JP2915183B2 - Manufacturing method of powder molded product - Google Patents

Manufacturing method of powder molded product

Info

Publication number
JP2915183B2
JP2915183B2 JP3237003A JP23700391A JP2915183B2 JP 2915183 B2 JP2915183 B2 JP 2915183B2 JP 3237003 A JP3237003 A JP 3237003A JP 23700391 A JP23700391 A JP 23700391A JP 2915183 B2 JP2915183 B2 JP 2915183B2
Authority
JP
Japan
Prior art keywords
powder
molded product
molding
vapor pressure
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3237003A
Other languages
Japanese (ja)
Other versions
JPH06240306A (en
Inventor
利幸 松前
勲 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3237003A priority Critical patent/JP2915183B2/en
Publication of JPH06240306A publication Critical patent/JPH06240306A/en
Application granted granted Critical
Publication of JP2915183B2 publication Critical patent/JP2915183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は粉末成形品の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder molded product.

【0002】[0002]

【従来の技術】物質の内部と表面とを異なる材質で構成
し、新たな機能・価値を付加することは従来から研究が
進められ、現在では多くの製品に応用されている。例え
ば、メッキは母材表面に電気化学的に母材と異なる材質
の皮膜を形成する技術として以前から実用化され、装飾
性、耐蝕性、導電性を向上させている。
2. Description of the Related Art Research has been made on adding a new function and value by forming the inside and the surface of a substance with different materials, and has been applied to many products at present. For example, plating has been practically used as a technique for forming a film of a material different from the base material electrochemically on the base material surface, and has improved decorativeness, corrosion resistance, and conductivity.

【0003】更に、最近では真空蒸着、スパッタリング
に代表されるPVD法による被覆形成法も実用化され、
レンズ等に応用されている。これらの母材表面への皮膜
形成による方法では、皮膜の剥離が大きな問題となる。
こうした問題を解決するために、母材と皮膜との密着強
度を向上させる以外にも、母材自体の表面を改質するこ
とが試みられている。例えば、特公昭61−45698
号公報においては、黄銅材を減圧下で加熱することで、
黄銅を構成する銅と亜鉛のうち、高蒸気圧成分である亜
鉛を表面から除去することにより、表面は銅、内部は黄
銅である材料を接着界面なく作り出すことが提案されて
いる。
Further, recently, a coating forming method by a PVD method represented by vacuum evaporation and sputtering has been put into practical use,
It is applied to lenses and the like. In the method of forming a film on the surface of the base material, peeling of the film becomes a serious problem.
In order to solve these problems, attempts have been made to modify the surface of the base material itself in addition to improving the adhesion strength between the base material and the film. For example, Japanese Patent Publication No. 61-45698
In the gazette, by heating the brass material under reduced pressure,
It has been proposed that, of the copper and zinc constituting brass, a material having a copper surface and a brass inside without a bonding interface is produced by removing zinc, which is a high vapor pressure component, from the surface.

【0004】しかし、この従来例においては、あくまで
も表層のみの改質でしかなく、母材の持つ欠点までを改
質することはできない。例えば、黄銅の場合、表面は銅
化されているが、内部は黄銅のままであり黄銅の持つ応
力腐食割れに対する弱さはそのまま維持され、又、それ
を改善するには黄銅組織の成長を抑制する必要がある。
その結果、急速加熱、急速冷却を要するなど設備面での
制約が大きくなり、更には、加熱条件の制約の為に、表
面層の厚みを任意で得ることは極めて難しいものとなっ
ている。
However, in this conventional example, only the surface layer is modified to the last, and it is not possible to modify the defects of the base material. For example, in the case of brass, the surface is coppered, but the inside remains brass, and the vulnerability to stress corrosion cracking of brass is maintained as it is, and to improve it, the growth of brass structure is suppressed There is a need to.
As a result, restrictions on equipment such as rapid heating and rapid cooling are required, and further, it is extremely difficult to arbitrarily obtain the thickness of the surface layer due to restrictions on heating conditions.

【0005】又、この従来例においては、黄銅材を処理
するために、形状の自由度は極めて小さく、更にこの材
料を用いて加工を行えば、加工面には母材である黄銅が
出現する。その結果、黄銅の出現面からの応力腐食割れ
が進行し易くなる可能性がある。更には、電気特性にお
いても、表層は銅であるが内部は黄銅のみであり、又、
結晶成長を抑制するための加熱条件の制約により、表面
の銅層は極めて薄いものとなり、全体としての電気抵抗
の低減効果は非常に小さいものである。この発明は斯か
る課題を解決するためになされたもので、その目的とす
るところは、表層と母材を剥離の問題なく異材質で構成
すると共に、母材の結晶粒界にも異材質を導入し、か
つ、母材の欠点をも改善した複合材料を提供することに
ある。
In this conventional example, since the brass material is treated, the degree of freedom of the shape is extremely small, and if this material is used for processing, brass as a base material appears on the processed surface. . As a result, stress corrosion cracking from the surface where brass appears may easily progress. Furthermore, also in electrical characteristics, the surface layer is copper, but the inside is only brass,
Due to restrictions on heating conditions for suppressing crystal growth, the copper layer on the surface becomes extremely thin, and the effect of reducing the electrical resistance as a whole is very small. The present invention has been made in order to solve such problems, and the object is to form the surface layer and the base material from different materials without a problem of peeling, and to use the different materials also at the crystal grain boundaries of the base material. An object of the present invention is to provide a composite material which has been introduced and has also improved the disadvantages of the base material.

