal from each WT is
It is converted to an optical signal within the optical fiber and collected to CS through an optical fiber. Here, a 60 GHz band millimeter wave is used as a wireless carrier, and a radius of 100
It is assumed to be applied to access networks centered on pico cells of about m.

【0012】光ミリ波無線通信はアクセス系において狭
い範囲に広帯域無線サービスを提供することが可能であ
り、またミリ波帯の開拓はマイクロ波帯の周波数資源の
問題の解消にも有効であるため、近い将来、導入が検討
されている。すなわち、本発明は光ミリ波無線通信にお
いて、制御局と無線基地局間を光ファイバで結び、ミリ
波無線信号を歪みなく伝送する技術への適用が期待され
る。
Optical millimeter-wave wireless communication can provide a broadband wireless service in a narrow range in an access system, and development of a millimeter-wave band is also effective in solving the problem of frequency resources in a microwave band. In the near future, introduction is being considered. That is, the present invention is expected to be applied to a technology for transmitting a millimeter-wave wireless signal without distortion in an optical millimeter-wave wireless communication by connecting a control station and a wireless base station with an optical fiber.

【0013】先ず、本発明の原理について説明する。光
変調器によってミリ波信号で変調されて得られる光DSB
信号の電界は次式で表される。
First, the principle of the present invention will be described. Optical DSB obtained by modulation with millimeter wave signal by optical modulator
The electric field of the signal is expressed by the following equation.

【0014】[0014]

【数7】 (Equation 7)

【0015】距離Lの光ファイバ伝送後の電界は次式で
表される。
The electric field after transmission of the optical fiber at the distance L is expressed by the following equation.

【0016】[0016]

【数8】 (Equation 8)

【0017】ただし、β(ω)は光ファイバの伝搬定数、
αは光DSB信号のチャープパラメータ、cは真空中の光速
度、l=c/f0、Dは該光ファイバの分散を表すものとす
る。これをフォトディテクタで自乗検波して得られる光
電流は次式で与えられる。
Where β (ω) is the propagation constant of the optical fiber,
α is the chirp parameter of the optical DSB signal, c is the speed of light in vacuum, l = c / f 0 , and D is the dispersion of the optical fiber. The photocurrent obtained by square-detecting this with a photodetector is given by the following equation.

【0018】[0018]

【数9】 (Equation 9)

【0019】上式は周波数ωmのミリ波が再生されるこ
とを示している。ただし振幅が
The above equation shows that a millimeter wave having a frequency ωm is reproduced. However, if the amplitude is

【0020】[0020]

【数10】 (Equation 10)

【0021】を満たすとき、信号強度が零になる、いわ
ゆるフェージングという現象が発生することが分かる。
これは光ファイバ長L(図7)、変調周波数ωmに対して
周期的な振る舞いを示す。ここで検波前に分散値がD'の
もう1つの長さdの分散媒質を通過したとすると、得ら
れる光電流は次式で与えられる。
It can be seen that when the condition is satisfied, a phenomenon called so-called fading occurs in which the signal intensity becomes zero.
This shows a periodic behavior with respect to the optical fiber length L (FIG. 7) and the modulation frequency ωm. Here, if it is assumed that the light has passed through another dispersion medium having a dispersion value D 'and another length d before detection, the obtained photocurrent is given by the following equation.

【0022】[0022]

【数11】 [Equation 11]

【0023】上式から分散値D'が数式12および数式4
を満たすときフェージングが除去できることがわかる。
From the above equation, the variance value D ′ is calculated by the following equations (12) and (4)
It is understood that fading can be removed when the condition is satisfied.

