JP2916509B2 - Method and apparatus for measuring outer diameter of object to be measured - Google Patents

Method and apparatus for measuring outer diameter of object to be measured

Info

Publication number
JP2916509B2
JP2916509B2 JP2142626A JP14262690A JP2916509B2 JP 2916509 B2 JP2916509 B2 JP 2916509B2 JP 2142626 A JP2142626 A JP 2142626A JP 14262690 A JP14262690 A JP 14262690A JP 2916509 B2 JP2916509 B2 JP 2916509B2
Authority
JP
Japan
Prior art keywords
measured
outer diameter
nuclear fuel
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2142626A
Other languages
Japanese (ja)
Other versions
JPH0434304A (en
Inventor
周弥 橋本
好明 車田
弘一 三瓶
康修 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP2142626A priority Critical patent/JP2916509B2/en
Priority to GB9110423A priority patent/GB2245060B/en
Priority to FR9106162A priority patent/FR2662791B1/en
Priority to DE19914117985 priority patent/DE4117985C2/en
Publication of JPH0434304A publication Critical patent/JPH0434304A/en
Application granted granted Critical
Publication of JP2916509B2 publication Critical patent/JP2916509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、測定精度を向上させることができる被測
定体の外径測定方法及び装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the outer diameter of an object to be measured, which can improve measurement accuracy.

「従来の技術」 例えば、軽水冷却型原子炉用の核燃料ペレットは低濃
縮度の二酸化ウラン粉末を金型内で圧縮成形して円柱形
のグリーンペレット(圧粉体ともいう)となし、このグ
リーンペレットを高温で焼結して緻密な焼結ペレットを
作り、更にこの焼結ペレットの外径を研磨して寸法精度
を高め、核燃料ペレットとして燃料被覆管内に充填して
使用される。この核燃料ペレットは外径が8〜13mm、長
さが5mmから15mmの円柱体である。
"Prior art" For example, nuclear fuel pellets for light water-cooled reactors are formed by compressing low-enriched uranium dioxide powder in a mold into cylindrical green pellets (also called green compacts). The pellets are sintered at a high temperature to produce dense sintered pellets, and the outer diameter of the sintered pellets is further polished to improve dimensional accuracy, and used as nuclear fuel pellets in a fuel cladding tube. The nuclear fuel pellet is a cylindrical body having an outer diameter of 8 to 13 mm and a length of 5 to 15 mm.

これらから核燃料ペレットの外径が規格よりも大きい
場合は、核燃料ペレットを被覆管に挿入することが困難
になる等の不都合が生ずる。さらに、核燃料ペレットの
外径が大小様々にばらついていた場合は、外径の大きい
核燃料ペレットとそうでない核燃料ペレットとでその出
力分布に差異が生じ、原子炉性能に悪影響を及ぼした
り、あるいは原子炉出力がその最高レベルに達しなかっ
たりする。
From these, when the outer diameter of the nuclear fuel pellet is larger than the standard, problems such as difficulty in inserting the nuclear fuel pellet into the cladding tube occur. Furthermore, when the outer diameter of the nuclear fuel pellets varies widely, the power distribution of the nuclear fuel pellets having a larger outer diameter differs from that of the nuclear fuel pellets having a different outer diameter, which adversely affects the reactor performance, or The output does not reach its highest level.

このため、核燃料ペレットの使用に先立ち、核燃料ペ
レットの外径の品質保証を行っているが、核燃料ペレッ
トは通常外径を整えるために研磨されて外周面に僅かな
凹凸を有しており、同一ペレット内でも測定部位によっ
て外径測定値が異なってくる。
Therefore, prior to the use of nuclear fuel pellets, quality assurance of the outer diameter of the nuclear fuel pellets is performed, but the nuclear fuel pellets are usually polished to adjust the outer diameter and have slight irregularities on the outer peripheral surface, Even in the pellet, the measured outer diameter varies depending on the measurement site.