【0006】[0006]

【発明が解決しようとする課題】前記目的を達成するた
め、本発明は、少なくとも2成分以上で構成される合金
粉末を任意の手段で成形した後、減圧下で加熱して合金
を構成する成分中の高蒸気圧成分を蒸発させつつ粒子間
を結合させることにより、製品表層及び結晶粒界に低蒸
気圧成分を析出させることを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a method for forming an alloy powder by forming an alloy powder comprising at least two components by any means, and then heating the alloy powder under reduced pressure. The method is characterized in that low vapor pressure components are precipitated on the surface layer of the product and crystal grain boundaries by bonding the particles while evaporating the high vapor pressure components therein.

【0007】前記合金粉末が、黄銅材であることを特徴
とする。前記において、粉末成形品を再圧縮手段により
寸法精度を高めると共に、表層の高蒸気圧成分の蒸発に
よりできた孔を塞ぐことを特徴とする。前記成形手段
が、合金粉末と成形助剤とを混練した材料による射出成
形であることを特徴とする。前記成形手段が、ドクター
ブレード法又は押出成形法等のシート形状成形法である
ことを特徴とする。前記シート状成形品を所定の形状に
打ち抜いた後に焼結を行うことを特徴とする。前記シー
ト状成形品を所定の形状に打ち抜く際に、又は打ち抜き
後に成形品とは異なる材質の部品を成形品中に挿入し、
その後に焼結を行うことを特徴とする。前記シート状成
形品を所定の形状に打ち抜く際に、成形品とは異なる材
質の粉末を成形品中に成形し、その後に焼結を行うこと
を特徴とする。
[0007] The invention is characterized in that the alloy powder is a brass material. In the above, it is characterized in that the dimensional accuracy of the powder molded product is increased by recompressing means, and holes formed by evaporation of a high vapor pressure component on the surface layer are closed. The molding means is injection molding using a material obtained by kneading an alloy powder and a molding aid. The molding means is a sheet shape molding method such as a doctor blade method or an extrusion molding method. It is characterized in that sintering is performed after the sheet-shaped molded product is punched into a predetermined shape. When punching the sheet-shaped molded product into a predetermined shape, or after punching, insert a part of a material different from the molded product into the molded product,
Thereafter, sintering is performed. When the sheet-shaped molded product is punched into a predetermined shape, powder of a material different from that of the molded product is molded into the molded product, and thereafter, sintering is performed.

【0008】少なくとも2成分以上で構成される合金粉
末を減圧下で加熱して、合金を構成する成分中の高蒸気
圧成分を蒸発させて粉末表層に低蒸気圧成分を析出させ
た後に任意の手段で成形し、その後焼結させることによ
って製品表層及び結晶粒界に低蒸気圧成分を析出させる
ことを特徴とする。少なくとも2成分以上で構成される
合金粉末を減圧下で加熱して、合金を構成する成分中の
高蒸気圧成分を蒸発させて粉末表層に低蒸気圧成分を析
出させた後に、異なる種類の粉末と混合し、任意の手段
で成形し、その後に焼結させることを特徴とする。
[0008] An alloy powder composed of at least two components is heated under reduced pressure to evaporate a high vapor pressure component in the components constituting the alloy to precipitate a low vapor pressure component on the surface of the powder. It is characterized in that a low vapor pressure component is precipitated on the surface layer of the product and the crystal grain boundaries by forming and sintering. After heating the alloy powder composed of at least two components under reduced pressure to evaporate the high vapor pressure component in the components constituting the alloy to precipitate the low vapor pressure component on the powder surface layer, different types of powder , Mixed by any means, and then sintered.

【0009】[0009]

【作用】前記構成により、本発明においては、2成分以
上で構成される合金粉末を成形した後、この成形品を減
圧下で加熱することにより、合金を構成する成分中の高
蒸気圧成分を蒸発させながら粒子間を結合させたり、ま
た、前記合金粉末を減圧下で加熱して、高蒸気圧成分を
蒸発させて表面層に低蒸気圧成分を析出させた後に成形
し、その後焼結させたり、更には、前記合金粉末を減圧
下で加熱して、高蒸気圧成分を蒸発させて表面層に低蒸
気圧成分を析出させた後、異なる種類の粉末と混合して
成形し、その後に焼結させることにより、表面層と母材
を剥離の問題なく異材質で構成するものであり、また、
母材の結晶粒界にも異材質の導入が可能になって、母材
の欠点をも改善することが可能となる。
According to the above construction, in the present invention, after forming an alloy powder composed of two or more components, the molded product is heated under reduced pressure to reduce the high vapor pressure component in the components constituting the alloy. Bonding between the particles while evaporating, or heating the alloy powder under reduced pressure, evaporating the high vapor pressure component to precipitate the low vapor pressure component on the surface layer, then molding, and then sintering Or, further, after heating the alloy powder under reduced pressure, evaporating the high vapor pressure component and depositing the low vapor pressure component on the surface layer, mixing with different types of powder and molding, then By sintering, the surface layer and the base material are composed of different materials without any problem of peeling,
It is possible to introduce a different material into the crystal grain boundary of the base material, and it is possible to improve the defects of the base material.