【0024】[0024]

【数12】 (Equation 12)

【0025】即ち、チャープパラメータαを無視すれ
ば、分散値D'は光ファイバの分散値Dと逆符号であり、
総分散量が等しい(DL+D'd=0)ことが条件となる。次に2
つの具体的な実施形態を示す。図2(a)、(b)はそ
れぞれ本発明の第1の実施形態であり、1は連続発振の
レーザ光源、2は光変調器、3は等化用光ファイバ、4
は光ファイバ伝送路、5はフォトディテクタ、6はミリ
波信号、7は再生されたミリ波信号を表わす。なお、等
化用光ファイバ3は光ファイバ伝送路4の前後いずれか
に配置する。
That is, if the chirp parameter α is ignored, the dispersion value D ′ is the opposite sign to the dispersion value D of the optical fiber,
The condition is that the total variance is equal (DL + D'd = 0). Then 2
Two specific embodiments are shown. 2A and 2B show a first embodiment of the present invention, in which 1 is a continuous wave laser light source, 2 is an optical modulator, 3 is an optical fiber for equalization,
Represents an optical fiber transmission line, 5 represents a photodetector, 6 represents a millimeter-wave signal, and 7 represents a reproduced millimeter-wave signal. The optical fiber for equalization 3 is disposed before or after the optical fiber transmission line 4.

【0026】通常の光ファイバでは図3のように、1300
nm近辺に零分散波長が存在するのに対して、レーザ光源
の波長lは、通常、光ファイバの損失が最低となる1550n
mに設定する。したがって分散値Dは正符号をとるので、
本等化用光ファイバの分散値D'は負符号にする必要があ
る。これはファイバのコア径や屈折率差を変えることに
よって零分散波長を1550nmよりも長波長側にシフトさせ
ることによって実現できる。実際にこの種のファイバは
分散補償ファイバとして既に商品化されている。
In an ordinary optical fiber, as shown in FIG.
While there is a zero-dispersion wavelength near nm, the wavelength l of the laser light source is usually 1550n, at which the loss of the optical fiber is the lowest.
Set to m. Therefore, since the variance D takes a positive sign,
The dispersion value D 'of the equalizing optical fiber needs to be a negative sign. This can be realized by shifting the zero-dispersion wavelength to a longer wavelength side than 1550 nm by changing the fiber core diameter and the refractive index difference. In fact, this type of fiber has already been commercialized as a dispersion compensating fiber.

【0027】なおチャープパラメータαは通常広く用い
られている電界吸収型変調器では-1<α<1をとり、直
流バイアス電圧によって変化する。したがって、実際の
システムでは大まかにDL+D'd=0を満たすような等化用光
ファイバ3を用い、微調整をチャープパラメータαで行
うことによって、完全に数式4および数式12の等化条
件を得るという方法が最も現実的である。図7は本発明
の第2の実施形態であり、1は連続発振のレーザ光源、
2は光変調器、9は光ファイバ格子、10は光サーキュ
レータ、3は光ファイバ伝送路、5はフォトディテク
タ、11は再生されたミリ波信号を表わす。
The chirp parameter α takes a value of -1 <α <1 in an electroabsorption modulator which is generally widely used, and varies depending on a DC bias voltage. Therefore, in an actual system, the equalization optical fiber 3 that roughly satisfies DL + D′ d = 0 is used, and fine adjustment is performed using the chirp parameter α, so that the equalization conditions of Expressions 4 and 12 are completely obtained. Is the most realistic way. FIG. 7 shows a second embodiment of the present invention, in which 1 is a continuous wave laser light source,
2 is an optical modulator, 9 is an optical fiber grating, 10 is an optical circulator, 3 is an optical fiber transmission line, 5 is a photodetector, and 11 is a reproduced millimeter wave signal.

【0028】光ファイバ格子9はファイバの長手方向に
周期的な屈折率の変化をつけたものである。図5のよう
に異なる2つの周期の格子を両端に配置した長さdの光
ファイバ格子を用いる。ここで光DSB信号の両側帯波を
それぞれの格子で反射(180°の回折)させるように格
子の周期を次式のBragg条件を満たすように設定する。
The optical fiber grating 9 has a periodic refractive index change in the longitudinal direction of the fiber. As shown in FIG. 5, an optical fiber grating having a length d in which two gratings having different periods are arranged at both ends is used. Here, the period of the grating is set so as to satisfy the Bragg condition of the following equation so that both sidebands of the optical DSB signal are reflected by each grating (diffraction of 180 °).