従来、核燃料ペレットの外径を計測する手段として
は、第3図に示すように、クロックパルス5に同期した
モータドライバ6を介して回転するモータ7により高速
回転している8面ポリゴンミラー8に、発光部1のレー
ザ電源2のONによりHe−Neレーザ管あるいは半導体レー
ザ発振器3から発振されたレーザビーム4を入射させ、
その反射ビームを回転する8面ポリゴンミラー8上に焦
点を有するコリメータレンズ9によりレンズの光軸と平
行なレーザービーム1aとするとともに、前記ポリゴンミ
ラー8の回転により同一平面内において平行移動させ、
この移動するレーザービーム1aを受光部11の集光レンズ
12により受光素子13に集め、この受光素子13において前
記レーザービーム1aの時間的変化を電気信号に変換して
出力し、この電気信号をアンプ14により増幅して出力電
力Eを得る構造となっている。
Conventionally, as means for measuring the outer diameter of nuclear fuel pellets, as shown in FIG. 3, an eight-sided polygon mirror 8 rotating at a high speed by a motor 7 rotating via a motor driver 6 synchronized with a clock pulse 5 is used. A laser beam 4 oscillated from a He-Ne laser tube or a semiconductor laser oscillator 3 by the turning on of a laser power supply 2 of the light emitting section 1,
The reflected beam is converted into a laser beam 1a parallel to the optical axis of the lens by a collimator lens 9 having a focal point on a rotating eight-sided polygon mirror 8, and is translated in the same plane by the rotation of the polygon mirror 8,
This moving laser beam 1a is condensed by the focusing lens of the light receiving unit 11.
The light is collected by the light-receiving element 13 by the light-receiving element 13, and the temporal change of the laser beam 1a is converted into an electric signal and output in the light-receiving element 13, and the electric signal is amplified by the amplifier 14 to obtain the output power E. I have.

そして、レーザービーム1aが被測定体(この実施例で
は核燃料ペレット)10を高速走査すると、レーザービー
ム1aが被測定体10によって遮られている間(時間t)
は、受光素子13へのレーザービーム1aの入射がなく、出
力電圧Eが生じないから、受光部11からの出力電圧E
は、第3図に示すように、高さEのパルス形状となされ
る。
When the laser beam 1a scans the object to be measured (nuclear fuel pellet) 10 at a high speed, the laser beam 1a is blocked by the object to be measured 10 (time t).
Since the output voltage E is not generated because the laser beam 1a is not incident on the light receiving element 13, the output voltage E
Is in the form of a pulse of height E, as shown in FIG.

したがって、前記時間tが被測定体10の外径に対応す
ることとなる。
Therefore, the time t corresponds to the outer diameter of the measured object 10.

そして、この時間tと実直径との相関関係を、レーザ
ービーム1aの走査速度等をパラメーターとして設定して
おくことにより、時間tの測定結果から被測定体10の外
径が測定される。
By setting the correlation between the time t and the actual diameter as a parameter such as the scanning speed of the laser beam 1a, the outer diameter of the measured object 10 is measured from the measurement result of the time t.

なお、被測定体即ち核燃料ペレット10は、第4図ない
し第6図に示すように、核燃料ペレット10の外径測定部
において発光部1より発光されたレーザビーム1aを横切
る一対の被測定体支持ベルトコンベア15のVベルト15a
に挟まれた状態でレーザービーム1a内を進行し、レーザ
ビーム1aは進行する核燃料ペレット10を高速で繰り返し
走査(280回/秒)し、その平均値を測定値として演算
処理することにより、測定精度を上げている。
The object to be measured, that is, the nuclear fuel pellet 10 is, as shown in FIGS. 4 to 6, a pair of objects to be measured that traverse the laser beam 1a emitted from the light emitting section 1 in the outer diameter measuring portion of the nuclear fuel pellet 10. V-belt 15a of belt conveyor 15
The laser beam 1a travels inside the laser beam 1a while being sandwiched between the laser beams, and the laser beam 1a repeatedly scans the advancing nuclear fuel pellet 10 at a high speed (280 times / second), and calculates the average value as a measurement value, thereby performing measurement. Increased accuracy.

従って、核燃料ペレット10の進行速度を遅くし、測定
インターバルを長くすることにより、測定精度が向上す
るようになっている。
Therefore, the measurement accuracy is improved by slowing the traveling speed of the nuclear fuel pellet 10 and lengthening the measurement interval.

なお、Vベルト15aは核燃料ペレット10の直径より若
干小のベルト幅をもつウレタン製のもので、支持部材1
6,16により回転自在に支持されかつ互いに近接する方向
にばね17により付勢され駆動装置(図示せず)により後
記する搬送ベルトコンベア19,20と同期して駆動される
二対の補助ローラ18,18及びテンションローラ18a,18aを
介して核燃料ペレット10に適度の力で押し付けられるよ
うになっている。
The V-belt 15a is made of urethane having a belt width slightly smaller than the diameter of the nuclear fuel pellet 10, and the support member 1
A pair of auxiliary rollers 18 rotatably supported by the rollers 6 and 16 and urged by springs 17 in a direction approaching each other and driven by a driving device (not shown) in synchronization with conveyor belt conveyors 19 and 20 described later. , 18 and the tension rollers 18a, 18a so as to be pressed against the nuclear fuel pellet 10 with an appropriate force.