【0010】[0010]

〔実施例1〕[Example 1]

粉末として、成分構成が70%Cu+30%Znの黄銅
を用いた。この場合、大気圧下で亜鉛は930℃、銅は
2582℃の沸点を持ち、加熱条件、圧力を適切に設定
すれば亜鉛のみを選択的に除去する事が可能である。上
記の粉末の平均粒径は70〜120μm程度のものを用
い、成形前に重量比で2〜3%のステアリン酸を添加し
た。上記の材料を調整後、直圧式プレスを用い、成形圧
力1〜7ton/cm2 の範囲で成形した。
As the powder, brass having a component composition of 70% Cu + 30% Zn was used. In this case, zinc has a boiling point of 930 ° C. and copper has a boiling point of 2582 ° C. under atmospheric pressure, and it is possible to selectively remove only zinc by appropriately setting heating conditions and pressure. The above powder used had an average particle size of about 70 to 120 μm, and stearic acid was added at a weight ratio of 2 to 3% before molding. After the above materials were adjusted, they were molded using a direct pressure press under a molding pressure of 1 to 7 ton / cm 2 .

【0011】この成形品を第1図に示す温度パターンで
加熱した。この温度パターンにおいて、200℃の温度
域ではステアリン酸を溶融、分解により除去し、600
℃の温度域では粉末表面の亜鉛を除去させ、更に900
℃の温度域では粉末間を結合させると同時に、成形品表
面より亜鉛の蒸発を促進させて完全な銅層を形成させ
る。この場合、雰囲気の真空度は10-2〜10-4tor
r程度の真空状態に保った。
The molded article was heated according to the temperature pattern shown in FIG. In this temperature pattern, in a temperature range of 200 ° C., stearic acid is melted and removed by decomposition, and
In the temperature range of ℃, zinc on the surface of the powder is removed and 900
In the temperature range of ° C., at the same time as bonding between powders, the evaporation of zinc from the surface of the molded article is promoted to form a complete copper layer. In this case, the degree of vacuum of the atmosphere is 10 −2 to 10 −4 torr.
The vacuum was maintained at about r.

【0012】本実施例により製造された成形品は、表面
層は銅であり、内部は黄銅である。しかも、この黄銅組
織は図2に示す様に、結晶粒界に銅が析出し、黄銅組織
の成長を阻止している。この様な材料は、黄銅組織が成
長していない為に耐応力腐食割れ性に優れ、又、粒界に
沿ってマトリックス状に銅が析出しているため導電性も
向上する。
In the molded article manufactured according to this embodiment, the surface layer is made of copper and the inside is made of brass. Moreover, in the brass structure, as shown in FIG. 2, copper precipitates at the crystal grain boundaries, thereby inhibiting the growth of the brass structure. Such a material is excellent in stress corrosion cracking resistance because a brass structure is not grown, and also has improved conductivity because copper is precipitated in a matrix along grain boundaries.

【0013】〔実施例2〕 粉末として、成分構成が70%Cu+30%Znの黄銅
を用いた。上記の粉末の平均粒径は10μm程度のもの
を用い、成形前に、ジブチルフタレート、パラフィンワ
ックス、ポリエチレン、エチレン−酢酸ビニル共重合体
から構成される成形助剤と加熱下で混練した。配合比率
は体積比で粉末:成形助剤=55:45となるようにし
た。次に、上記の合金粉末と成形助剤とを混練した材料
を、図5のような射出成形機で成形した。 すなわち、ホ
ッパ12に前記の材料を投入し、これをスクリュー13
の回転で軸方向に送り込み、金型14のキャビティ15
内に700kg/cm 2 の圧力で射出・充填した。この
成形品を窒素雰囲気下で450℃まで24時間かけて昇
温して、成形助剤を除去した後、10-2〜10-4tor
r程度の真空下で図3に示す温度パターンで加熱した。
Example 2 As powder, brass having a component composition of 70% Cu + 30% Zn was used. The above powder having an average particle size of about 10 μm was kneaded with a molding aid composed of dibutyl phthalate, paraffin wax, polyethylene, and an ethylene-vinyl acetate copolymer under heating before molding. The mixing ratio was such that powder: molding aid = 55: 45 in volume ratio. Next, a material obtained by kneading the above alloy powder and a forming aid
Was molded using an injection molding machine as shown in FIG. That is,
The above-mentioned material is put into the hopper 12, and the
In the axial direction by the rotation of
It was injected and filled at a pressure of 700 kg / cm 2 . The molded product was heated to 450 ° C. over 24 hours in a nitrogen atmosphere to remove the molding aid, and then 10 −2 to 10 −4 torr.
Heating was performed in a temperature pattern shown in FIG. 3 under a vacuum of about r.