【0029】[0029]

【数13】 (Equation 13)

【0030】さらに2つの格子の間隔を両側帯波の往復
の光路長差に設定する。
Further, the interval between the two gratings is set to the difference between the optical path lengths of the reciprocation of the band waves on both sides.

【0031】[0031]

【数14】 [Equation 14]

【0032】ここで図5のように、群遅延時間が大きい
下側帯波を反射する格子を入射端に配置し、群遅延時間
が小さい上側帯波に対する格子を他端に配置することに
よって、光ファイバ伝送路で生じる分散の影響を等化で
き、フォトディテクタの入射点において両側帯波が時間
的に揃う。本ファイバ格子も既に実用化されており、本
実施形態は現時点で実現が可能である。
Here, as shown in FIG. 5, a grating for reflecting the lower band wave having a large group delay time is arranged at the incident end, and a grating for the upper band wave having a small group delay time is arranged at the other end. The effect of dispersion generated in the fiber transmission line can be equalized, and both sidebands are temporally aligned at the incident point of the photodetector. The present fiber grating has already been put into practical use, and this embodiment can be realized at present.

【0033】チャープパラメータαのは光変調器のバイ
アス電圧や光源波長に対して可変であるため、これを微
調することによって完全な分散等化を実現できるという
利点を有する。
Since the chirp parameter α is variable with respect to the bias voltage of the optical modulator and the wavelength of the light source, there is an advantage that by finely adjusting the chirp parameter α, complete dispersion equalization can be realized.

【0034】以上、本発明を図面に記載された実施形態
に基づいて説明したが、本発明は上記した実施形態だけ
ではなく、特許請求の範囲に記載した構成を変更しない
限りどのようにでも実施することができる。
As described above, the present invention has been described based on the embodiments described in the drawings. However, the present invention is not limited to the above-described embodiments, but may be implemented in any manner unless the structure described in the claims is changed. can do.

【0035】[0035]

【発明の効果】以上要するに、本発明によれば、チャー
プパラメータαは通常広く用いられている電界吸収型変
調器では-1<α<1の値をとり、直流バイアス電圧によ
って変化する。したがって、実際のシステムでは大まか
にDL+D'd=0を満たすような等化用光ファイバを用い、微
調整をチャープパラメータαで行うことにより、完全な
等化条件を得ることによって完全な分散等化を実現でき
るという利点を有する等、多大な効果を奏する。
In summary, according to the present invention, according to the present invention, the chirp parameter α takes a value of -1 <α <1 in a widely used electroabsorption modulator, and varies depending on the DC bias voltage. Therefore, in an actual system, an equalizing optical fiber that roughly satisfies DL + D'd = 0 is used, and fine adjustment is performed with the chirp parameter α to obtain perfect equalization conditions, thereby achieving perfect dispersion. There are great effects such as an advantage that equalization can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ミリ波無線アクセスネットワークの
構成を示す概念図である。
FIG. 1 is a conceptual diagram showing a configuration of an optical millimeter wave wireless access network of the present invention.

【図2】(a)、(b)は何れも本発明の第1の実施形
態における副搬送波光伝送方式の構成図である。
FIGS. 2A and 2B are configuration diagrams of a subcarrier optical transmission system according to the first embodiment of the present invention.

【図3】レーザダイオードの波長と光ファイバの光学特
性を示す概念図である。
FIG. 3 is a conceptual diagram showing the wavelength of a laser diode and the optical characteristics of an optical fiber.

【図4】本発明の第2の実施形態における副搬送波光伝
送方式の構成図である。
FIG. 4 is a configuration diagram of a subcarrier optical transmission system according to a second embodiment of the present invention.

【図5】光ファイバ格子の原理を示す概念図である。FIG. 5 is a conceptual diagram showing the principle of an optical fiber grating.

【図6】光DSB信号の光ファイバで伝送する際の光ス
ペクトルを示す特性図である。
FIG. 6 is a characteristic diagram illustrating an optical spectrum when an optical DSB signal is transmitted through an optical fiber.