搬送ベルトコンベア19は一定間隔を隔てて配置された
ローラ19a,19aにウレタン製の帯状無端ベルト19bを巻回
してなるものである。この搬送ベルトコンベア19はロー
ラ19aが駆動装置(図示せず)により回転駆動させられ
ることにより無端ベルト19bの上部が第5図に示す矢印
A方向に移動するようになされている。搬送ベルトコン
ベア19の両側部には無端ベルト19b上のペレットを落下
させないためのガイド19cが設けられている。
The conveyor belt conveyor 19 is formed by winding a belt-like endless belt 19b made of urethane around rollers 19a, 19a arranged at a fixed interval. The upper portion of the endless belt 19b of the conveyor belt conveyor 19 is moved in the direction of arrow A shown in FIG. 5 by rotating a roller 19a by a driving device (not shown). Guides 19c for preventing the pellets on the endless belt 19b from dropping are provided on both sides of the conveyor belt conveyor 19.

搬送ベルトコンベア20は搬送ベルトコンベア19と同一
構成のもので、20aはローラ、20bは無端ベルト、20cは
ガイドである。
The conveyor belt conveyor 20 has the same configuration as the conveyor belt conveyor 19, 20a is a roller, 20b is an endless belt, and 20c is a guide.

また、搬送ベルトコンベア20の一方側に設けられたシ
リンダ機構21を前記受光部13に接続された制御機構(図
示せず)を介して作動させ、外径が所定寸法外の不良核
燃料ペレット10を搬送ベルトコンベア20の側方へ排出さ
せるようになっている。
Further, a cylinder mechanism 21 provided on one side of the conveyor belt conveyor 20 is operated via a control mechanism (not shown) connected to the light receiving unit 13 to remove the defective nuclear fuel pellet 10 having an outer diameter outside a predetermined dimension. The sheet is discharged to the side of the conveyor belt conveyor 20.

「発明が解決しようとする課題」 ところで、一般に核燃料ペレットの外径管理は、核燃
料被覆管とのギャップコントロールという観点から、第
7図に10cで示すように、燃料ペレットの凹凸部の凸部
における外径管理とされている。
[Problems to be Solved by the Invention] Generally, from the viewpoint of controlling the gap between the nuclear fuel pellet and the nuclear fuel cladding tube, as shown by 10c in FIG. Outer diameter management.

しかしながら、前述の被測定体の外径測定方法におい
ては、レーザービーム1aが遮断されている被測定体10の
外周面の起伏(凹凸)が、ほぼそのまま測定されること
となり、この起伏の幅が、外径測定の誤差に大きく影響
する。
However, in the method for measuring the outer diameter of the object to be measured, the undulation (irregularity) of the outer peripheral surface of the object to be measured 10 where the laser beam 1a is blocked is measured almost as it is, and the width of the undulation is Greatly affects the error of the outer diameter measurement.

したがって、測定精度を上げるためには、被測定体の
走査回数を多くしなければならないという問題があっ
た。
Therefore, there is a problem that the number of scans of the object to be measured must be increased in order to increase the measurement accuracy.

また、測定精度を上げるためには被測定体の進行速度
を遅くし、測定インターバルを長くしなければならない
という問題があった。
Further, in order to increase the measurement accuracy, there is a problem that the traveling speed of the object to be measured must be slowed down and the measurement interval must be lengthened.

本発明は、従来の被測定体の外径測定方法および装置
がもつ以上のような問題点を解決した被測定体の外径測
定方法および装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for measuring the outside diameter of a measured object which solve the above-mentioned problems of the conventional method and apparatus for measuring the outside diameter of the measured object.

「課題を解決するための手段」 本発明は、前記目的を達成させるために次のような構
成としている。即ち第1の発明における被測定体の外径
測定方法は、外周面が略筒形状を成す被測定体を、この
被測定体の軸線方向と進行方向とを一致させて直線状に
走行させ、前記被測定体の外周面に形成されている山部
の稜線または谷部の谷線に対して斜め方向から平行光線
を照射して、受光した信号に基づき前記被測定体の外径
平均値を演算して該被測定体の外径を測定することを特
徴とする。
"Means for Solving the Problems" The present invention has the following configuration to achieve the above object. That is, in the method for measuring the outer diameter of the measured object in the first invention, the measured object whose outer peripheral surface has a substantially cylindrical shape is caused to travel linearly with the axial direction of the measured object coincident with the traveling direction. By irradiating a parallel ray from a diagonal direction to a ridge line or a valley line of a crest formed on the outer peripheral surface of the measured object, the outer diameter average value of the measured object is determined based on a received signal. It is characterized in that the outer diameter of the object is measured by calculation.