【0014】この方法により製造された成形品は、表面
積は銅であり内部は黄銅である。しかも、この黄銅組織
は図2に示す様に、結晶粒界に銅が析出し、黄銅組織の
成長を阻止している。この様な材料は、黄銅組織が成長
していない為に耐応力腐食割れ性に優れ、又、粒界に沿
ってマトリックス状に銅が析出しているため導電性も向
上する。
The molded article produced by this method has a copper surface area and brass inside. Moreover, in the brass structure, as shown in FIG. 2, copper precipitates at the crystal grain boundaries, thereby inhibiting the growth of the brass structure. Such a material is excellent in stress corrosion cracking resistance because a brass structure is not grown, and also has improved conductivity because copper is precipitated in a matrix along grain boundaries.

【0015】〔実施例3〕上記実施例1において、図4
(a)のように、成形品を焼結してできた焼結品10
は、図4(b)のように、焼結品10の表面層10aに
亜鉛の蒸発により生じた空孔11が存在する。これを、
図4(c)に示す様に、再度直圧式プレスで1〜7to
n/cm2 の圧力で加圧した。その結果、図4(d)の
ように、焼結品10の表面層10aに存在していた空孔
11は塞がれ、更に表面層10aの銅密度が高まる為に
光沢が現れ、装飾品としての用途が可能となる。
[Embodiment 3] In Embodiment 1 described above, FIG.
As shown in (a), a sintered product 10 obtained by sintering a molded product
As shown in FIG. 4B, pores 11 generated by evaporation of zinc are present in the surface layer 10a of the sintered product 10. this,
As shown in FIG. 4 (c), the direct pressure type press is again used for 1 to 7 to
Pressure was applied at a pressure of n / cm 2 . As a result, as shown in FIG. 4D, the holes 11 existing in the surface layer 10a of the sintered product 10 are closed, and the copper density of the surface layer 10a further increases, so that gloss appears, and Can be used.

【0016】〔実施例4〕 粉末として、成分構成が70%Cu+30%Znの黄銅
を用いた。上記の粉末の平均粒径は10μm程度のもの
を用い、成形前に、ポリビニルアルコール、メチルセル
ソルブから構成される成形助剤と水といっしょにボール
ミル中で1〜2時間混合した。次に、上記の材料を図6
に示すように、スプレッダーのローラ16上の材料の量
をブレード17で調整するドクターブレード法により、
シート状に成形した。
Example 4 As powder, brass having a component composition of 70% Cu + 30% Zn was used. The above powder had an average particle size of about 10 μm, and was mixed in a ball mill together with a molding aid composed of polyvinyl alcohol and methylcellosolve in a ball mill for 1 to 2 hours before molding. Next, the above-mentioned material is
The amount of material on the spreader roller 16 as shown in
Is adjusted by the blade 17 by the doctor blade method.
It was formed into a sheet.

【0017】〔実施例5〕粉末として、成分構成が70
%Cu+30%Znの黄銅を用いた。上記の粉末の平均
粒径は10μm程度のものを用い、成形前に、ポリビニ
ルアルコール、メチルセルソルブから構成される成形助
剤と水といっしょにボールミル中で1〜2時間混合し
た。次に、上記の材料を図6に示すように、スプレッダ
ーのローラ16上の材料の量をブレード17で調整する
ドクターブレード法により、シート状に成形した。この
成形品18を大気下に放置して水分を除去した後、プレ
スにて所定形状に打ち抜き、その後10-2〜10-4to
rr程度の真空下で図7に示す温度パターンで加熱し
た。この方法により製造された成形品の表面層は全周銅
であり、内部は黄銅であり、従来例の様に端面に黄銅が
析出することもない。
Example 5 The composition of the powder was 70
Brass of% Cu + 30% Zn was used. The above powder had an average particle size of about 10 μm, and was mixed in a ball mill together with a molding aid composed of polyvinyl alcohol and methylcellosolve in a ball mill for 1 to 2 hours before molding. Next, as shown in FIG. 6, the above-mentioned material was formed into a sheet by a doctor blade method in which the amount of the material on the roller 16 of the spreader was adjusted by a blade 17. After leaving the molded product 18 in the air to remove water, it is punched into a predetermined shape by a press, and then 10 −2 to 10 −4 ton.
Heating was performed under a vacuum of about rr according to the temperature pattern shown in FIG. The surface layer of the molded article produced by this method is copper all around, and the inside is brass, and there is no precipitation of brass on the end face unlike the conventional example.