【図7】光信号強度と光ファイバ長との理論計算結果を
示す特性図である。
FIG. 7 is a characteristic diagram showing theoretical calculation results of optical signal strength and optical fiber length.

【図8】従来の光通信の構成を示す構成図である。FIG. 8 is a configuration diagram showing a configuration of a conventional optical communication.

【符号の説明】[Explanation of symbols]

1 連続発振のレーザ光源 2 光変調器 3 等化用光ファイバ 3′ 光フィルタ 4 光ファイバ伝送路 5 フォトディテクタ 6,8 ミリ波信号 7,11 再生されたミリ波信号 9 光ファイバ格子 10 サ−キュレータ REFERENCE SIGNS LIST 1 continuous wave laser light source 2 optical modulator 3 equalizing optical fiber 3 ′ optical filter 4 optical fiber transmission line 5 photodetector 6, 8 millimeter wave signal 7, 11 reproduced millimeter wave signal 9 optical fiber grating 10 circulator

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 送信すべき情報で変調された角周波数ω
m (周波数はfm)の副搬送波を光ファイバ伝送する方式
として、主搬送波である周波数ω0(周波数はf0)の光
波を該副搬送波信号で強度変調して得られる光両側帯波
(光DSB:Double sideband)信号を単一モード光ファイバ
で伝送し、光ファイバの入射端または出射端において、
該光ファイバ伝送において光ファイバの色分散よって発
生する光DSB信号における主搬送波に対する両側帯波の
群遅延時間差の和を、分散等化器を用いて相殺(以下、
等化と呼ぶ)した後、受信端で該光DSB信号を受光素子
を用いて自乗検波し、元の副搬送波信号を再生すること
を特徴とする副搬送波光伝送方式。
1. An angular frequency ω modulated with information to be transmitted.
m (frequency fm) as a method of optical fiber transmission subcarriers of a primary carrier frequency omega 0 (frequency f 0) light both sideband obtained by intensity modulating the light waves in the sub-carrier signal
(Optical DSB: Double sideband) signal is transmitted through a single mode optical fiber, and at the input end or output end of the optical fiber,
In the optical fiber transmission, the sum of the group delay time differences of both sidebands with respect to the main carrier in the optical DSB signal generated by the chromatic dispersion of the optical fiber is canceled using a dispersion equalizer (hereinafter, referred to as a dispersion equalizer).
A subcarrier optical transmission system characterized in that after receiving the signal, the receiving end detects the optical DSB signal by square detection using a light receiving element and reproduces the original subcarrier signal.
【請求項2】 分散等化の方法として、該光ファイバの
伝搬定数をβ(ω)とするとき、ファイバ長Lに対する光D
SB信号の両側帯波の主搬送波に対する群遅延時間差 【数1】 および 【数2】 の平均値、即ち 【数3】 を逆符号の分散特性を有する分散等化器中に光DSB信号
を通過させることによって等化することを特徴とする副
搬送波光伝送方式。ただし、cは真空中の光速度、l=c/
f0、Dは該光ファイバの分散、αは光DSB信号のチャープ
パラメータを表すものとする。
2. As a method of dispersion equalization, when the propagation constant of the optical fiber is β (ω), the light D with respect to the fiber length L
Group delay time difference of main band of both sidebands of SB signal And The average value of Wherein the optical DSB signal is passed through a dispersion equalizer having a dispersion characteristic of an opposite sign to equalize. Where c is the speed of light in vacuum, l = c /
f 0 and D represent the dispersion of the optical fiber, and α represents the chirp parameter of the optical DSB signal.
【請求項3】 分散等化器として、分散値がD'、長さが
dの分散等化用光ファイバを用い、 【数4】 数式4を満足するように設定することを特徴とする副搬
送波光伝送方式。
3. A variance equalizer having a variance value of D ′ and a length of
Using an optical fiber for dispersion equalization of d, A subcarrier optical transmission system, which is set so as to satisfy Equation 4.
【請求項4】 分散等化器として、実効的な屈折率がn
いわゆる光ファイバ格子を用い、その入射端で周波
数の側帯波を、他端で周波数の側帯波をそれぞれ選択的
に反射させるための 【数5】 数式5で示される周期の格子を入出力端にそれぞれ設
け、光DSB信号が該光ファイバ伝搬中に生じる両側帯
波間の遅延時間差に相当するように、光ファイバ格子の
長さを 【数6】 に設定することを特徴とする副搬送波光伝送方式。
4. The dispersion equalizer has an effective refractive index of n
e , for selectively reflecting the sideband of the frequency at the input end and the sideband of the frequency at the other end, using a so-called optical fiber grating. A grating having a period represented by Equation 5 is provided at each of the input and output ends, and the length of the optical fiber grating is set so that the optical DSB signal corresponds to the delay time difference between both sidebands generated during propagation of the optical fiber. Subcarrier optical transmission system, characterized in that:
JP10108621A 1998-04-03 1998-04-03 Subcarrier optical transmission system Expired - Lifetime JP2955658B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10108621A JP2955658B1 (en) 1998-04-03 1998-04-03 Subcarrier optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10108621A JP2955658B1 (en) 1998-04-03 1998-04-03 Subcarrier optical transmission system