また、第2の発明における被測定体の外径測定装置
は、外周面が略筒形状を成す被測定体をその軸線方向に
搬送する搬送手段と、発光部より発光した平行光線を前
記被測定体に照射して受光部で受光することで前記被測
定体の外径を測定する光学式測定器とを備え、前記被測
定体の外周面に形成される山部の稜線または谷部の谷線
に対して斜め方向から前記平行光線を照射するようにし
たことを特徴とする。
Further, the apparatus for measuring the outer diameter of the object to be measured according to the second aspect of the present invention includes a conveying means for conveying the object to be measured whose outer peripheral surface has a substantially cylindrical shape in the axial direction thereof, and a parallel light beam emitted from a light emitting unit. An optical measuring device for measuring the outer diameter of the object to be measured by irradiating the body with light and receiving the light by a light receiving unit, wherein a ridge line or a valley of a mountain formed on the outer peripheral surface of the object to be measured. The method is characterized in that the parallel rays are emitted from a direction oblique to the line.

「作用」 前記構成によれば、発光部より発光した光線を平行光
線とした後集光して受光部により受光し、前記平行光線
内に該平行光線方向と傾斜する方向に直線状に被測定体
を走行させ、被測定体の外周面に形成されている山部の
稜線または谷部の谷線に対して斜め方向から平行光線を
照射すると、被測定体の外周面の起伏の山部の稜線と中
腹の部分とを走査して遮断することになるために起伏幅
が従来の山部と谷部を走査して得た起伏幅よりも小さく
なり、こうして得られた受光部の信号より被測定体が光
線により走査されている時間を検出し、該時間より前記
被測定体の外径を演算して測定する。
[Operation] According to the above configuration, the light emitted from the light emitting unit is converted into a parallel light, then collected, received by the light receiving unit, and measured in a straight line in the direction parallel to the parallel light in the parallel light. Run the body, and irradiate parallel rays from an oblique direction to the ridgeline or valley line of the ridge formed on the outer peripheral surface of the measured object, the uneven ridge of the outer peripheral surface of the measured object Since the ridge line and the middle part are scanned and cut off, the undulation width becomes smaller than the undulation width obtained by scanning the conventional peaks and valleys. The time during which the measurement object is scanned by the light beam is detected, and the outer diameter of the measurement object is calculated and measured from the time.

「実施例」 以下、本発明の一実施例を第1図及び第2図に基づい
て説明する。なお、本実施例において従来例と同一部分
には同一符号を付してその説明を省略する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. 1 and FIG. In this embodiment, the same parts as those of the conventional example are denoted by the same reference numerals, and the description thereof will be omitted.

本発明の方法においては、第1図に示すように発光部
1と受光部11間のレーザビーム(平行光線)1aの光線方
向に対し傾斜した方向に向けられて搬送ベルトコンベア
19,20が、これら搬送ベルトコンベア19と搬送ベルトコ
ンベア20との間に所定の間隔があけられた状態でかつ同
一軸線上に位置させられて設けられている。これ以外に
ついては従来例と同様に構成された装置を使用する。
In the method of the present invention, as shown in FIG. 1, a conveyor belt conveyor is directed in a direction inclined with respect to the beam direction of a laser beam (parallel ray) 1a between a light emitting section 1 and a light receiving section 11.
The conveyor belts 19 and 20 are provided at predetermined intervals between the conveyor belt conveyors 19 and 20 and are positioned on the same axis. Otherwise, an apparatus configured similarly to the conventional example is used.

次に本発明の方法について説明する。 Next, the method of the present invention will be described.

まず、光学測定器の発光部1より発光させコリメータ
レンズ9,集光レンズ12を介して受光素子13に受光させ
る。この状態で搬送ベルトコンベア19,20,被測定体支持
ベルトコンベア15,15を作動させ、搬送ベルトコンベア1
9上に被測定体(核燃料ペレット)10を供給する。
First, the light is emitted from the light emitting unit 1 of the optical measuring device and is received by the light receiving element 13 via the collimator lens 9 and the condenser lens 12. In this state, the conveyor belt conveyors 19 and 20 and the measured object support belt conveyors 15 and 15 are operated, and the conveyor belt conveyors 1 and 20 are operated.
An object to be measured (nuclear fuel pellet) 10 is supplied on 9.