【0018】〔実施例6〕上記実施例5におけるシート
状成形品18を、図8(a)〜(c)のように、抜き型
19にて所定形状に打ち抜く際に、鋲状に加工した銀接
点部品20を挿入した。その後、実施例5と同じ温度条
件で焼結させた。この方法により製造された成形品で
は、シート状成形品が焼結される際に収縮して銀部20
はかしめられた状態で固定され、かつ銅と銀との接触部
では合金が形成されていた。一般にリレー等の接点部は
銅系材料に銀系材料接点をかしめて作られるが、かしめ
の際に型についた油等で接点表面が汚染され、洗浄が必
要となる。しかし、本実施例により作られた接点部は、
高温で焼結する過程で汚染物は除去され、極めて清浄な
接点面を持たせることが可能となる。
[Embodiment 6] As shown in FIGS. 8A to 8C, the sheet-like molded product 18 in the above-described embodiment 5 is processed into a stud shape when punching out a predetermined shape with a punching die 19. The silver contact part 20 was inserted. Thereafter, sintering was performed under the same temperature conditions as in Example 5. In the molded article produced by this method, the silver part 20 shrinks when the sheet-like molded article is sintered.
It was fixed in a crimped state, and an alloy was formed at the contact portion between copper and silver. Generally, a contact portion of a relay or the like is formed by caulking a silver-based material contact with a copper-based material. However, at the time of caulking, the contact surface is contaminated with oil or the like attached to a mold, and requires cleaning. However, the contact portion made according to this embodiment is
Contaminants are removed in the process of sintering at a high temperature, and an extremely clean contact surface can be provided.

【0019】〔実施例7〕上記実施例5におけるシート
状成形品を、図9(a)(b)のように、抜き型19に
て所定形状に打ち抜いた後に、図9(c)(d)のよう
に、所定の位置に粉末状の銀21を用いて直圧プレス2
2にて鋲状の形状を成形した。その後、実施例5と同じ
温度条件で焼結させた。この場合、銀粉末に加える成形
助剤の量は、焼結後に収縮がシート状成形品の収縮より
も小さくなるように配合した。この方法により製造され
た成形品では、図9(e)のように、シート状成形品が
焼結される際に収縮して銀部23はかしめられた状態で
固定され、かつ銅と銀との接触部では合金が形状されて
いた。一般にリレー等の接点部は銅系材料に銀系材料接
点をかしめて作られるが、かしめの際に型についた油等
で接点表面が汚染され、洗浄が必要となる。
[Embodiment 7] As shown in FIGS. 9 (a) and 9 (b), the sheet-like molded product in the above-mentioned embodiment 5 is punched into a predetermined shape by a punching die 19, and then the sheet-shaped molded article is punched out of FIG. ), Using a powdered silver 21 in a predetermined position,
At 2, a stud-like shape was formed. Thereafter, sintering was performed under the same temperature conditions as in Example 5. In this case, the amount of the molding aid added to the silver powder was adjusted so that the shrinkage after sintering was smaller than the shrinkage of the sheet-shaped molded product. In the molded product manufactured by this method, as shown in FIG. 9 (e), when the sheet-shaped molded product is sintered, it shrinks and the silver portion 23 is fixed in a caulked state, and copper and silver are fixed together. The alloy was shaped at the contact portion of No. 1. Generally, a contact portion of a relay or the like is formed by caulking a silver-based material contact with a copper-based material. However, at the time of caulking, the contact surface is contaminated with oil or the like attached to a mold and requires cleaning.

【0020】しかし、本実施例により作られた接点部は
高温で焼結する過程で汚染物は除去され、極めて清浄な
接点面を持たせることが可能となる。又、接点形状にお
いても従来のかしめによるものよりも自由度が大きくす
ることが可能となる。
However, the contaminants are removed during the sintering process at a high temperature in the contact portion manufactured according to the present embodiment, and it is possible to provide an extremely clean contact surface. Also, the degree of freedom of the contact shape can be increased as compared with the conventional caulking.

【0021】〔実施例8〕粉末として、成分構成が70
%Cu+30%Znの黄銅を用いた。上記の粉末の平均
粒径は70〜120μm程度のものを用い、10-2〜1
-4torrの真空下で600℃で10〜30分加熱す
ることにより、粉末表面の亜鉛を蒸発させて銅層を形成
させた。その際に粉末はバレル等により常に動かすこと
により、凝集や融着を防止した。
Example 8 The composition of the powder was 70
Brass of% Cu + 30% Zn was used. The average particle diameter of the above powder is about 70 to 120 μm, and 10 −2 to 1
By heating at 600 ° C. for 10 to 30 minutes under a vacuum of 0 −4 torr, zinc on the powder surface was evaporated to form a copper layer. At that time, the powder was constantly moved by a barrel or the like to prevent aggregation and fusion.

【0022】この粉末に、重量比で2〜3%のステアリ
ン酸を添加した。上記の材料を調整後、直圧式プレスを
用い、成形圧力1〜7ton/cm2 の範囲で成形し
た。この成形品を図10に示す温度パターンで加熱し
た。この温度パターンにおいて、200℃の温度域では
ステアリン酸を溶融、分解により除去し、更に900℃
の温度域では粉末間を結合させると同時に、成形品表面
より亜鉛の蒸発を促進させて完全な銅層を形成させる。
この場合、雰囲気の真空度は10-2〜10-4torr程
度の真空状態に保った。
To this powder, 2-3% by weight of stearic acid was added. After the above materials were adjusted, they were molded using a direct pressure press under a molding pressure of 1 to 7 ton / cm 2 . This molded product was heated according to the temperature pattern shown in FIG. In this temperature pattern, in the temperature range of 200 ° C., stearic acid is melted and removed by decomposition, and further, 900 ° C.
In this temperature range, the powders are bonded together, and at the same time, the evaporation of zinc from the surface of the molded article is promoted to form a complete copper layer.
In this case, the degree of vacuum of the atmosphere was kept at a vacuum of about 10 -2 to 10 -4 torr.