Publications (2)

Publication Number Publication Date
JP2955658B1 true JP2955658B1 (en) 1999-10-04
JPH11289294A JPH11289294A (en) 1999-10-19

Family

ID=14489448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10108621A Expired - Lifetime JP2955658B1 (en) 1998-04-03 1998-04-03 Subcarrier optical transmission system

Country Status (1)

Country Link
JP (1) JP2955658B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760636B2 (en) * 2006-09-15 2011-08-31 Kddi株式会社 Optical transmission system and optical termination device
JP2015027020A (en) * 2013-07-29 2015-02-05 一般財団法人電力中央研究所 Radio-on-fiber communication device

Also Published As

Publication number Publication date
JPH11289294A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US5446574A (en) System and method for dispersion compensation in fibre optic high speed systems
JP3522044B2 (en) Optical transmission system
US7321736B2 (en) Optical receiving station, optical communication system, and dispersion controlling method
US7542683B2 (en) Chirp Managed Laser (CML) transmitter
EP0466182A2 (en) Optical communication apparatus using intensity modulation
Meena et al. Design and analysis of novel dispersion compensating model with chirp fiber bragg grating for long-haul transmission system
JPH07154327A (en) Light communication method and light communication system
US5949926A (en) Minimum phase dispersion compensator
JPH09236781A (en) Optical transmitter and optical transmission system using it
Kumar et al. Performance investigation of inter-satellite optical wireless communication (IsOWC) system employing multiplexing techniques
Mustafa et al. A cascaded FBG scheme based OQPSK/DPSK modulation for chromatic dispersion compensation
EP1617576A1 (en) Bandwidth limited frequency shift keying modulation format
JP2004129261A (en) Duo binary optical transmission apparatus
Rademacher et al. Influence of discrete mode coupling on the nonlinear interaction in mode-multiplexed systems
EP1411656A2 (en) Optical duobinary carrier-suppressed RZ transmission system
JP2955658B1 (en) Subcarrier optical transmission system
Jihad et al. Enhancement on the performance of radio-over-fiber ROF technology
US20020167703A1 (en) Tandem filters for reducing intersymbol interference in optical communications systems
Bajpai et al. Performance investigation of MLR optical WDM network based on ITU-T conforming fibers in the presence of SRS, XPM and FWM
Ali et al. Improving the performance of cost-effective millimeter wave-based front-haul RoF system for up to 140 km link length using predistortion device and FBG technique
KR100480283B1 (en) Duobinary optical transmitter
JPH09275375A (en) Optical communication equipment
Sesha Sai Srikar et al. Analysis of dispersion compensation methods in WDM systems
Gupta et al. Design and Performance Analysis of Chromatic Dispersion Compensation for 16× 10 Gbps DWDM Optical Transmission Systems
Ismail et al. ROF Communication System Performance Enhancement Using Both Modified Differential Phase Shift Keying (DPSK) and Sub-Carrier Multiplexing Technique.

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term