すると、この核燃料ペレット10は搬送ベルトコンベア
20方向へ進行し、Vベルト15a,15aにより挾持されつつ
発光部1より発光され平行光線とされ受光部11に受光さ
れている前記平行光線状態のレーザビーム1aの光線方向
に対し傾斜してこのレーザビーム1aを遮る。
Then, the nuclear fuel pellets 10 are transferred to the conveyor belt conveyor.
The laser beam 1a travels in the 20 direction, is emitted from the light emitting section 1 while being held by the V belts 15a, 15a, is converted into parallel rays, and is inclined with respect to the ray direction of the laser beam 1a in the parallel ray state received by the light receiving section 11. Intercept the laser beam 1a.

すると、発光部1と受光部11とからなる光学測定器
は、核燃料ペレット10によって遮られたレーザ光の陰影
を検知し、これに基づいて核燃料ペレット10の外径を測
定し、核燃料ペレット10の通過に従って連続的に核燃料
ペレット10の外径を測定し、測定回数により平均化処理
して核燃料ペレット10の外径を測定する。測定の終わっ
た核燃料ペレット10は搬送ベルトコンベア20により所定
箇所へ搬出される。なお、核燃料ペレット10の外径不良
品は従来例同様搬送ベルトコンベア20の側方へシリンダ
機構21により除外される。
Then, the optical measuring device composed of the light emitting unit 1 and the light receiving unit 11 detects the shadow of the laser beam blocked by the nuclear fuel pellet 10, measures the outer diameter of the nuclear fuel pellet 10 based on this, and The outer diameter of the nuclear fuel pellet 10 is continuously measured as it passes, and the outer diameter of the nuclear fuel pellet 10 is measured by averaging the number of measurements. The nuclear fuel pellets 10 for which measurement has been completed are carried out to a predetermined location by the conveyor belt conveyor 20. The defective outer diameter of the nuclear fuel pellets 10 is removed by the cylinder mechanism 21 to the side of the conveyor belt conveyor 20 as in the conventional example.

ここで、前記光学測定器は、従来例のように、レーザ
ビーム1aを核燃料ペレット10がレーザビーム1aの光線方
向に対し直交方向に遮断すると、第7図に示すように核
燃料ペレット10の外形の起伏幅(山と谷との幅)10aを
測定するが、本実施例においては、レーザビーム1aを核
燃料ペレット10がレーザビーム1aの光線方向に対し傾斜
する方向に遮断する。このため、光学測定器は第2図に
示すように核燃料ペレット10の外形の起伏幅(凹凸幅)
10bを測定する。この起伏幅(凹凸幅)10bは、レーザビ
ーム1aが核燃料ペレット10の実際の外形の谷部を走査せ
ず、核燃料ペレット10の外形の山部の隣接する中腹部の
交差点を走査するため、前記起伏部10aより著しく小と
なる。このため、従来例と同じ測定精度を確保するため
に要するレーザビーム走査回数を減ずることができる。
即ち、測定インターバルを短くすることができ、従来以
上の高速測定が可能となる。
Here, as in the conventional example, when the nuclear fuel pellet 10 cuts off the laser beam 1a in a direction orthogonal to the beam direction of the laser beam 1a as in the conventional example, the outer shape of the nuclear fuel pellet 10 as shown in FIG. The undulation width (width between peaks and valleys) 10a is measured. In this embodiment, the laser beam 1a is cut off in a direction in which the nuclear fuel pellet 10 is inclined with respect to the beam direction of the laser beam 1a. Therefore, as shown in FIG. 2, the optical measuring instrument uses the undulation width (unevenness width) of the outer shape of the nuclear fuel pellet 10.
Measure 10b. This undulation width (bump width) 10b is used because the laser beam 1a does not scan the valley of the actual outer shape of the nuclear fuel pellet 10 but scans the intersection of the adjacent mid-abdomen of the peak of the outer shape of the nuclear fuel pellet 10. It is significantly smaller than the undulating portion 10a. For this reason, the number of laser beam scans required to secure the same measurement accuracy as in the conventional example can be reduced.
That is, the measurement interval can be shortened, and higher-speed measurement than before can be performed.