【0023】この方法により製造された成形品は表面層
は銅であり、内部は黄銅である。しかも、この黄銅組織
は図2に示す様に、結晶粒界に銅が析出し、黄銅組織の
成長を阻止している。この様な材料は黄銅組織が成長し
ていない為に耐応力腐食割れ性に優れ、又、粒界に沿っ
てマトリックス状に銅が析出しているため導電性も向上
する。
In the molded article produced by this method, the surface layer is made of copper and the inside is made of brass. Moreover, in the brass structure, as shown in FIG. 2, copper precipitates at the crystal grain boundaries, thereby inhibiting the growth of the brass structure. Such a material is excellent in stress corrosion cracking resistance because the brass structure does not grow, and the conductivity is also improved because copper is precipitated in a matrix along the grain boundaries.

【0024】〔実施例9〕粉末として、成分構成が70
%Cu+30%Znの黄銅を用いた。上記の粉末の平均
粒径は70〜120μm程度のものを用い、10-2〜1
-4torrの真空下で600℃で10〜30分加熱す
ることにより、粉末表面の亜鉛を蒸発させて銅層を形成
させた。その際に粉末はバレル等により常に動かすこと
により、凝集や融着を防止した。
Example 9 The composition of the powder was 70
Brass of% Cu + 30% Zn was used. The average particle diameter of the above powder is about 70 to 120 μm, and 10 −2 to 1
By heating at 600 ° C. for 10 to 30 minutes under a vacuum of 0 −4 torr, zinc on the powder surface was evaporated to form a copper layer. At that time, the powder was constantly moved by a barrel or the like to prevent aggregation and fusion.

【0025】この粉末に、重量比で90〜95%の鉄粉
と2〜3%のステアリン酸を添加した。上記の材料を調
整後、直圧式プレスを用い、成形圧力1〜7ton/c
2の範囲で成形した。この成形品を、図11に示す温
度パターンで加熱した。この温度パターンにおいて20
0℃の温度域ではステアリン酸を溶融、分解により除去
し、更に1300℃の温度域では粉末間を結合させる。
この場合、雰囲気の真空度は10-2〜10-4torr程
度の真空状態に保った。
To this powder, 90-95% by weight of iron powder and 2-3% of stearic acid were added. After adjusting the above materials, using a direct pressure type press, molding pressure 1 to 7 ton / c
It was molded in the range of m 2. This molded product was heated according to the temperature pattern shown in FIG. In this temperature pattern, 20
In a temperature range of 0 ° C., stearic acid is melted and removed by decomposition, and in a temperature range of 1300 ° C., powder is bonded.
In this case, the degree of vacuum of the atmosphere was kept at a vacuum of about 10 -2 to 10 -4 torr.

【0026】この方法により製造された成形品は、図1
2のように、鉄の結晶粒界に銅が析出し、更に銅中に黄
銅が分散して粒界の亀裂進行を防止する組織を形成して
いる。又、粒界に銅が形成されることにより、導電率を
向上させることができる。
The molded article produced by this method is shown in FIG.
As shown in FIG. 2, copper precipitates at the crystal grain boundaries of iron, and further, brass is dispersed in the copper to form a structure that prevents the progress of cracks at the grain boundaries. Further, the electrical conductivity can be improved by forming copper at the grain boundaries.

【0027】〔実施例10〕粉末としてSUS304を
用いた。上記の粉末の平均粒径は70〜120μm程度
のものを用い、成形前に重量比で2〜3%のステアリン
酸を添加した。上記の材料を調整後、直圧式プレスを用
い、成形圧力1〜7ton/cm2 の範囲で成形した。
この成形品を図13に示す温度パターンで加熱した。こ
の温度パターンにおいて、200℃の温度域ではステア
リン酸を溶融、分解により除去し、1150℃の温度域
では粉末表面のクロムを除去させ、更に1350℃の温
度域では粉末間を結合させると同時に、成形品表面より
クロムの蒸発を促進させて表面のクロム濃度を制御す
る。
Example 10 SUS304 was used as a powder. The above powder used had an average particle size of about 70 to 120 μm, and stearic acid was added at a weight ratio of 2 to 3% before molding. After the above materials were adjusted, they were molded using a direct pressure press under a molding pressure of 1 to 7 ton / cm 2 .
This molded product was heated according to the temperature pattern shown in FIG. In this temperature pattern, stearic acid is melted and removed by decomposition in the temperature range of 200 ° C., chromium on the surface of the powder is removed in the temperature range of 1150 ° C., and at the same time, the powder is bonded in the temperature range of 1350 ° C. The chromium concentration on the surface is controlled by promoting the evaporation of chromium from the surface of the molded article.

【0028】この場合、雰囲気の真空度は10-2〜10
-4torr程度の真空状態に保った。この方法により製
造された成形品は、表面層のクロム濃度を任意に制御す
ることが可能となり、例えば陽極酸化処理などを行った
場合、その色調幅を拡げることが可能となる。
In this case, the degree of vacuum of the atmosphere is 10 −2 to 10
A vacuum of about -4 torr was maintained. In the molded article manufactured by this method, the chromium concentration of the surface layer can be arbitrarily controlled. For example, when anodizing treatment or the like is performed, the color tone width can be increased.

【0029】[0029]

【発明の効果】本発明によれば、表層と母材を剥離の問
題なく異材質で構成することができると共に、母材の結
晶粒界にも異材質を導入することが可能となり、母材の
欠点をも改善した複合材料を製造することができる。
According to the present invention, the surface layer and the base material can be made of different materials without a problem of separation, and the different materials can be introduced into the crystal grain boundaries of the base material. The composite material which also improved the defect of can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における温度条件を示す図である。FIG. 1 is a diagram showing temperature conditions in Example 1.

【図2】実施例1における成形品の結晶組織を示す図で
ある。
FIG. 2 is a view showing a crystal structure of a molded article in Example 1.

【図3】実施例2における温度条件を示す図である。FIG. 3 is a diagram showing temperature conditions in Example 2.

【図4】(a)〜(d)は、実施例3における加圧方法
を示す図である。
FIGS. 4A to 4D are diagrams illustrating a pressing method according to a third embodiment.

【図5】実施例2に用いた射出成形機を示す図である。FIG. 5 is a view showing an injection molding machine used in Example 2 .

【図6】実施例4に用いたドクターブレード装置の原理
を示す図である。
FIG. 6 is a diagram showing the principle of a doctor blade device used in Example 4 .

【図7】実施例5における温度条件を示す図である。FIG. 7 is a diagram showing temperature conditions in Example 5.

【図8】(a)〜(c)は、実施例6における成形工程
を示す図である。
8 (a) to 8 (c) are views showing a molding step in Example 6. FIG.

【図9】(a)〜(e)は、実施例7における成形工程
を示す図である。
9 (a) to 9 (e) are views showing a molding step in Example 7. FIG.

【図10】実施例8における温度条件を示す図である。FIG. 10 is a diagram showing temperature conditions in Example 8.

【図11】実施例9における温度条件を示す図である。FIG. 11 is a diagram showing temperature conditions in Example 9.

【図12】実施例9における結晶組織を示す図である。FIG. 12 is a view showing a crystal structure in Example 9.

【図13】実施例10における温度条件を示す図であ
る。
FIG. 13 is a diagram showing temperature conditions in Example 10.

【符号の説明】[Explanation of symbols]

10 焼結品 11 空孔 12 ホッパ 13 スクリュー 14 金型 15 キャビティー 17 ブレード 18 シート状成形品 19 抜き型 20 銀接点部品 21 銀粉末 23 銀部 DESCRIPTION OF SYMBOLS 10 Sintered product 11 Void 12 Hopper 13 Screw 14 Die 15 Cavity 17 Blade 18 Sheet-shaped molded product 19 Die die 20 Silver contact part 21 Silver powder 23 Silver part