また、従来例と同じ測定インターバルにて測定を行え
ば、従来例より測定誤差が確実に小となり、即ち測定精
度が従来例より確実に向上する。
Further, if the measurement is performed at the same measurement interval as in the conventional example, the measurement error is surely smaller than in the conventional example, that is, the measurement accuracy is more reliably improved than in the conventional example.

下記外径測定表は、前記従来例による核燃料ペレット
10の外径測定結果と本実施例による核燃料ペレット10の
測定結果とを示す。この外径測定表中のデータは10回の
繰り返し測定結果を示し、各測定値は測定インターバル
が0.06秒間の平均を示し、レーザ走査数は280回/1秒で
ある。
The following outer diameter measurement table shows the nuclear fuel pellets according to the conventional example.
10 shows the measurement results of the outer diameter of 10 and the measurement results of the nuclear fuel pellet 10 according to the present embodiment. The data in this outer diameter measurement table show the results of 10 repeated measurements, each measured value shows the average of the measurement interval of 0.06 seconds, and the number of laser scans is 280 times / 1 second.

上記核燃料ペレット外径測定表によれば、従来例の測
定による測定誤差と比較して本実施例の測定による測定
誤差が明確に減少していることが分かる。
According to the nuclear fuel pellet outer diameter measurement table, it can be seen that the measurement error by the measurement of the present embodiment is clearly reduced as compared with the measurement error by the measurement of the conventional example.

なお、前記実施例においては、被測定体を核燃料ペレ
ットとしたが、これに限られることなく、例えば円柱,
角柱,円筒,角筒等、外周面が筒形状をなす各種の物体
を被測定体とする。
In the above embodiment, the object to be measured is a nuclear fuel pellet. However, the present invention is not limited to this.
Various objects having a cylindrical outer peripheral surface, such as a prism, a cylinder, and a square tube, are taken as the measured objects.

「発明の効果」 本発明による被測定体の外径測定方法及び外径測定装
置は、被測定体の外周面に形成される山部の稜線または
谷部の谷線に対して斜め方向から平行光線を照射して搬
送することで被測定体の外径を測定するようにしたか
ら、発光部より発し平行光線とされた光線の方向に対し
傾斜する方向に被測定体が進行して前記平行光線を被測
定体が遮断するため、光学測定器が走査する被測定体の
外形の起伏幅(山と谷との幅)を、前記平行光線を被測
定体が直交して遮断する従来の場合に比較して著しく小
さくすることができ、従来に比し光学測定器の光線によ
る走査回数を減ずることができ、即ち、測定インターバ
ルを短くすることができ、従来以上の高速測定が可能と
なる。
[Effects of the Invention] The method and apparatus for measuring the outer diameter of an object to be measured according to the present invention are parallel to an oblique direction from a ridgeline or a valley of a valley formed on the outer peripheral surface of the object to be measured. Since the outer diameter of the object to be measured is measured by irradiating and conveying the light beam, the object to be measured advances in the direction inclined from the direction of the parallel light beam emitted from the light emitting unit and the parallel object is measured. In the conventional case in which the measurement object blocks the light beam, the contour of the contour of the measurement object that is scanned by the optical measuring instrument (the width of the peak and the valley) is parallel to the parallel light beam. The number of scans by the light beam of the optical measuring device can be reduced as compared with the conventional method, that is, the measurement interval can be shortened, and higher-speed measurement than before can be performed.