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも2成分以上で構成される合金
粉末を任意の手段で成形した後、減圧下で加熱して合金
を構成する成分中の高蒸気圧成分を蒸発させつつ粒子間
を結合させることにより、製品表層及び結晶粒界に低蒸
気圧成分を析出させることを特徴とした粉末成形品の製
造方法。
An alloy powder composed of at least two components is formed by an arbitrary means, and then heated under reduced pressure to evaporate a high vapor pressure component in the components constituting the alloy and bond the particles together. A method for producing a powder molded product, wherein a low vapor pressure component is precipitated on a surface layer and a crystal grain boundary of the product.
【請求項2】 請求項1記載の製造方法において、合金
粉末が黄銅材であることを特徴とした粉末成形品の製造
方法。
2. The method according to claim 1, wherein the alloy powder is a brass material.
【請求項3】 請求項1記載の製造方法において、粉末
成形品を再圧縮手段により寸法精度を高めると共に、表
層の高蒸気圧成分の蒸発によりできた孔を塞ぐことを特
徴とした粉末成形品の製造方法。
3. The powder molded product according to claim 1, wherein the dimensional accuracy of the powder molded product is improved by recompressing means, and a hole formed by evaporation of a high vapor pressure component in a surface layer is closed. Manufacturing method.
【請求項4】 請求項1記載の製造方法において、成形
手段が合金粉末と成形助剤とを混練した材料による射出
成形であることを特徴とした粉末成形品の製造方法。
4. The method according to claim 1, wherein the molding means is injection molding using a material obtained by kneading an alloy powder and a molding aid.
【請求項5】 請求項1記載の製造方法において、成形
手段がドクターブレード法又は押出成形法等のシート形
状成形法であることを特徴とした粉末成形品の製造方
法。
5. The method according to claim 1, wherein the molding means is a sheet shape molding method such as a doctor blade method or an extrusion molding method.
【請求項6】 請求項1,5記載の製造方法において、
シート状成形品を所定の形状に打ち抜いた後に焼結を行
うことを特徴とした粉末成形品の製造方法。
6. The manufacturing method according to claim 1, wherein
A method for producing a powder molded product, comprising sintering a sheet-shaped molded product after punching it into a predetermined shape.
【請求項7】 請求項1,6記載の製造方法において、
シート状成形品を所定の形状に打ち抜く際に、又は打ち
抜き後に成形品とは異なる材質の部品を成形品中に挿入
し、その後に焼結を行うことを特徴とした粉末成形品の
製造方法。
7. The method according to claim 1, wherein
A method of manufacturing a powder molded product, comprising: inserting a part of a material different from that of the molded product into the molded product when or after punching the sheet-shaped molded product into a predetermined shape; and performing sintering thereafter.
【請求項8】 請求項1,6記載の製造方法において、
シート状成形品を所定の形状に打ち抜く際に、成形品と
は異なる材質の粉末を成形品中に成形し、その後に焼結
を行うことを特徴とした粉末成形品の製造方法。
8. The manufacturing method according to claim 1, wherein
A method for manufacturing a powder molded product, comprising: forming a powder of a material different from that of the molded product into the molded product when punching the sheet-shaped molded product into a predetermined shape; and performing sintering thereafter.
【請求項9】 少なくとも2成分以上で構成される合金
粉末を減圧下で加熱して、合金を構成する成分中の高蒸
気圧成分を蒸発させて粉末表層に低蒸気圧成分を析出さ
せた後に任意の手段で成形し、その後焼結させることに
よって製品表層及び結晶粒界に低蒸気圧成分を析出させ
ることを特徴とした粉末成形品の製造方法。
9. An alloy powder composed of at least two or more components is heated under reduced pressure to evaporate a high vapor pressure component in the components constituting the alloy to deposit a low vapor pressure component on a surface layer of the powder. A method for producing a powder molded product, wherein a low vapor pressure component is precipitated on a product surface layer and a crystal grain boundary by molding by any means and thereafter sintering.
【請求項10】 少なくとも2成分以上で構成される合
金粉末を減圧下で加熱して、合金を構成する成分中の高
蒸気圧成分を蒸発させて粉末表層に低蒸気圧成分を析出
させた後に、異なる種類の粉末と混合し、任意の手段で
成形し、その後に焼結させることを特徴とした粉末成形
品の製造方法。
10. An alloy powder composed of at least two or more components is heated under reduced pressure to evaporate a high vapor pressure component in the components constituting the alloy to deposit a low vapor pressure component on a surface layer of the powder. A method for producing a powder molded product, comprising mixing with a different kind of powder, molding by any means, and thereafter sintering.
JP3237003A 1991-08-23 1991-08-23 Manufacturing method of powder molded product Expired - Lifetime JP2915183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3237003A JP2915183B2 (en) 1991-08-23 1991-08-23 Manufacturing method of powder molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3237003A JP2915183B2 (en) 1991-08-23 1991-08-23 Manufacturing method of powder molded product

Publications (2)

Publication Number Publication Date
JPH06240306A JPH06240306A (en) 1994-08-30
JP2915183B2 true JP2915183B2 (en) 1999-07-05

Family

ID=17008948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3237003A Expired - Lifetime JP2915183B2 (en) 1991-08-23 1991-08-23 Manufacturing method of powder molded product

Country Status (1)

Country Link
JP (1) JP2915183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021535A1 (en) * 2009-08-19 2011-02-24 相田化学工業株式会社 Method for producing decorative metallic article, and decorative metallic article
EP3408427A4 (en) 2016-01-29 2019-11-06 Hewlett-Packard Development Company, L.P. Metal-connected particle articles

Also Published As

Publication number Publication date
JPH06240306A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
US5618397A (en) Silicide targets for sputtering
EP0246844B1 (en) Production of flat products from particulate material
JPH0830269B2 (en) Method for manufacturing target for cathode sputtering
EP2951332B1 (en) Sputter target with Ga-Na, In-Na or Ga-In-Na intermetallic phases
JPH06244330A (en) Heat-controlling composite material used in electronic circuit device, and manufacture thereof
JP2915183B2 (en) Manufacturing method of powder molded product
US5963771A (en) Method for fabricating intricate parts with good soft magnetic properties
US6299831B1 (en) High performance Cu/Cr sputter targets for semiconductor application
JPH1150242A (en) Copper sputtering target for forming electrode coating, its production and copper series electrode coating
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
JP2002256422A (en) W-Ti TARGET AND MANUFACTURING METHOD THEREFOR
DE1646655A1 (en) Ceramic products and processes for their manufacture
JPS63286537A (en) Manufacture of grain dispersion-type composite material
JPH0312809A (en) Nanocomposite substrate
JP2008169463A (en) Cobalt-tungsten sputter target, and method for manufacturing the same
JP2005194566A (en) Tungsten-copper composite powder, its production method, and method of producing sintered alloy using the same
JPH04210448A (en) Functionally gradient material using zn-22al superplastic powder and method for forming the same
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JPS61179534A (en) Compound target for sputtering equipment
JP2573375B2 (en) Manufacturing method of sintered parts
JP2694117B2 (en) Silver-high temperature superconducting composite material manufactured using powder method and manufacturing method thereof
US3732095A (en) Method of making porous electrodes comprising freezing wet powder and sintering
JP2794473B2 (en) Method for producing sintered member made of amorphous alloy
JPS60230957A (en) Manufacture of permanent magnet
JPH11172423A (en) Production of electrically conductive high-density titanium oxide target