また、従来と同じ測定インターバルにて測定を行え
ば、従来より測定誤差が確実に小となり、測定精度を従
来より一段と向上させることができる。
In addition, if the measurement is performed at the same measurement interval as in the related art, the measurement error can be surely reduced as compared with the related art, and the measurement accuracy can be further improved compared to the related art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法を実施するための装置の一例を示
す概略平面図、第2図は第1図における外径測定状態の
被測定体のII矢視図、第3図は光学測定器の外径測定原
理を説明するための図、第4図ないし第7図は従来の被
測定体の外径測定装置の一例を示すもので、第4図は平
面図、第5図は搬送ベルトコンベアによる被測定体の搬
送状態を示す概略側面図、第6図は要部の断面図、第7
図は第4図における外径測定状態の被測定体のVII矢視
図である。 1……発光部、1a……レーザビーム(平行光線)、9…
…コリメータレンズ、10……被測定体(核燃料ペレッ
ト)、10a・10b……起伏幅(山と谷との幅)、11……受
光部、12……集光レンズ、13……受光素子、15……被測
定体支持ベルトコンベア、19,20……搬送ベルトコンベ
ア。
FIG. 1 is a schematic plan view showing an example of an apparatus for carrying out the method of the present invention, FIG. 2 is a view of an object to be measured in an outer diameter measurement state in FIG. 4 to 7 show an example of a conventional apparatus for measuring the outer diameter of a device to be measured. FIG. 4 is a plan view, and FIG. FIG. 6 is a schematic side view showing a state of transporting an object to be measured by a belt conveyor, FIG.
FIG. 7 is a view of the measured object in an outer diameter measuring state in FIG. 1 ... Light-emitting unit, 1a ... Laser beam (parallel ray), 9 ...
… Collimator lens, 10… Measurement object (nuclear fuel pellet), 10a ・ 10b …… Undulation width (width between peak and valley), 11… Light receiving part, 12… Condenser lens, 13… Light receiving element, 15… Measurement object support belt conveyor, 19,20 …… Conveyer belt conveyor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨永 康修 茨城県那珂郡東海村大字舟石川622番地 1 三菱原子燃料株式会社東海製作所内 (56)参考文献 特開 昭63−191007(JP,A) 特開 昭56−150302(JP,A) 実開 昭62−57105(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 102 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuharu Tominaga, 622, Funaiishikawa, Tokai-mura, Naka-gun, Ibaraki 1 In the Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. (56) References JP-A-63-191007 (JP, A) JP-A-56-150302 (JP, A) JP-A-62-57105 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00-11/30 102

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外周面が略筒形状を成す被測定体を、この
被測定体の軸線方向と進行方向とを一致させて直線状に
走行させ、前記被測定体の外周面に形成されている山部
の稜線または谷部の谷線に対して斜め方向から平行光線
を照射して、受光した信号に基づき前記被測定体の外径
平均値を演算して該被測定体の外径を測定することを特
徴とする被測定体の外径測定方法。
1. An object to be measured having an outer peripheral surface having a substantially cylindrical shape is linearly run with the axial direction of the object to be measured and the traveling direction coincident with each other, and is formed on the outer peripheral surface of the object to be measured. The ridge line of the crest or the valley line of the valley is irradiated with parallel rays from an oblique direction, and the average value of the outer diameter of the measured object is calculated based on the received signal to calculate the outer diameter of the measured object. A method for measuring the outer diameter of an object to be measured, characterized by measuring.
【請求項2】外周面が略筒形状を成す被測定体をその軸
線方向に搬送する搬送手段と、発光部より発光した平行
光線を前記被測定体に照射して受光部で受光することで
前記被測定体の外径を測定する光学式測定器とを備え、 前記被測定体の外周面に形成される山部の稜線または谷
部の谷線に対して斜め方向から前記平行光線を照射する
ようにしたことを特徴とする被測定体の外径測定装置。
2. A conveying means for conveying an object to be measured whose outer peripheral surface has a substantially cylindrical shape in an axial direction thereof, and a parallel light emitted from a light emitting section is irradiated on the object to be measured and received by a light receiving section. An optical measuring device for measuring an outer diameter of the object to be measured, and irradiating the parallel light beam from an oblique direction to a ridge line or a valley line of a mountain formed on the outer peripheral surface of the object to be measured. An apparatus for measuring the outer diameter of an object to be measured, characterized in that:
JP2142626A 1990-05-31 1990-05-31 Method and apparatus for measuring outer diameter of object to be measured Expired - Lifetime JP2916509B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2142626A JP2916509B2 (en) 1990-05-31 1990-05-31 Method and apparatus for measuring outer diameter of object to be measured
GB9110423A GB2245060B (en) 1990-05-31 1991-05-14 Method for measuring diameters of cylindrical objects and apparatus therefor
FR9106162A FR2662791B1 (en) 1990-05-31 1991-05-22 METHOD AND APPARATUS FOR MEASURING THE DIAMETERS OF CYLINDRICAL OBJECTS.
DE19914117985 DE4117985C2 (en) 1990-05-31 1991-05-31 Method for measuring the diameter of a cylindrical object and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2142626A JP2916509B2 (en) 1990-05-31 1990-05-31 Method and apparatus for measuring outer diameter of object to be measured

Publications (2)

Publication Number Publication Date
JPH0434304A JPH0434304A (en) 1992-02-05
JP2916509B2 true JP2916509B2 (en) 1999-07-05

Family

ID=15319718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2142626A Expired - Lifetime JP2916509B2 (en) 1990-05-31 1990-05-31 Method and apparatus for measuring outer diameter of object to be measured

Country Status (4)

Country Link
JP (1) JP2916509B2 (en)
DE (1) DE4117985C2 (en)
FR (1) FR2662791B1 (en)
GB (1) GB2245060B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523273A1 (en) * 1995-06-27 1997-01-09 Hauni Maschinenbau Ag Method and arrangement for measuring the diameter of a rod-shaped article of the tobacco processing industry
FR2749932B1 (en) * 1996-06-12 1998-08-28 Cogifer DEVICE FOR MEASURING A DIMENSION OF THE CROSS SECTION OF A WIRE, ESPECIALLY OF A CONTACT WIRE OF A CATENARY
FR2868538B1 (en) * 2004-04-06 2006-05-26 Commissariat Energie Atomique METHOD AND SYSTEM FOR DETERMINING THE VOLUMIC MASS AND DIMENSIONAL CHARACTERISTICS OF AN OBJECT, AND APPLICATION TO THE CONTROL OF NUCLEAR FUEL PELLETS DURING MANUFACTURING
JP4677603B2 (en) * 2005-08-26 2011-04-27 株式会社ユタカ Screw shaft diameter measuring device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007992A (en) * 1975-06-02 1977-02-15 Techmet Company Light beam shape control in optical measuring apparatus
US4037103A (en) * 1975-08-07 1977-07-19 Exxon Research And Engineering Company Diameter measuring system for cylindrical objects
EP0039378A1 (en) * 1980-05-07 1981-11-11 Dok Young Cha Device for vaporizing diesel oil used as a fuel in a spark ignited internal combustion engine
US4448680A (en) * 1980-07-22 1984-05-15 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for classifying fuel pellets for nuclear reactor
DE3437412A1 (en) * 1984-10-12 1986-04-17 Heyligenstaedt & Co, Werkzeugmaschinenfabrik Gmbh, 6300 Giessen CONTACTLESS, OPTICAL LENGTH MEASURING DEVICE
DE3688519D1 (en) * 1985-06-26 1993-07-08 Hegenscheidt Gmbh Wilhelm METHOD AND MEASURING SYSTEM FOR THE DIAMETER DETERMINATION OF THE WHEELS OF WHEEL SETS.
US4928392A (en) * 1988-02-16 1990-05-29 General Electric Company Diameter gauge
JP2931867B2 (en) * 1988-11-16 1999-08-09 三菱原子燃料株式会社 Pellet handling device and pellet appearance inspection device

Also Published As

Publication number Publication date
GB9110423D0 (en) 1991-07-17
JPH0434304A (en) 1992-02-05
GB2245060B (en) 1994-02-09
DE4117985C2 (en) 1994-10-27
FR2662791A1 (en) 1991-12-06
FR2662791B1 (en) 1995-04-14
GB2245060A (en) 1991-12-18
DE4117985A1 (en) 1991-12-19

Similar Documents

Publication Publication Date Title
US4547674A (en) Optical triangulation gear inspection
US4501950A (en) Adaptive welding system
US4086496A (en) Method for optically measuring a cant to locate the narrowest flat side and its boundaries and manufacturing lumber therefrom
US6415208B1 (en) Apparatus and method for surveying rails, in particular running rails for cranes, shelf handling units, running wheel block
IL138414A0 (en) Apparatus and method for optically measuring an object surface contour
CA2115859A1 (en) Method and apparatus for optimizing sub-pixel resolution in a triangulation based distance measuring device
EP1288613B1 (en) Transparent container sidewall thickness measurement with a line-shaped light beam
JP2916509B2 (en) Method and apparatus for measuring outer diameter of object to be measured
CN1219195C (en) On-line laser energy and light power density space-time distribution measuring system
US4227812A (en) Method of determining a dimension of an article
JP4156457B2 (en) Measuring method of outer diameter of object to be measured, outer diameter measuring device and outer peripheral surface grinding device
JPH03175001A (en) Device for removing strain of band saw
CN217786117U (en) Pipe bending degree detection device
JPS5616806A (en) Surface roughness measuring unit
CN110646438A (en) Wafer surface particle online detection method and device and wafer production line
ES2014888A6 (en) Apparatus and method for inspecting glass sheets.
JP3408389B2 (en) High power laser transmission method and apparatus
KR100529303B1 (en) Optical scanning device of printing machine
JPH05180632A (en) Method and apparatus for measuring threedimensional shape
JPS56107108A (en) Measuring device for profile
JP2577008B2 (en) Refraction angle measuring device
JP3408393B2 (en) High power laser transmission method
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPH06297175A (en) Gap sensor for laser beam machine
JPS62127614A (en) Surface displacement measuring method by laser light